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ABSTRACT 

A l inear ized system of equations fo r  the atmosphere's f i r s t  in te r -  

nal mode in the ver t i ca l  i s  derived. The system governs small amplitude., 

forced,  axisymmetric perturbations on a  basic s t a t e  tangential flow which 

i s  independent of height. When the basic flow i s  a t  r e s t ,  solutions fo r  

the t r ans ien t  and f ina l  adjusted s t a t e  a re  found by the method of Hankel 

transforms. Two examples a re  considered, one with an i n i t i a l  top-hat 
I 

potential  vo r t i c i t y  and one with an i n i t i a l  Gaussian-type potential  I 

v o r t i c i t y .  These two examples, which extend the work of Fischer (1963) 

and Obukhov (1 949),  indicate t h a t  the energetical ef f ic iency of cloud 

c lu s t e r  scale  heating in producing balanced vortex flow i s  very low, on 

the order of a  few percent. The vas t  majority of the energy i s  simply 

part i t ioned t o  gravi ty - ine r t i a  waves. In contras t  the ef f ic iency of 

cloud c lu s t e r  sca le  vo r t i c i t y  t ranspor t  i s  very high. 

When the basic s t a t e  possesses posi t ive  r e l a t i ve  vo r t i c i t y  in a n .  

inner region, the  energy par t i t ion  can be subs tan t ia l ly  modified, and 

cloud c lu s t e r  sca le  heating can become considerably more e f f i c i e n t .  

The energy pa r t i t i on  r e su l t s  have important implications f o r  the 

l a t e r a l  boundary condition used in tropical  cyclone models. Faced with 

the f a c t  t ha t  a  perfect  non-reflecting condition i s  possible b u t  imprac- 

t i c a l  t o  implement, one i s  forced t o  use an approximate condition which 

causes some re f lec t ion  of gravi ty- iner t ia  waves and hence some d i s t o r -  

t ion of the geostrophic adjustment process. The d i s to r t ion  can be kept 

small by the use of a  su i t ab le  radiat ion condition. 



INTRODUCTION 

The problem of geostrophic adjustment is to determine the final 

adjusted state and the transient states which occur when atmospheric or - 

oceanic flows mutually adjust the pressure field and the momentum field 

to a state of geostrophic balance. This problem was first studied by 

Rossby (1938), Cahn (1945), and Obukhov (1949). Rossby studied only the 

relationship between the initial unbalanced state and the final geo- 

strophically balanced state. The linear transient adjustment was studied 

for the one-dimensional case by Cahn and for the two-dimensional case 

by Obukhov. Since these classical studies (primarily barotropic) there 

have been many contributions to this problem, e.g. the effect of strati- 

fication (Bolin, 1953; Kibel, 1955, 1957, 1963; Fjelsted, 1958; Monin, 

1958, Fischer, 1963), the effect of horizontal shear of the basic flow 

(31 umen and Washington, 1969), the effect of nonl inear terms (Bl umen, 

1967), the effect of a variable coriol is parameter (Dobrischman, 1964. 

Geisler and Dickinson, 1972), the effect of a transient (rather than 

implusive) forcing of the momentum field (Veronis, 1956) and of the mass 

field (Paegle, 1978). Geisler (1970) has also shown that the linear 

response of the ocean to a moving hurricane is similar in many respects 

to the problem of geostrophic adjustment. Analytic solutions to the 

adjustment problem also serve-as useful guides in the design of finite 

differencing schemes for more complicated models (Arakawa and Lamb, 1977; 

Schoenstadt, 1977, 1979, 1980). A review of the early Soviet 1 iterature 

on geostrophic adjustment (and numerical weather prediction) can be found 

in Phillips et al. (1960). An excellent recent and comprehensive review 

of the adjustment problem can be found in the paper by Blumen (1972). 



The purpose of this paper is to present some simple solutions for 

the geostrophic adjustment of an axisymmetric vortex and to discuss the 

implication of the results for the modeling of tropical cyclones. 

Tropical cyclone models can be divided into two classes: balanced 

models and primitive equation models. In balanced models (e.g. Ogura, 

1964; Kuo, 1965; Ooyama, 1969a, b; Sundquist, 1970a, b) the flow is 

assumed to be axisymmetric and in gradient balance. Since gravi ty-inertia 

waves are then filtered, the transient aspects of the adjustment problem 

are not simulated. Primitive equation models may be either axisymmetric 

(e.g. Yamasaki, 1968a, b; Rosenthal , 1970, 1971, 1978; Kurihara, 1975) 

or asymmetric (e.g. Anthes et al., 1971a, b; Anthes, 1972; Kurihara and 

Tuleya, 1974; Mathur, 1974; Madala and Piacsek, 1975), and in either 

case geostrophic adjustment becomes one of the important physical 

processes which must be properly simulated. 

Some discussion of the geostrophic adjustment of axisymmetric flows 

appears in the works of Obukhov (1949), Fischer (1963), Janjic and Wiin- 

Ni el sen (1 977) and Paegl e (1 978). Obukhov (1 949) studies the adjustment 

of an initial Gaussian-type vorticity while Fischer (1963) studies the 

adjustment of an initial top-hat vorticity (a Rankine vortex). In sec- 

tion 5 and 6 we extend these results by considering both the unbalanced 

initial vortex problem and the unbalanced initial pressure gradient 

problem, and by considering the horizontal scale dependence of the 

energy partition between the final balanced flow and the gravity-inertia 

waves. 

By numerical eval uation of the general integral solutions Paegl e 

(1978) studies the adjustment of the divergent part of the wind to 

axisymmetric switch-on heating and diurnally oscillating heating. In 



addit ion he compares the non-linear gradient adjustment process with 

the l i nea r  geostrophic adjustment process. Our r e su l t s  a re  complementary 

t o  his  b u t  place more emphasis on simple analytical  solut ions .  

An analysis  of geostrophic adjustment in a ro ta t ing cylindrical  

container appears in the work of Jan j ic  and Wiin-Nielsen (1977), who 

argue t h a t  motion in the atmosphere occurs in a limited space, and t h i s  

f a c t  prevents an i n i t i a l  disturbance from t ravel ing away t o  i n f i n i t y .  

Thus, J an j i c  and di in-Niel sen study the adjustment of axisymmetric flows 

i n  a  cyl indr ical  region which has zero divergence on the outer  boundary. 

Not surpr is ingly ,  g rav i ty - ine r t i a  waves are  ref lec ted a t  the boundary 

and t rue  geostrophic adjustment does not occur. Our view of the adjus t -  

ment problem i s  considerably d i f fe ren t .  There a re  of course real 

physical s i t ua t i ons  i n  which gravi ty- iner t ia  waves are  re f l ec ted .  For 

example, when an i n i t i a l  spectrum of waves propagates through a region 

of variable c o r i o l i s  parameter, each wave will not penetrate f a r  beyond 

the l a t i t u d e  where i t s  frequency matches the local co r i o l i s  parameter 

(Geisler  and Dickinson, 1972). Horizontal shear of the basic s t a t e  can 

a l so  a l t e r  the propagation of the gravi ty- iner t ia  waves. However, 

these e f f ec t s  a re  considerably d i f f e r en t  than the boundary condition 

imposed by J an j i c  and Wiin-Nielsen. Our view i s  t h a t ,  f o r  tropical  . , . '  

cyclone modeling, solutions f o r  the unbounded domain are  more relevant  

than solutions fo r  the bounded domain. Since a c i r cu l a r  domain of radius 

1200-1300 km occupies only about 1% of the t o t a l  surface area of the 

globe, the region surrounding a tropical  cyclone can, f o r  practical  

purposes, be considered i n f i n i t e  in extent .  Then, the differences 

between solut ions  fo r  an unbounded domain and solutions fo r  a bounded 

domain should be viewed as  a measure of the inadequacy of the boundary 

conditions which we have been forced t o  use in the bounded case. 



The basic out1 ine of the present paper i s  as follows. After 

deriving in section 2 the governing equations for small amplitude 

perturbations ( a b o u t  a non-resting basic s t a t e )  of the f i r s t  baroclinic 

mode, we discuss in section 3 two n12thods for  the solution of these 

equations. The f i r s t  method i s  based on a local conservation equation 

and yields the f inal  balanced s t a t e  from knowledge of the in i t i a l  s t a t e ,  

regardless of whether the basic s t a t e  i s  a t  r e s t .  The second method 

i s  based on Hankel transforms and yields the transient solution when the 

basic s t a t e  i s  a t  r e s t .  After discussing some general properties of the 

solutions (section 4 ) ,  we present in sections 5-7 some simple examples 

of analytical solutions. Section 8 contrasts solutions of the forced 

~alanced model with both the slowly forced and rapidly forced primitive 

equation model. In section 9 we i l l u s t r a t e  how a non-resting basic 

s t a t e  can influence the energy parti t ion between the final balanced flow 

and the gravi ty-inertia waves. The lop-sided energy parti tion typical 

of tropical motions has important implications for  the la teral  boundary 

conditions used in tropical models. This problem i s  discussed in 

section 10. 



2. GOVERNING EQUATIONS 

Using cylindrical coordinates in the horizontal and using pressure 

as the vertical coordinate, the axisymmetric form of the primitive 

equations can be written 

where u is the radial component of velocity, v the tangential component- 

w the vertical p velocity dp/dt, @ the geopotential, f the constant 

a a0 coriol is parameter, and o the static stabil i ty defined by cr = - - - . 
0 aP 

Here we have included a specified source term for the rotational part 

of the wind field and a specified rate of external heat addition, both 

of which we have assumed can be factored into space dependent and time 

dependent parts, with the time dependent part given by a2te-at. Small 

a corresponds to slow forcing and large a to rapid forcing, but the 

total forcing is independent of a since @-'2 I a te-atdt = 1. A source 
0 

term for the divergent part of the wind has been omitted since it is 

not of such fundamental importance as F, as we shall see later. By the 

inclusion of F and Q we have in mind the apparent sources of angular 

niomentum (or vorticity) and heat due to the effects of cumulus clouds. 

These effects have been extensively studied from a diagnostic point of 



view (e.g.  Reed and Recker, 1971; Williams and Gray, 1973; Yanai e t  a l . ,  

1973, 1976; Ogura and Cho, 1973; Reed and Johnson, 1974; Ruprecht and 

Gray, 1976; C h u ,  1976; Hodur and Fein, 1977; Reed e t  a l . ,  1977; Shapiro, 

1975; Thompson e t .  a1 . , 1979; Stevens, 1979). A1 though the apparent 

sources ac tual ly  depend on the flow f i e l d ,  we.consider such complica- 

t ions  t o  be beyond the scope of the present study. The specif ied time 

d i s t r ibu t ion  of the forcing i s  a rb i t r a ry  and has been simply chosen 

so tha t  we can l a t e r  i l l u s t r a t e  the dependence of the adjustment process on 

the time scale  l / a  . 
In order t o  simplify the ver t i ca l  s t ructure  of t h i s  system as much 

as possible we follow the geostrophic adjustment study of Paegle (1978) 

by considering the standard two layer model version of (2 .1 ) - (2 .4 ) .  

In addit ion,  we r e s t r i c t  our a t tent ion t o  small perturbations about a 
- - - - v - a s  basic s t a t e  of gradient  balance, i . e .  u = w = 0 and ( f + - )  v = -9 r ar 

with 7 assumed t o  be a function of r b u t  not of p.  With (2 .1)- (2 .3)  

applied a t  level 1 (250 mb) and level 3 (750 m b ) ,  and (2.4) applied a t  

level 2 (500 mb) , and requiring t ha t  w = 0 a t  the top and bottom pres- 

sure surfaces,  (2.1 ) - (2 .4 )  reduce t o  

where A p =  500 mb, and where the subscript  "d" r e f e r s  t o  the difference 

between the upper and lower l eve l s ,  e .g.  u d =  u l  - u 3 .  



I t  i s  convenient t o  convert (2.5)-(2.7) into non-dimensional form 

by choosing units of time and  horizontal distance as follows: 

unit of time: l / f  

unit of horizontal distance: c / f  
- 
0 2 ( ~ ~ ) 2 '  

Here c2 = 2 i s  the square of the phase speed of pure internal 

gravity wave. Then the dimensionless quantit ies,  time, radial distance, 

basic s t a t e  tangential wind, shear velocity components, thickness, 

f  v source terms and forcing time scale,  become respectively f t  , ; r ,  ;, 
L L 

Ud Vd +d Fd R 2 f  - - - - - - -  
2 '  c '  c ' c 2 '  and - . Using the symbols t , r  , v ,  u , 

C '  c Y  
P 

a 

v , + , F , Q and l / a  for these new dimensionless variables, (2 .5)-(2.7)  

become 

arv 
where i s  the basic s t a t e  relat ive vort ic i ty  ,a, . 



METHOD O F  SOLUTION 

27 
I f  F = Q = 0 ,  a  flow characterized by u = 0 and (1 +,)v = i s  a  steady 

s t a t e  solution of (2.8)-(2.10).  I f  the flow i n i t i a l l y  deviates from t h i s  

balanced s t a t e  a t r ans ien t  adjustment process occurs and ult imately a 

balanced flow r e su l t s .  Rossby (1938) and Obukhov (1949) f i r s t  pointed 

o u t  t h a t  the f ina l  balanced s t a t e  can be found without solving the 

t rans ien t  problem. 

3.1 Final adjusted s t a t e  

The f i na l  adjusted s t a t e  i s  most e a s i l y  obtained by combining ( 2 . 9 )  

and (2.10). t o  obtain 

which, i n  the absence of forc ing,  i s  a  local conservation equation. 

Equation (3.1) can be integrated t o  obtain 

where the subscr ip ts  - and o indicate  values a t  i n f i n i t e  time and 

i n i t i a l  time respectively.  If  we assume t h a t  the f i na l  tangential 

wind vw i s  in balance, i . e .  

(3 .2)  can be writ ten as  



27 where S= ( 1  +- )  ( 1  + y )  i s  a measure of the iner t ia l  s t ab i l i t y  of the r  

basic s t a t e  vortex. In the case of a resting basic s t a t e  (3.4)  reduces 

t 0 

dL@, d t x  + - -  - 
rdr d r F  Q . 4, - 5 , - @ , + 5  - 

dr2 

which, in the absence of forcing, i s  a statement of the local conser- 

vation of perturbation potential vort ic i ty .  Analytic solutions of 

(3.5) will be presented in sections 4 ,  5 and 6 ,  while numerical solu- 

tions of (3.4) will be presented in section 9 .  

3.2 Transient s t a t e  

Transient solutions of (2.8)-(2.10) are most easily obtained when 
- - 

the basic s t a t e  i s  a t  r e s t ,  i . e .  when v = 5 = 0 .  Let us suppose that  

u ( r , t ) ,  v ( r , t )  , @ ( r , t ) ,  F(r) and Q( r )  are suff ic ient ly  we1 1 behaved 

t h a t  the i r  Hankel transforms exis t .  The order v Hankel transform 

pair i s  1 

where Jv i s  the order v Bessel function of the f i r s t  kind. Let us 
A 

define G(k , t ) ,  ; (k , t )  and F ( k )  as the f i r s t  order Hankel transforms 
h h 

of u ( r , t ) ,  v ( r , t )  and F ( r ) ;  in addition l e t  us define @ ( k , t )  and Q ( k )  

as the zero order transforms of @ ( r , t )  and  Q ( r ) .  
7 

1 Other poss ib i l i t ies  for  the definit ion of the Hankel transform 
pair exis t .  For example, that  used by Erdelyi e t  a l .  (1954) i s  written 
in such a way that  i t  reduces to a Fourier transform when v=-i.+. We 
have chosen the form given by ( 3 . 6 )  and  ( 3 . 7 )  since i t  makes the fo l -  
lowing analysis somewhat simpler. 



:.: . 

Assuming a bas ic  s t a t e  of r e s t ,  we can take  the  f i r s t  o rder  t r ans -  

forms of (2 .8 )  and ( 2 . 9 )  and the  zero order  t ransform of (2 .10)  t o  

obta in  

A A 

I f  we de f ine  uo(k)  and vo(k)  a s  the  f i r s t  o rder  transforms of the  
n 

i n i t i a l  winds u ( r , o )  and v ( r , o ) ,  and m0(k) a s  t h e  zero order  t ransform 

of t he  i n i t i a l  geopotent ial  $ ( r , o ) ,  we can w r i t e  t he  so lu t ions  of 

2 2  2 
a (a - v  ) 

2 2 2  (i  + k ~ ) ]  V-' s i n  v t  
( a  + v  

-2 2 -at + ( i + k c ) v  a t e  y 

2 2  2 c o t  k$o -+ a (a - v  ) 
2 2 2  ( i t  r ~ ) j  v-' cos v t  

(a + v  
3 

( f  + k ~ ) j  vql s i n  v t  { (a 2 + v  2 2 

+ k 0 -  - jl - (1 t a t )  e - N t ~ }  kv-' , 



3 
20 (t+kij)/kv-l sinvt - -  (a 2 + v  2 2  

where d = (1 + k2)'. In the absence of forcing these solutions are the 

axisymmetric two-dimensional analogues of the one-dimensional case dis- 

cussed by Schoenstadt (1977, 1979). All the terms on the right hand 

sides of (3.11)-(3.13) are associated with the transient solution ex- 

cept the last term in (3.12) and the last term in (3.13), which are 

associated with the geostrophically balanced state. From (3.1 2) and 
A A 

(3.13) it can be seen that the potential vorticity (kv - 4)  associated 

with the transient part of the solution is zero while that associated 

with the balanced part is kio-$o+(k?-fi) [I - (1 +at)e-at], i.e. the 

initial potential vorticity plus the forced potential vorticity. 



? , " l . h .  ....,.. 8 

4. G E N E R A L  PROPERTIES OF THE SOLUTIONS 

Before proceeding to  specific examples l e t  us consider some of the - 

general properties of the solutions (3.11 )-(3.13). The f i r s t  two terms 

in the r ight  hand side of (3.11)-(3.13) are terms which are oscil latory 

in time in spectral space. In physical space they represent propagating 

gravity-inertia waves. If one waits long enough for  the forcing t o  be 

essentially completed and for  the gravity-inertia waves to  disperse to  

a great distance, only the final balanced flow remains. Then, (3.12) 

and (3.13) yield 

A A A 

where v Fg ,  ago 
go ' and ij Bre defined by 

g 

A A A A 

v = - k m 0 ,  
90 

F = -kQ , 
9 

A A A A 

0 
F = -kQ . 

g 

Equation (4.1) s ta tes  that  the f inal  wind i s  a weighted average of 

k 2  the i n i t i a l  wind Go and forced wind ? (weight 7 ) and the i n i t i a l  
- 

A l+kA 1 
geostrophic wind v and forced,geostrophic wind F (weight -) . 

90 4 1+k2 
A similar interpretation holds for  (4.2) .  The two important weighting 

functions are shown in Fig. 1 .  \/e may interpret  - k 2  as the spectral 
l+k2 

modification of a tangential wind forcing or an i n i t i a l  tangential 

wind disturbance and note t h a t  low wave numbers are eliminated. 
'1 
1 Likewise, - i s  the spectral modification of a heat source or an 

l+k2 
in i t i a l  pressure disturbance, with high wave numbers being eliminated. 



Because of the equivalence of and and of Go and 6 as f a r  as 
0 

the f ina l  adjusted s t a t e  i s  concerned, l e t  us f o r  the moment consider 

the unforced case. To see the energy implications of (4.1) and (4.2) . - 

we note t h a t ,  from the Parceval r e l a t i on ,  the kinet ic  energy associated 

w i t h  the tangential component and the available potential  energy can 

be writ ten 

CO 00 

K = / h v 2 r d r  = / % v ^ 2  k d k  , 

If we assume t h a t  there  i s  no radial  flow i n i t i a l l y  a l l  the kinet ic  

energy of the i n i t i a l  and f ina l  s t a t e s  i s  associated with v .  Then 

(4.1) and (4 .2 ) ,  together w i t h  (4.4) and (4 .5 ) ,  imply t ha t  i f  Go = 0 

(no i n i t i a l  pressure disturbance) 

jom ;; kdk 

while i f  Go = 0 (no i n i t i a l  tangential wind) 

K + P  
CO w 

K + P  
w o o  

The r a t i o s  and represent the f ract ions  of the i n i t i a l  
0 0 

energies which end u p  in balanced flow. The remaining f ract ions  are  

part i t ioned t o  gravi ty- iner t ia  waves. 



.J ..: 3, 

Equations (4.6) and (4 .7 )  imply the following two important rules 

fo r  tropical disturbances, which usually have a horizonal scale small 

compared t o  the deformation radius. 

(i) For small scale i n i t i a l  disturbances in the tangential wind 

f ie ld  most of the in i t i a l  energy ends up  in the geostrophic 

flow. Thus, for  small scale momentum forcing the efficiency 

of geostrophic energy generation i s  very high. 

( i i )  For small scale i n i t i a l  disturbances in the pressure f ie ld  

most of the i n i t i a l  energy ends u p  in gravity-inertia waves. 

Thus, for  small scale heating the efficiency of geostrophic 

energy generation i s  very low. 

In order to  see jus t  how low or high these efficiencies can be for  

tropical weather systems we shall present examples in sections 5 and 6.  



5. INITIAL TOP-HAT POTENTIAL VORTICITY 

5.1 Continuous i n i t i a l  tangential  wind 

Let us assume t h a t  the i n i t i a l  potential  vo r t i c i t y  i s  given by 

One in te rpre ta t ion  of (5.1) i s  tha t  

i . e .  there  i s  no i n i t i a l  vo r t i c i t y  b u t  the amount of "mass" 271 has been 

removed from the region r < a .  A second possible in te rpre ta t ion  i s  t h a t  

there  i s  rio i n i t i a l  geopotential perturbation b u t  the i n i t i a l  tangential 

wind has the fo rwof  a  Rankine vortex, i . e .  
3 

W i t h  t h i s  i n i t i a l  condition the  i n i t i a l  vo r t i c i t y  becomes qui te  concen- 

t r a ted  as the radius of maximum wind decreases but the c i rcula t ion 
- 

around any radius r l a  i s  271. Note a l so  t ha t  vo i s  continuous a t  r = a .  

The solution of (3 .5 )  and (5 .1)  which remains bounded a t  the origin 

and a t  i n f i n i t y  and which possesses continuous Qcl, and vm a t  r = a  i s  



where Iv and Kv are  the  order v modified Bessel functions.  The f ina l  

vo r t i c i t y  i s  e a s i l y  computed from (5.5) o r  from (5.4) and the invariance 

of r - 4 .  The r e s u l t  i s  

r < a  
- d (rvJ - 

5, - - 
r d r  

The f ina l  geopotential Qm, tangential  wind vm and vo r t i c i t y  cQ, 

f o r  d i f f e r en t  values of a are  shown i n  f igures  2-4. From Fig. 2 and 

the in te rpre ta t ion  (5.2) we see t h a t  f o r  a large  scale  pressure d i s -  

turbance ( a  >> 1 )  t he r e  i s  1 i t t l e  change i n  the pressure f i e l d .  From 

Fig. 3 and the in te rpre ta t ion  (5.3) we see t h a t  f o r  a radius of 

maximum wind small compared t o  the radius of deformation (a  << 1 ) , there 

i s  l i t t l e  change i n  the tangential  w i n d  and vo r t i c i t y  f i e l d s .  

A simple way of computing the t o t a l  energy of the  f ina l  adjusted 

s t a t e  i s  t o  note t ha t  in t h i s  special case 

Since the tangential wind remains continuous the l a s t  term in (5 .7 )  

vanishes. Since the i n i t i a l  avai lable  potential  energy associated with 

(5 .2)  i s  P o =  l / a 2 , w e  can derive from (5.4) and 15.7) 



The separation of the f ina l  t o t a l  energy K m + P  in to  Km and Pa 
a, 

can be accomplished by using ( 4 . 4 )  and (4.5) with 4 and v replaced by 

@a and vay which a r e  given by (5.4) and (5 .5 ) .  The integration of the 

square of the modif:ed Bessel functions can be carr ied  out by the use 

2 . 2  and the analogous re la t ions  fo r  rKo ( r )  and rK1 ( r ) .  The r e su l t s  are  

I 
00 - - 

P - 2 - 211 ( a )  aK2(a) . 
0 

The energy re la t ions  (5.8)-(5.10) a re  plotted in Fig. 5a. For a tropical  

cloud c lu s t e r  of radius 300 km in a region with a deformation radius of 

1500 km, the  dimensionless sca le  a is  0.2. Fig. 5a then shows t ha t  only 

about 4% of the i n i t i a l  energy remains in the f ina l  balanced flow while 

about 96% i s  par t i t ioned t o  the outward propagating gravi ty- iner t ia  

waves. 

A s imi lar  discussion of the energetics of the i n i t i a l  Rankine 

vortex i s  not possible because the i n i t i a l  k inet ic  energy associated 

w i t h  (5 .3)  i s  not f i n i t e .  

5.2 Discontinuous i n i  t i  a1 tangential  wind 

Because of the  d i f f i c u l t y  in determining the energetics of (5.3)  

~ l e t  us consider the i n i t i a l  condition 

and 



The so lu t ion  of (3 .5 )  and (5.11) i s  s imi l a r  t o  t h a t  f o r  the  i n i t i a l  

condit ion (5 .3)  except t h a t  va3 should possess t h e  same d i scon t inu i ty  

as  v a t  r = a .  The so lu t ion  i s  
0 

Noting t h a t  (5.11) imp1 i e s  t h a t  t he  i n i t i a l  k i n e t i c  energy KO = 1/8 ,  

we can use ( 5 . 7 )  t o  obta in  

Following the  same procedure used in  deriving (5 .9)  and (5.10)  we can 

a l s o  obta in  

P 
a3 
- - - 2 - 4K2(a) [ a I l  ( a )  - 212(a)]  . 

The energy r e l a t i o n s  (5 .15 ) - (5 .17 )  a r e  p lo t ted  in  Fig. 5b.  In general 

the  i n i t i a l  wind case  shorvs j u s t  t he  opposi te  ene rge t i c  c h a r a c t e r i s t i c s  

as the  i n i t i a l  geopotent ial  case.  For example, i n  t he  i n i t i a l  wind 



case fo r  a =  0 . 2 ,  about 99% of the i n i t i a l  energy remains in the f inal  

balanced flow while about 1% i s  part i t ioned t o  gravity i ne r t i a  waves. 

5.3 Transient solution 

As an example of the t r ans ien t  adjustment l e t  us consider the case 

where F = Q = u  = C o =  0 and vo i s  the Rankine vortex given by (5 .3 ) .  
0 

Equation (3.1 1 ) then reduces t o  

- 1 ; ( k , t )  = Co(.k) v s i n v t  - 

where 1 

kco(k) = k 1 v ( r ) J l ( k r )  r d r  = 2 ( k a ) - ' ~ ~  (ka) . 
0 

0' 

.The inverse Hankel transform (3 .6 )  then gives 
w 2 -4 

( r t )  = ( l+k ) 2(ka)- '  J l  (ka) sin [(1+k2)" t] J l  (kr) d k  . (5.20) 
0 

I f  we l e t  a l l  the  i n i t i a l  v o r t i c i t y  become concentrated a t  the origin 

( a +  C )  , then (ka)" J ,  (ka) + +-, i n  which case (5.20) can be evaluated t o  

obtain 
2 + ( s in  t - s in  [ ( t2  - r ) ] t > r 

s in  t 

The divergence computed from (5.21) i s  given by 

I ( t2 - r2)-' cos [ (t2 - r2 )4]  
a( ru(r , t ) )  = 

 he Hankel transforms used here and in the following sections can 
be found in Erdelyi e t  a1 . (1 954), Volume 11. 

'A so lut ion s imi lar  t o  (5.21 ) appears in the work of Fischer (1963). 
In Fischer ' s  paper, i f  r on the r i gh t  hand s ide  of (5.21 ) i s  re-  
placed by a ,  the resu l t ing  function gives the time dependence of 
the divergence a t  the or ig in  fo r  an i n i t i a l  Rankine vortex of 
a rb i t r a ry  radius a.  In contras t  our r e s u l t  holds a t  any radius 
r b u t  only fo r  an i n i t i a l  point vortex ( a +  0) .  



Isolines of the radial mass flux r u ( r , t )  in the ( r , t )  plane are shown 

in Fig. 6. Plots of the divergence as a function of time for  r = ~ / 4  

and r = 3 ~ / 4  are shown in Fig. 7 .  The geopotential f i e l d ,  computed from 1 
the time integration of (5.22),  i s  shown in Fig. 8. For t > > r  (5.21) ~ 

r and (5.22) become u - cos t and - - , which show the t-' decay r a r  t 
characteristic of adjustment in two dimensions (Obukhov ,  1949). 

The transient solution can be summarized as follows. For t < r 

f luid particles are undergoing a pure iner t ia l  osc i l la t ion ,  with zero 

associated divergence. A t  t =  r the influence of the i n i t i a l  vort ic i ty  

a t  the origin i s  f i r s t  f e l t .  There i s  then a spike in the divergence 

f i e l d ,  followed by oscil lation and gradual decay as t +a. Most of the 

lowering of the geopotential i s  associated with the spike in the diver- 

gence. Fig. 7 shows that  t h i s  spike becomes narrower as r increases. 

In order t o  check the consistency of the transient resul ts  with 

the final adjusted s t a t e  obtained in section 5.1 we note that  the net 

effect  of the oscil latory divergence f ie ld  on the geopotential f ie ld  i s  

given by the integrated divergence, i . e .  

A change of variable allows (5.23) t o  be written 

which i s  the integral representation of the zero-order modified Bessel 

function. Thus, @, = - K  ( r )  and v_ = Kl ( r )  , which are consistent with 
0 

( 5 . 4 )  and ( 5 . 5 j .  
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INITIAL GAUSSIAN-TYPE POTENTIAL VORTICITY 

In this section we consider a second simple example, one in which 

the initial potential vorticity is given by 

One interpretation is that qo= 0 and - is given by the right hand side 

of (6.1). A second interpretation is that Qo = 0 and c0 is given by the 

right hand side of (6.1), which implies that 

r) 

a vortex with circulation 2.r at r = a. The vortex (6.2) was first studied 

by Obukhov (1949). 

The solution of (3.5) and (6.1) which remains bounded at the origin 

and at infinity is 

For the c0 = 0 interpretation of (6.1 ) the comparison of $o and @_ for 

1 a = 5  and a =  - is made in Fig. 9, which shows that for large a, @ and 5 

@, are nearly identical. For the e0 = 0 interpretation the comparison 

of vo and vv_ for the same two a's is shown in Fig. 10. When a is small 



v and vm a r e  near ly  t h e  same, a  f a c t  which i s  a l s o  e a s i l y  seen by com- 
0 

paring (6.2)  and (6 .4) .  

For t h e  case  when c0 = v o =  KO = 0 we may s u b s t i t u t e  t h e  r i g h t  hand 

s i d e  of (6.1)  i n t o  (4.5)  and eva lua te  t h e  i n t e g r a l  t o  obta in  Po.  Km and 

?m may be s i m i l a r l y . o b t a i n e d  by s u b s t i t u t i n g  (6.4)  and (6 .3)  i n t o  (4 .4)  

and (4 .5 ) .  This  r e s u l t s  i n  

which a r e  shown i n  F i g . 1 l a .  For t h e  case when Q; P o = O  a  s i m i l a r  

procedure y i e l d s  

which a r e  shown i n  Fig. 11 b. The t o t a l  energy curves i n  Figs.  I l a  and 11 b 

show the same c h a r a c t e r i s t i c s  a s  t h e  example given i n  Fig. 5 .  An i n -  

t e r e s t i n g  f e a t u r e  of F i g - l l b  f o r  l a r g e  a  i s  t h a t  an e q u i p a r t i t i o n  of 

energy between KCO and Pa does not occur.  Such an e q u i p a r t i t i o n  does 

occur i n  t h e  example shown i n  Fig. 5b. 



INITIAL RADIAL WIND 

In (2.1) we omitted the  source term f o r  the  divergent pa r t  of the 

wind. Such a source term or a nonvanishing i n i t i a l  condition on u i s  

not of such fundamental importance as F ,  Q ,  vo and $I,. The reason fo r  

this is  t h a t  the  local conservation equations.  (3 .4)  and (3.5)  will not 

contain such e f f ec t s ,  i . e .  the f ina l  adjusted s t a t e  i s  independent of 

uo and a source term f o r  u. Alth~ugh they do not e f f ec t  the f ina l  

adjusted s t a t e ,  they can have in te res t ing  t r an s i en t  e f f ec t s  on the vor- 

t i c i  t y  and geopotential f i e l d s .  We i l l u s t r a t e  these e f f ec t s  by consid- 

er ing a simple example w i t h  F =  Q =  vo = (I = 0 and ru = 1 - e r ,  i  e .  a t  
0 0 

the or ig in  the radia l  mass f lux  vanishes b u t  as r increases the radial  

mass f lux  increases un t i l  i t  a t t a i n s  the value of uni ty ,  r esu l t ing  i n  

an i n i t i a l  divergence which i s  concentrated near the or ig in .  Equation 

(3.11) then reduces t o  

j ( k , t )  = jo (k )  cos v t  , 

where 
00 

A -r 2 -z5 
u o ( k )  = I (1 - e ) J l ( k r )  d r  = k''(1 + k ) . 

0 

The inverse Hankel transform (3.6) then gives 

which can a l so  be wri t ten  

2 r2)!r] ( cos t -cos [ ( t  - 



The divergence computed from ( 7 . 4 )  i s  

2 "1 ( - ( t2 -  r2)-' sin [ ( t2-  r 

r a r  

Isolines of the radial mass flux r u ( r , t )  i n  the ( r , t )  plane are shown 

in Fig. 12. Plots of the divergence as a function of time for  r  = n/4 

and r = 3 7 ~ / 4  are shown in Fig. 13. The geopotential f i e l d ,  computed 

from the time integration of (7.5) ,  ~. i s  shown in Fig. 14. 

The time integrated divergence does not have a  net effect  on the 

geopotential f i e l d ,  which eventually returns to  i t s  original f l a t  shape. 

Since potential vor t ic i ty  conservation requires that  the vort ic i ty  i s  

always equal to  the geopotential in th is  case, Fig. 14 can also be 

interpreted as the vort ic i ty .  



8. THE FORCED CASE 

In th is  section we shall i l l u s t r a t e  how the adjustment process 

depends on the time scale of the forcing. To do th is  l e t  us consider 

the case where the basic s t a t e  i s  a t  res t  and u 0 =  v 0 =  m 0 =  F =  0. 

8.1 Balanced Model 

For purposes of comparison we now derive solutions of the balanced 

model version of (2.8)-(2.10), i .e.  

If we assume that  Q vanishes outside r = a and i s  constant ( ) inside 
a 

r = a ,  and i f  we eliminate u and v from (8.1)-(8.3),  we obtain 

The solution of (8.4) i s  analogous to  ( 5 . 4 )  and can be written 

- $ [i - K l  ( a )  I o ( r ) ]  [ l-(1 + a t ) e  -at l  

$ ( r , t )  = 
2 - - I ( a )  Ko(r) [l - (1  + a t ) e  -at, 
a 

The solution for  u and v can be easily obtained using (8.1) and  (8 .2) .  

The balanced soluti.on (8.5) for  a = 115 i s  depicted i,n Fig. 15a .  



8.2 Primitive Equation Model 

The solution of the primit ive equation model f o r  t h i s  case i s  
A 

obtained from (3 .6)  and (3 .13) ,  which, together with Q = 2 ( k a ) - ' ~ ~  ( k a ) ,  

y ie ld  

+ [l - ( ~ + a t ) e ' ~ ~ ] }  v-' 2(ka)- '  J1 (ka) . 

The balanced solution given by (8.5) i s  a l so  obtained from the inversion 

of the l a s t  term in (8.7) .  The remaining terms a re  associated with the 

gravi ty- iner t ia  wave f i e l d .  An asymptotic approximation t o  the gravity-  

i ne r t i a  wave terms can be obtained by using tHe method of s ta t ionary 

phase f o r  Hankel transform in tegra l s  (Miles, 1971, Chapter 4 ) .  Here 

we present exact r e s u l t s ,  which can be obtained by the  numerical eval- 

uation of (8.6)  and (8 .7 ) .  

Figs. 15b. and 15c show @( r , t )  f o r  a =  % and a =  2 respectively.  In 
I 

both cases a  = 1/5, Figs. 15a through 15c have been constructed with a  i 
time axis of a t .  When a t  = 5 ninety-six percent of the eventual to ta l  1 ~ 
forcing has already occurred. A1 though the f ina l  s t a t e  will be the same 

in the three  cases shown in Fig. 15 (e .g .  see Eq.  ( 3 . 5 ) ) ,  the t r ans ien t  

s t a t e s  are  d i f f e r en t .  In the case of rapid forcing ( a =  2 )  a  large 

gravi ty- i  ne r t i a  wave f ron t  propagates outward and 1 arge time osci 11 a t ions  

occur. This i s  i n . con t r a s t  t o  the slow forcing (a=%) case,  where only 

a  small amount of g rav i ty - ine r t i a  wave a c t i v i t y  i s  excited.  The balanced 

model r e su l t  can be considered a  s l i g h t l y  smoothed version of the slow 



forcing case. The similarity of Figs. 15a and 15b is, of course, support 

for the use of  balanced models when the time scale of the forcing is 

large compared to l/f. A criticisr;, of the use of balanced models for 

tropical studies is that the vertical motion patterns associated with 

gravity-inertia waves can interact nonlinearly with the moisture field, 

a prxess which cannot be simulated with a filtered model. 



NON-RESTING BASIC STATE 

In order t o  understand the e f f ec t s  of a basic s t a t e  tangential flow 

on the adjustment Qrocess we derived in section 3 the local conservation 

re la t ion  (3 .4 ) ,  which i s  the analogue in c i r cu l a r  geometry of the equa- 

t ion solved by Blumen and Washington (1969) in t h e i r  study of the e f f ec t s  

of horizontal shear on geostrophic adjustment in a barotropic f l u i d .  

Equation (3.4) can be regarded as the d i f f e r en t i a l  equation fo r  

$m when the basic s t a t e ,  the i n i t i a l  conditions and the forcing are  a l l  

known. We might consider the problem where v ~ = $ ~ =  0 and F f 0 ,  Q f  0, 

or  a l t e rna t ive ly  the problem where F = Q =  0 and vo f  0, m 0 # O .  I f  these 

two problems r e s u l t  i n  the same radial  d i s t r ibu t ion  fo r  the r i gh t  hand 

s ide  of ( 3 . 4 ) ,  they a re  equivalent in the sense t h a t  they produce the 

same f inal  adjusted s t a t e .  As we saw in section 8 ,  they do not neces- 

s a r i l y  produce the same t rans ien t  response since slow forcing tends t o  

r e su l t  in smooth t rans ien t  solutions which are  never f a r  from gradient  

balance while impulsive forcing tends t o  r e s u l t  i n  highly osc i l l a to ry  

t rans ien t  solut ions .  For s impl ic i ty  we l im i t  our discussion t o  the 

f inal  adjusted s t a t e  and t o  the case where F = Q =  0. 

In order t o  solve (3 .4)  we specify the inner boundary condition 

t o  be 

To derive an outer  boundary condition we note t ha t  i f  R denotes a 

radius large  enough such t ha t  1 + r  and 5 approach unity and the r i gh t  

hand s ide  ( 3 . 4 )  approaches zero, then (3 .4)  becomes 



dLmm dmm + - -  
d r 2  rdr  4m = 0 f o r  r>R  - , 

which i s  the order zero modified Bessel equation. The solution which 

i s  bounded f o r  r behaves as &- constant Ko(r) . Since 
dKO(r) 

d r = -, K1 ( r ) ,  our boundary condition i s  

Using the boundary conditions (9.1 ) and (9.3) we can compute solutions 

of (3.4)  using the numerical procedure given by Richtmyer and Morton 

(1967). Once is  determined, vm can be computed from (3 .3 ) .  

The energetics f o r  the non-resting basic s t a t e  case a re  somewhat 

more complicated than the  res t ing  basic s t a t e  case since energy can be 

extracted from the basic flow. From (2 .8)- (2 .10) ,  w i t h  F =  Q = 0, we 

can obtain 
- 

2 2 2 % ( u  +v +@ ) rdr + 

The l a s t  term in (9.4)  represents a  perturbation energy source term due 

t o  the integrated in teract ion of the Reynold's s t r e s s  and the basic 

s t a t e  tangential w i n d .  Using (2.9) we can rewrite (9.4)  as 
03 

at lo %( u a t  %v2 rdr . 2 + v 2 + ~ 2 )  rdr = 

Using the def in i t ions  (4 .4 ) ,  (4.5)  and 

c = (va - v s  rd r  , 

we can obtain from (9.5) the energy re la t ion  



Thus, the final energy in the balanced flow (Km+Pm) and the energy in 1 I 
I) 

gravity-inertia wave motion come from the initial energy (KO + Po) and 1 I 

the conversion from the basic state (C). 

As an example let us consider the basic state given by 

where the Froude number Fr is the value of 7 at r =a, the radius of 
vanishing relative vorticity. The basic state tangential wind reaches 

a maximum at r = $ m  and the relative vorticity is slightly negative 

outside r =a, as shown in Fig. 16. In the following we assume Fr = 0.40 

and a= 0.25. Then, for an internal gravity wave speed of 40 ms-' and a 

Coriolis parameter corresponding to a latitude of 15.g0, the radius of 

vanishing relative vorticity is 250 km, the radius of maximum wind is 
I 

144 km, and the maximum wind is 21 ms-'. This is typical of a distur- 1 

bance which has passed the tropical depression stage but still requires 

considerable intensification before becoming a hurricane. I 

As a perturbation on this basic state let us' consider both the 

case where vo = 0 anci -eo is given by the right hand side of (6.1) and 
the case where 4, = 0 and vo is given by (6.2). For any given horizontal 

scale of the initial perturbation, the final balanced state is obtained 



from the numerical solution of ( 3 . 4 )  subject  t o  the boundary conditions 

(9.1)  and (9 .3 ) ,  followed by numerical evaluation of ( 3 . 3 ) .  In t h i s  way 

we can construct  energetic diagrams analogous t o  those of section 6 ,  

where the basic s t a t e  was assumed to  ue a t  r e s t .  

Fig. 17a summarizes the energetics associated with the case v o =  0 

b u t  m o #  0,  while F i g .  17bcorresponds t o  the case m 0 = O  b u t  v o #  0. In 

addi t icn  t o  the f ina l  normalized geostrophic energy curves, we have in-  

cluded the normalizedexchancjeof energy between the basic s t a t e  and 

perturbation . I t  is  important t o  note t h a t ,  because of t h i s  

exchange, the 'normalized amount of energy which ends up in gravity-  
Km+ Pa - C 

i n e r t i a  wave motion i s  now given by the difference between 
0 

and unity. 

From a qua l i t a t i ve  point of view Figs.17a and17b a re  s imi lar  t o  

t h e i r  r es t ing  basic s t a t e  counterparts ,  Figs. 1 la  and l l b .  That i s ,  f o r  

small sca le  ro ta t ional  wind perturbations the eff ic iency of geostrophic 

energy generation i s  high, while small scale  pressure perturbations 

r e su l t  in low geostrophic energy. For a > l  - the diagrams are  barely 

modified by the presence of the non-resting basic s t a t e  f i e l d s  which 

we have chosen. B u t  f o r  a < l  there  a re  some s ign i f i can t  changes in the 

quant i ta t ive  character  of the energy curves. We see in Fig.17a t ha t  the 

presence of the non-resting basic s t a t e  increases the ef f ic iency of the 

geostrophic energy generation fo r  small scale  pressure perturbations.  

For example, when the basic s t a t e  i s  a t  r e s t  (Fig.  I l a )  and a =  0 . 2 ,  
K + P  

CO 00 i s  only about I % ,  i . e .  99% of the energy escapes as gravity-  
0 

i ne r t i a  wave motion'. However, with the non-resting basic s t a t e  we have 
K + P  
CO CO chosen and a = 0 . 2 ,  P i s  about 13%. Thus, i t  would appear t h a t ,  

0 
when a tropical  disturbance acquires a s ign i f i can t  r e l a t i ve  vo r t i c i t y  



field, convective heating within the region of positive relative 

vorticity can become much more efficient at producing balanced flow. 

The comparison of Fig. 17b with Fig. 11 b also reveals significant quanti- 

tative differences. The directions of the changes found in this initial 

tangential wind case are generally opposite to those found in the initial 

pressure case. In addition, the magnitudes of the changes are generally 

larger. The large conversion of energy from the basic state to the I 
perturbation for small horizontal scales more than compensates for the 1 
loss of energy to gravity-inertia wave motion. This results in a 
K + P  

m w 
which slightly exceeds unity for certain horizontal scales. 



10. IMPLICATIONS FOR BOUNDARY CONDITIONS 

In the numerical simulation of a tropical cyclone using a primitive 

equation model one is forced to use a liniitdd domain and hence to impose 

an outer boundary condition. There then arises the question of the . 

distortion of the geostrophic adjustment process by the boundary condi- 

tion. Althoui:h this problem is common to all limited area modeling with 

the primitive equations, it is particularly important in tropical cycl one 

models because the large amounts of latent heat released in convective 

clouds continually disrupt any approximate balance of pressure and wind 

and, as suggested in sections 4 and 6, most of the latent heating is 

partitioned to gravity-inertia waves. The continual excitation of 

gravity-inertia waves by the heating patterns leads to the view that 

tropical cyclones must be highly radiating systems. Gravity-inertia 

waves falsely reflected back into the interior cause excessively high 

levels of ageostrophic motion. A1 though there are instances when this 

might be considered annoying but tolerable, in a moist model these 

spuriously reflected waves interact non-linearly with the moisture 

field, producing an erroneous modulation of the pattern of latent heat 

re1 ease. 

It might be argued that dissipation can effectively remove these 

reflected waves before they reenter the region of interest so that the 

boundary condition is unimportant. A commonly used domain for tropical 

cyclone models is a region within a circle of about 1000 km radius. 

For such a domain size the transit times for waves with phase speeds 

of 200, 100 and 50 ms-' are 1.4, 2.8 and 5.6 hours respectively. 

Damping coefficients with damping times of only a few hours seem exces- 

sively large. 



A thorough s tudy of open boundary condi t ions  f o r  d i spe r s ive  waves 

has been c a r r i e d  out  by Bennett (1976).  The app l i ca t ion  of Bennet t ' s  

approach t o  the  present  problem proceeds a s  fo l lows .  Defining $ ( r y p )  

a s  the  Laplace t ransform of + ( r , t ) ,  assuming t h e  bas ic  s t a t e  i s  a t  

r e s t ,  and assuming no i n i t i a l  d i s turbance  and no forc ing  f o r  r > a ,  - 

we can transform (2 .8 ) - (2 .10 )  t o  obta in  

f o r  r - > a .  El iminat ing and y i e l d s  

2 d2;. r -  d; 2 2  
2 + r- - [ ( l + p  ) r + I ]  fi = 0 f o r  r z a .  

d r d  r 

The s o l u t i o n  which remains bounded a s  r - t m  i s  given by 

G(r ,p)  = A(p) K~ [ ( l + p 2 ) 4  r ] f o r  r > a .  - 

The transformed r ad ia l  v e l o c i t y  component s a t i s f i e s  

A u 5 d  j r l i ~ l  [ (1+p2) l i r  11 - 7 dr+; 
K1 [ ( l + p 2 ) " r ]  = 0  f o r  r > a .  - (10.6)  

The exac t  outgoing condi t ion  i s  obtained by inve r t ing  (10 .6 ) .  Although 

t h i s  can be done, t he  r e s u l t i n g  expression i s  somewhat complicated. 

: In order  t o  i l l u s t r a t e  t h e  p r a c t i c a l  problems encountered with ( 1 0 . 6 ) ,  

l e t  us use t h e  asymptotic form of the modified Bessel funct ion K , ,  and 

sirilpl i f y  (10.6)  t o  



2 -k dr'i 
i + ( l + p )  - = 0 f o r  r l a  , 

rZi dr 

which can be inverted t o  give 

t 
u(r , t )  I I ~ ~ ( t - t )  ( )  d t '  = o o r  r i a  . 

o r' ar 

Expressions of t h i s  type do not appear t o  be of great  pract ica l  use 

since they require t h a t  we s t o r e  and repeatedly sum (with d i f f e r en t  

weights) boundary values of u and . In an approximate sense t h i s  

procedure i s  equivalent t o  a1 1 owing the computational domain t o  expand 

i n  time, which i s  exact ly  what we are  t ry ing t o  avoid. Thus, i n  prac- 

t i c e  we may have t o  abandon the  idea of using an exact outgoing bound- 

ary condition and be s a t i s f i e d  with something which gives low gravity- 

i n e r t i a  wave re f lec t ion .  

In order t o  invest igate  the  gravi ty- iner t ia  wave r e f l e c t i v i t y  

propert ies of various boundary conditions we begin by noting t ha t  the 
- - 

system (2 .8)- (2 .10) ,  with v = < = F = Q = 0 ,  has the solution 

2 '- ('1 are  and Hv where v = ( l t k  )*' , R i s  a complex constant ,  and Hv 

the order v Hankel functions of the f i r s t  and second kind. Using the 

asymptotic expansions valid f o r  large kr we can wri te  

' ' ~ ( ~ ) { i ( k r - ~ t ) ~ ~ ~  - - e - i  (krt v t)} 

v 



2 , .  . I  

Hence, the f i r s t  term of (10.9) and (10.10) corresponds t o  an outgoing 

wave and the second term t o  an incoming wave. 

I f  a  denotes the radius of the boundary, the asymptotic form of 

the outgoing wave s a t i s f i e s  

with s imi lar  expressions f o r  v and $I. Equation ( I )  should serve as 

v a  f a i r l y  accurate radia t ion condition. Since + 1 as k - -  ( I )  might 

be approximated by 

Two other boundary conditions in common use are  

and 

The r e f l e c t i v i t i e s  of conditions ( I )  - ( V )  can be found by sub- 

s t i t u t i n g  (10.9) and solving fo r  I R I  . The r e s u l t s  are  shown in Table 1  

and F i g .  20. Boundary condition I1 appears t o  give r e f l e c t i v i t i e s  

nearly as low as I .  In addition i t  has the advantage of using the pure 

gravity wave speed (uni ty  i n  t h i s  case) f o r  v/k.  

A survey of the l i t e r a t u r e  on t ropical  cyclone models indicates  

t ha t  the boundary conditions used are  e i t h e r  type IV (Rosenthal , 1970; 



Tab1 e  1  . Ref lec t iv i t i es  f o r  the various boundary conditions. 

Boundary Condition 

a u  v  arku = o  
1 )  x + t  - 

r'Ia r 

a u  ar?t = 
(11) at + - 

r%r 

a u + - a u = o  1 1 1 )  a r  

aru = 0 (IV) * 
( V )  u = 0 

Ref 1  e c t i  v i  t y  

dr' H l ( '  )(kr) 
- i  kH/lJ(kr) I 

r' d r  
2 a t  r = a  I R '  = 1 dr'H/ )(kr) 

- i kH,C2) (k r )  1 
r' d r  

1 d+ )( kr) 
- ivHl(l )(kr) I rL' d r  a t  r = a  

I R 1  = 1 dr'tI/')(kr) 
- i v ~ / ~ ) ( k r )  I 

rL' dr  

1 dHII1)(kr) 
dr - ivHl(' )(kr) 

I R '  = 1 dHj2)(kr)  
a t  r = a  

d r  - ivHl(~)(Xr) 1 
I R I  = 1 

I R I  = 1 



Anthes, 1971, 1977; Anthes e t  a l . ,  1971a,b) or  type V (Yamasaki, 1968a; 

Kuri hara, 1975; Kuri hara and Tuleya, 1974; Rosenthal , 1978). Rosenthal 

(1 971 ) has compared the ultimate in tens i ty  a t ta ined by model cyclones 

with e i t h e r  boundary conditions IV o r  V as a function of the s i z e  of 

the computational domain. For domain s izes  l e s s  than 2000 km there  

are  substant ia l  d i f ferences ,  w i t h  boundary condition V resul t ing in 

l e s s  intense model cyclcnes. Rosenthal ' s in te rpre ta t ion  i s  t h a t  bound- 

ary condition V, coupled w i t h  a small domain s i z e ,  forces upper level 

outflow a i r  t o  subside too strongly and too near the storm center ,  

r esu l t ing  in an un rea l i s t i c  decrease in the radia l  temperature gradient .  

The analys is  presented in t h i s  paper would indicate  t h a t  nei ther  IV 

nor V i s  very s a t i s f ac to ry  from the geostrophic adjustment point of 

view. I 

The generalizat ion of boundary condition (11) t o  the f u l l y  s t r a t i -  

f i ed  case involves the solution of the ve r t i ca l  s t ruc tu re  problem fo r  

i t s  eigenvalues (hn)  and eigenfunctions. The dimensional form of the 

boundary condition (with the fac to r  Jgh, in f r on t  of the second term) 

i s  then applied t o  each ver t i ca l  mode. Some comparison t e s t s  which we 

have made indicate  t h a t  boundary condition (11) r e su l t s  in l e s s  d i s t o r -  
I 

t ion  of the  adjustment process than the numerical extrapolat ion tech- 1 
nique of Orlanski (1976), which i s ,  however, somewhat eas ie r  t o  implement. 

The s t r a t i f i e d  version of boundary condition (11) i s  presently being 

used in an axisymmetric t ropical  cyclone model developed a t  Colorado 
I 

Sta te  University. I 



11. C O N C L U D I N G  REMARKS 

I t  has been shown tha t  there ex i s t  simple analytical  solutions fo r  

the geostrophic adjustment of an axisymmetric vortex. The examples d i s - -  

cussed above indicate  t h a t ,  when the basic flow i s  a t  r e s t ,  the energetical 

ef f ic iency of cloud c l u s t e r  heating i n  producing balanced vortex flow i s  

very low while the ef f ic iency of cloud c lu s t e r  forcing of the vo r t i c i t y  

f i e l d  i s  very high. When the basic flow i s  not a t  r e s t ,  important niod- 

i f i c a t i ons  of these energy par t i t ion  re la t ions  can occur. 

In t ropical  cloud c l u s t e r  budget s tudies  i t  i s  common pract ice  t o  

compute e i t he r  the apparent heat source or the apparent vo r t i c i t y  source. 

The r e su l t s  presented here emphasize tha t  the e f f e c t  of clouds on the 

potential  vor t i c i  ty  f i e l d  ( i  . e .  the apparent potential  vor t i c i  t y  source) 

i s  the important ingredient  in understanding the feedback of clouds on 

the large-scale f i e l d s .  

I Because g rav i ty - ine r t i a  waves can be so strongly excited by heating 

on horizontal scales  small compared t o  the radius of deformation, the 

l a t e r a l  boundary condition becomes an important f ac to r  in the a b i l i t y  

of a primit ive equation tropical  cyclone model t o  simulate geostrophic 

adjustment. Although not perfect ,  a  su i t ab le  radiat ion condition may 

be su f f i c i en t  f o r  most purposes. 

i There a re  several ways t7j generalize the r e su l t s  presented here. 

1 F i r s t  of a l l ,  the e f f ec t s  of s t r a t i f i c a t i o n  could be more throughly 

studied by considering a l l  the ver t ica l  niodes ra the r  than j u s t  the 

f i r s t  internal  mode, as we have done here. This has been done to  a  

ce r ta in  extent  by & l i n  (1353), Kibel (1955, 1957, 1963), Fjelsted (1958), 

Monin (1958) and Fischer (1963),  although n o t  with axisymrnetric tropical  



disturbances in mind. Secondly, the f-plane assumption could be retained 

b u t  the axisymmetric assumption relaxed, and a Fourier representation 

used in the tangential d i rect ion.  Then, using Hankel transforms whose .. 

order i s  determined by the azimuthal wavenumber, many of the r e su l t s  

presented here can be eas i lygeneral ized.  This asymmetric adjustment 

problem will be discussed in a fu ture  paper. Thirdly,  curvature e f fec t s  

could be included and differences between geostrophic and gradient 

adjustment studied.  However, gradient  adjustment i s  l e s s  amenable t o  

theoret ica l  analys is .  Final ly ,  in order to  study the adjustment process 

very near the equator, i t  i s  preferable t o  abandon the f-plane in favor 

of the equatorial 6-plane. Then, an unbalanced i n i t i a l  s t a t e  can be 

projected onto the eigenfunctions of the equatorial  B-plane and the 

subsequent flow patterns studied.  This has been done by Silva Dias and 

S c h u b ~ r t  ( 1  979), who show tha t  the energy par t i  t ion re1 a t ions  derived 

on the f-plane a re  qua l i t a t ive ly  valid i f  the energy of the f inal  geo- 

strophic s t a t e  i s  now interpreted as the energy in Rossby wave motion. 

However, there  a re  important differences between the f-plane and 6-plane 

r e su l t s .  For example, i f  the unbalanced i n i t i a l  s t a t e  has c i r cu l a r  

symmetry, g rav i ty - ine r t i a  wave dispersion quickly leaves behind a quasi- 

balanced symmetric flow which i s  then slowly d i s to r ted  by the Rossby I 

wave dispersion process. 
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1  Weighting funct ions  --- k and - See t e x t  f o r  discussion.  
1  + k 2  l + k 2  ' 

Normalized i n i t i a l  geopotential per turbat ion  ( see  E q .  ( 5 . 2 ) )  

and f i n a l  adjusted geopotential f o r  the  i n i t i a l  top-hat 

potent ia l  v o r t i c i t y  per turbat ion .  The th ree  f i n a l  s t a t e s  cor- 

respond t o  i n i t i a l  per turbat ions  with horizontal s ca le s  of 

a z 0 . 2 ,  1 .0 ,  and 5.0. 

Normal ized i n i t i a l  tangent ia l  ve loc i ty  per turbat ion  ( see  Eq. 

( 5 . 3 ) )  and f i n a l  adjusted tangential  ve loc i ty  f o r  the  i n i t i a l  

top-hat potent ia l  v o r t i c i t y  per turbat ion .  The th ree  f i n a l  

s t a t e s  correspond t o  i n i t i a l  per turbat ions  with horizontal 

s ca le s  of a =  0 .2 ,  1.0 and 5.0. 

Normal ized i n i t i a l  v o r t i c i  t y  per turbat ion  ( in t e rp re ted  ac- 

cording t o  Eq. ( 5 . )  @ O =  0)  and f i n a l  adjusted v o r t i c i t y  f o r  

the  i n i t i a l  top-hat potent ia l  v o r t i c i t y  per turbat ion .  The 

th ree  f i n a l  s t a t e s  correspond t o  i n i t i a l  per turbat ions  with 

horizontal  s ca le s  of a =  0.2, 1 .0 ,  and 5.0. 

( a )  Ratios of t h e  f i n a l  perturbat ion energies  in geostrophic 

flow t o  the  i n i t i a l  per turbat ion  ava i l ab le  potent ia l  energy 

( top-hat  geopotential  per turbat ion)  a s  a  funct ion of the  

horizontal  s c a l e  of the  i n i t i a l  per turbat ion .  The basic  s t a t e  

i s  a t  r e s t .  The d is tance  of the curves below unity indica tes  

the  f r a c t i o n  of the  i n i t i a l  per turbat ion  energy pa r t i t i oned  t o  

g r a v i t y - i n e r t i a  wave motion. 

( b )  Same as  ( a )  except t h a t  the i n i t i a l  per turbat ion  i s  in the 

tangent ia l  ve loc i ty  f i e l d .  



Figure 6. I so l ines  of radia l  mass f l u x  r u ( r , t )  in the  ( r , t )  plane f o r  

the case where the i n i t i a l  v o r t i c i t y  i s  concentrated a t  the 

o r ig in  and the  i n i t i a l  geopotential f i e l d  i s  f l a t .  The con- 

tour  in terval  i s  0 .5  with dashed l i n e s  indica t ing  negative 

r u ( r , t ) .  

Figure 7 .  Divergence, - as  a  function of time f o r  r = ~ r / 4  and rar ' 
r=37r/4. The i n i t i a l  condition i s  the same as  f o r  Fig. 6 .  

Figure 8. The geopotential surface ~ ( r , t )  in the ( r , t )  plane f o r  the 

same i n i t i a l  condit ion as  in Figs. 6 and 7 .  This may a l s o  

be in terpre ted  as the  v o r t i c i t y  s ince  in t h i s  case < ( r , t )  = 

@ ( r , t )  f o r  a l l  r f  0. 

Figure 9 .  Normalized p lo t s  of the f i n a l  adjusted geopotential f i e l d s  

(dashed) as  contrasted with the i n i t i a l  geopotential f i e l d s  

( s o l i d )  where the i n i t i a l  geopotential f i e l d s  represent  

Gaussian-type potent ia l  vor t i c i  t y  per turbat ions .  Cui-ves 

a r e  p lo t ted  f o r  perturbat ions with horizontal sca les  of 

a  = 0 . 2  and 5.0.  

Figure 10. Normalized p lo t s  of the f i n a l  adjusted tangent ia l  ve loci ty  

f i e1  ds (dashed) as_-contrasted with the  i n i t i a l  tangential  

ve loci ty  f i e l d s  (so l  i d )  where the  i n i t i a l  tangential  ve loci ty  1 
f i e l d s  represent  Gaussian-type potent ia l  v o r t i c i t y  perturba- 

t i o n s .  Curves a r e  plot ted f o r  per turbat ions  with horizontal 

sca les  of a =  0 . 2  and 5 . 0 .  



Figure 11 - ( a )  Ratios of the final perturbation energies in geostrophic 

I I flow t o  the i n i t i a l  perturbation available potential energy 

I (Gaussian-type geopotential perturbation) as a function of 

the horizontal scale of the i n i t i a l  perturbation. The basic 

s t a t e  i s  a t  r e s t .  The distance of the total  energy curve 

below unity indicates the fraction of the i n i t i a l  perturba- 

tion energy partitioned to  gravi ty-i nertia wave motion. 

( b )  Same as ( a )  except that  the i n i t i a l  perturbation i s  in 

the tangential velocity f i e ld  ( E q .  ( 6 . 2 ) ) .  

Figure 12. Isolines of radial mass flux r u ( r , t )  in the ( r , t )  plane for 

the case where the i n i t i a l  divergence i s  concentrated near 

the origin,  the i n i t i a l  tangential velocity i s  everywhere 

zero, and the i n i t i a l  geopotential f i e ld  i s  f l a t .  The con- 

tour interval i s  0.5 with dashed l ines  indicating negative 

r u ( r , t ) .  

Figure 13. Divergence, - aru , as a  function of time for  r=rr/4 anu ra r  

r = 37r/4. The i n i t i a l  condition i s  the same as for  Fig. 1 2 .  

Figure 1 4 .  The geopotential surface + ( r , t )  in the ( r , t )  plane for  the 

same i n i t i a l  condition as in Figs. 13 and 14. This may also 

be interpreted as the vor t ic i ty  since in t h i s  case < ( r , t )  = 

@ ( r , t )  for a11 r .  

I '  

Figure 15. The geopotential surface + ( r , t )  in the ( r ,  a t )  plane for the 

case of ( a )  the balanced model , ( b )  the primitive equation 
I 

model with slow forcing ( a = + )  and ( c )  the primitive equation 

model with rapid forcing (a = 2 ) .  



27 Figure 16. Plots  of the basic s t a t e  quan t i t i e s  7, ( I  + l) and (1 + t) , 
as function of r/a, fo r  the case a =  0.25 and Fr = 0.40. The 

dimensional s ca l e s ,  included fo r  convenience, a re  based on 

an intei nal gravity wave speed of 40 ms-' and a  Coriol i s  

parameter corresponding t o  a  l a t i t ude  of 15.9". 

Figure 17. ( a )  Ratios of the f inal  perturbation energies i n  balanced 

flow to  the i n i t i a l  perturbation avai lable  potential  energy 

(Gaussian-type geopotential perturbation) as a  function of 

the horizontal sca le  of the i n i t i a l  perturbation.  The basic 

s t a t e ,  which i s  not a t  r e s t ,  was shown i n  Fig. 17. A curve 

showing the r a t i o  of the energy exchange with the basic s t a t e  

to  the i n i t i a l  avai lable  potential  energy i s  a l so  included 

( C / P o ) .  The distance of the 
P,+ L- C 

curve be1 ow unity 
0 

indicates the f rac t ion  of i n i t i a l  perturbation avai lable  

potential  energy which ends u p  in g rav i ty - ine r t i a  wave mot ion .  

( b )  Same as ( a )  except t h a t  the i n i t i a l  perturbation i s  in 

the tangential velocity f i e l d  ( E q .  ( 6 . 2 ) ) .  

Figure 18. .P lo t s  of wave r e f l e c t i v i t i e s  f o r  the boundary conditions pre- 

sented in Table 1.  Unity indicates  perfect  r e f l ec t ion .  The 

abscissa can be read in e i t h e r  ka (wavenumber in uni ts  of 

dopain s i z e )  o r  2~r/ka (wavelength in un i t s  of domain s i z e ) .  
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A 1 inearized system of equations for the atmosphere's first internal mode in the ' 

vertical is derived. The system governs small amplitude, forced, axisymmetric perturba- 
tions on a basic state tangential flow which is'independent of height. When the basic 
flow is at rest, solutions for the transient and final adjusted state are found by the 
method of Hankel transforms. Two examples are considered, one with an initial top-'?t 
potential vorticity and one with an initial Gaussian-type potential vorticity. These two 
examples, which extend the work of Fischer (1963) and Obukhov (1949), indicate that .ae 
energetical efficiency of cloud cluster scale heating in producing balanced vortex f1 ow 
is very low, on the order of a few percent. The vast majority of the energy is simply 
partitioned to gravity-inertia waves. In contrast the efficiency of cloud cluster scale 1 
vorticity transport is very high. 

When the basic state possesses positive relative vorticity in an inner region, t h e  
energy partition can be substantially modified, and cloud cluster scale heating can . . considerablv more eff~c~ent. 
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