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Abstract 

The new bulk microphysics scheme which was developed for use in the Colorado State Uni- 
versity Regional Atmospheric Mesoscale Model ((RAMS) is described. This scheme includes 
several unique concepts and should be easily transportable to other modeling systems. The new 
concepts include: Unifying treatment of different distributions (constant, gamma, Marshall- 
Palmer, and log-normal) which makes it possible to define the distribution-weighted properties 
in a simple and concise way. The introduction of a interaction scheme for water classes simpli- 
fies the description of all microphysical processes such as collection, vapor deposition, melting, 
riming, etc. A new method of finding exact and ;approximate integrals for collection processes 
is described. The scheme includes: cloud water, ~:ain, pristine crystals, snow, graupel, and ag- 
gregates but the framework exist for additional chrsses such as hail. The introduction of two ice 
categories (pristine and snow) should improve prediction of ice properties and help properly pa- 
rameterize other processes which are based on mic:rophysics parameterization (such as radiative 
effects of cirrus clouds). A new set of prognostic equations for concentrations is included which 
will be used for modeling of such diversified situ.ations as convective systems with imbedded 
stratiform regions or orographic systems. Beside t:his extensive theoretical development the new 
scheme is coded in standard FORTRAN 77, is parameter driven, and is written to function as 
a library module. This document includes a description of the code. It is optimized to run 
efficiently on vector machines. 

'Current affiliation: University of Wisconsin, Dept. of Meteorology, Madison, WI 53715 
'On special leave &om the South African Weather Bureau 
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1 Introduction 

One of the major objectives in science is to understand the basic processes to such an extend 

that man could modify or at least predict what is going to happen based on given input. In this 

document, our challenge is cloud and cloud systems. To fully understand these systems, mesoscale 

numerical models have been developed, simulating the physical processes involved. The processes 

in clouds do cover a broad range of typical sizes, and to formulate a numerical model of a complete 

system requires value judgements or compromises. The need to compromise becomes most obvious 

when one is faced with the task of formulating models of the microstructure of clouds (Cotton and 

Anthes, 1989). Yet, if we are to understand how the various processes interact to produce the h a l  

product, we have to develop some scheme to represent the smaller scale systems in the complete 

model. 

Two types of schemes have been developed to simulate the microphysics involved in mixed phase 

clouds. The first type is to discretize the distribution of the different water categories into a small 

bins or elements (e.g. Young, 1974a). The different processes influencing the hydrometeors are then 

calculated, keeping track of the growth for all elements. This type of scheme requires huge memory 

allocation and is also very expensive on computer time. The second scheme is a bulk water type 

model, where it is assumed that the various water categories may be represented by continuous 

specifled size distributions (e.g. Lin et al., 1983, Cotton et al., 1986). Bulk pararneterizations 

are then developed for the various physical processes based on the assumed size distributions, 

transferring mass between the various categories of water classes. The second approach requires 

the formulation of simplifying assumptions, especially regarding the ice classes, but requires much 

less memory and make much more effective use of computer resources. 

In this document a bulk microphysical parameterization scheme will be described. In the first 

part of the paper consideration will be given to the mathematical treatment of size distributions, 

and a generalized (for different distribution functions) scheme will be developed, which will make 

the implementation of various distribution functions in one model much easier. This scheme will 

allow the flexibility to change the assumed distribution by changing a single input variable. Then 

all the basic physics equations and concepts are given in part 2. Finally the bulk microphysical 

parameterization as is currently implemented in the CSU-RAMS model will be outlined, with 
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reference to the wious subroutines and equations which are d e d  in the module. 



Part I 

MATHEMATICAL CONSIDERATIONS 

Although there is an apparent diversity of distributions that can be used to define the sizes of 

particles in atmospheric polidisperse media (clouds, fogs, aerosols), only a few types are observed 

to approximate the data well. These are: the generalized gamma distribution and its special 

cases (e.g. the exponential distribution), the normal distribution and its transformation (e.g. log- 

normal), the constant distribution, and the power law. The generalized or, as it is sometimes called 

in radiative transfer applications, modified gamma distribution defines as special cases the gamma, 

truncated gamma, exponential, Marshall-Palmer, Khrgian-Mazin, doubly truncated exponential, 

and the half-normal distributions. Even the norrrlal and log-normal distributions can be linked 

to some of the mathematics arising in the generalized gamma distribution calculations. Here we 

try to derive a unified treatment of the size spectra and their moments for application in bulk 

microphysics parameterization schemes as is commonly used in atmospheric mesoscale models. We 

try to handle different size spectra with a few simple formulas which is general enough so as to 

encompass most of the size spectra and their moments in a mathematically similar expression. In 

a bulk microphysical scheme several water classes are usually considered, such as cloud particles, 

rain, aggregates, graupel, pristine ice, aerosols, and hail. In many parameterized rain models, 

specific reference is not made to the size distribution of the cloud droplets, but rain drops are 

usually considered to be distributed according to the exponential or log-normal distribution. The 

choice of a distribution function for a water class is by no means unique. The distribution which 

describes the averaged terminal velocity (or the raindroplet collection) the best may not be suitable 

to describe the radiative properties of the mediuml. This problem is rather fundamental nature. 

In most cases there is no deep underlying physical principle why the distribution should be of 

gamma, exponential, normal or any other type. The exponential distribution is motivated by 

the breakup-production balance, as well as ground-based aud airborne measurements of r a i n h p  

spectra. Recently log-normal spectra were also found to fit observaticms pretty well (Wingold and 

Levin, 1986). 
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2 Size spectra and their moments 

2.1 Basic concepts 

Several formulas have been proposed to describe the distribution of the various water categories. 

The spectral density function n(D) is defined such that n(D)dD is the total number of particles 

with diameters between D and D + dD, per unit volume of air. Hence 

is the total concentration per unit volume of air of particles with diameters less than D. To describe 

a size spectrum we choose a suitable probability density function f(D) defined over the interval 

(Dm&, Dm,,). For most applications Dm;, = 0 and Dm, = oo, however, for generality, we will 

continue to use the interval (Dm;,, Dm). The form of the probability density function f (D) has 

to meet a few simple criteria. It must be of' an analytical form amenable to integration in a closed 

form so that the resulting mathematics is manageable. It must be a normalized function, and it 

must have only a few degrees of freedom, all of which should be possible to be diagnosed on the 

basis of bulk or spectral field measurements or model predictions. 

The particle size distribution spectrum can then be represented by 

where Nt is the total concentration of particles per unit volume of air. 

It is useful to develop a technique to define new probability density functions through a transfor- 

mation of variables. From continuous distribution theory 

if we can express the variable x as a arbitrary function of D, i.e. x = h(D), and h is a arbitrary 

function. At this point we will also introduce a non-physical scaling diameter, D,. This scaling 

diameter is used to present the spectral distribution function in a non-dimensional form. The scaling 

diameter will be related to physical quantities such as i.e. mean diameter of the distribution, but 

the relation will differ with spectral functions. In our generalized scheme it is convenient to use 

this scaling diameter rather than a specific physical quantity since this leads to simpler and general 

mathematics. 



2.1 Basic concepts 

Averaged properties of the various water categories can be defined as 

The function g ofken exhibit a power law dependence, such that 

where c, and pg are constants. The problem can then be reduced to finding the generalized moment 

of the distribution. The pth moment of the distribution f ( D ) ,  defined over the interval (Dmi,, Dm,,) 

is 
Dm.%= 

I(~,Drnin> D-) = 1 D p f  (D)dD = DnPF(p, Dr+n,Drnaz). 
Dm;" 

(2.6) 

The function F depends on the type of distribution assumed and the integration interval, and 

will be defined for various distributions in following sections. The advantage of using the scaling 

diameter can be seen here, the pth power of the sealing diameter will be a result of the integration 

irrespective of the distribution assumed. Through this relation the scaling diameter can be defined 

in terms of measurable physical quantities, dependent on the assumed distribution. 

Several moments are of special importance. The mean diameter and liquid water content are 

quantities frequently used in cloud modeling applications, while quantities such as the total surface 

area and the effective diameter are commonly used in radiative transfer models. The mean diameter 

of the distribution is as the &st moment of the distribution and is defined as 

The third moment of the distribution is proportional to water density for spherical particles, or the 

liquid or ice water content. The water content is defined as 

where m ( D )  is the mass of particle of diameter D. For spherical particles we have 

?r 
m ( D )  = -D3p, 

6 

where p is density of particle. From (2.8) and (2.9) 
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This equation gives a relation between the water content I, the total concentration Nt, the type of 

distribution (represented by F) and the scaling diameter. 

The total projected surface of particles is d.efined as 

where At is total projected d a c e  of the particles, A(D) is the geometrical cross-section (or pro- 

jected surface) of the particle of diameter D. For spherical particles A(D) = 1r(D/2)~, for non- 

spherical particle A(D) will depend on particular cross-section or, on the instantaneous orientation 

of the particle. Thus, in general the total 13urface will be a function of the second moment of the 

distribution. For spherical particles we have 

At = NtA(Dn)F(2, Dm;,, Dm,) (2.12) 

The effective radius, often used in radiative transfer studies, is used to redefine the total surface, 

which is difficult to measure, in terms of the water content 1, which is commonly measured. It is 

defined as 

The diameter for which the distribution has a maximum is called the mode. The mode diameter 

can be obtained by differentiation of the distribution h c t i o n  f ,  setting it equal to zero and solving 

for the diameter. 

2.2 The family of gamma distributions 

A popular choice for the probability density function to describe sizes of atmospheric particles is 

the generalized gamma function. It is often used in radiative transfer, and is known there as the 

modi$ed gamma distribution. It is defined as 

C 
f (x) = -xw-I 

8 exp (-zC), 
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where c and v define the shape of the distribution,, and s is a normalization factor to ensure that 

integral of the distribution over the interval of definition is equal to 1. The gamma distribution can 

be obtained by setting c = 1 in this equation, ancl the exponential distribution may be obtained 

by setting c = 1 and v = 1. The half-normal distribution is another one of the family of gamma 

distributions, and it can be obtained by setting c =: 2 and v = !j. 

The distribution function (2.14) can be transformedl with the aid of eq (2.3). This leads to the form 

useful for atmospheric science applications. Let 

where D is diameter of particle and D, is the scaJing diameter. This transformation provides a 

non-dimensional parameter. After some simple algebra we obtain 

In addition to the previously defined parameters we have the total concentration Nt which relates 

the probability distribution function to the distribution spectrum (see 2.2). Thus there are four 

free parameters: D,, c, v, and Nt. One is easily :measurable - the total concentration Nt. The 

shape parameters v and c can also be measured but they are usually assumed on the basis of 

qualified intuition. The scaling diameter can be diagnosed from, say, water density (liquid or ice 

water content). If spectral data is available, both the scaling diameter and water density can be 

prognosed thus giving the opportunity to diagnose one of the shape parameters. Therefore we 

predict the free parameters fiom the moments of the distribution such as water content, scaling 

diameter, or total concentration. 

A more general transformation x = (D - Do)/Dn is possible. Here Do allows for the shift of D-axis, 

but we will set Do = 0 throughout this section. 

2.2.1 Truncated general gamma distribution 

The truncated gamma distribution will be the most general form of the modified gamma distribution 

we will deal with. On the basis of some additionid hypotheses we may assume that smaller or 

larger diameters of the spectrum are not observed or not needed in the calculations. The size 
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spectrum may be, for example, the generarlized gamma distribution, but with one, or both ends 

of the spectrum truncated. Although this is conceptually simple, the concept may sometimes lead 

to awkward mathematics. In the case of the gamma distribution and its relatives moments of the 

distribution are a function of the incomplete gamma functions y (x, y) and r(x, y), instead of the 

complete gamma function r(z) (Appendices A and B). 

We will define the truncated gamma distxibution as equation (2.16) defined over the interval 

(Dm;, , Dm,,) . The parameter s can then be derived from the requirement that the distribution 

has to be normalized over the interval of definition. Namely 

where the subscript tmg stands far truncated modified gamma. Substituting from equation (2.16) 

and performing the integration gives the desired expression for s 

The moments of the truncated modified gamma distribution are now defined as 

Itmg@) = JDm- DPf (D)dD = qFtmg@),  
Dmin 

where 

2.2.2 Generalized gamma distribution 

In most applications in atmospheric science the interval over which the distribution is defined is 

taken as (0,oo). This leads to simplified mathematics where the h c t i o n  F can be expressed in 

terms of the complete gamma function r(x:) (Appendix A). The parameter s will be r(v) for this 

definition, so that the form for the general modified gamma distribution will be 



2.2 The family of gamma distributions 13 

where the subscript mg refers to modified gammit. This form of the distribution is popular in 

radiative transfer applications. 

The moments of the modified gamma distribution ,are then defined as 

where 

From (2.22) we can attempt to diagnose the free parameters of the distribution. First let us consider 

the relationship between the scaling diameter Dn rrnd the mean diameter, eflective diameter, and 

modal diameter of the distribution, where we assum.e the interval of integration to be (0,oo). From 

the definition (2.7) of the mean diameter we have 

where the last result follows from (2.23), i.e. F( l )  := I'(v + l/c)/I'(v) and F(0) = 1. The effective 

diameter Dd is defined by (2.13) which gives 

The mode diameter Dm&, for which the distribution has maximum, can be obtained by differen- 

tiation of the generalized gamma function (2.16). This gives 

If one of the parameters Dm&, Dm,, or Dd is somehow predicted or can be measured, we can 

estimate the scaling diameter D,. Another way to obtain it is from a higher moment, like liquid 

water content or reflectivity. 

It was shown (2.10) that for spherical particles the litquid water can be determined from the relation 

I = T / ~ N ~ D ; ~ F ( ~ ) .  Then, for the modified gamma distribution we get 
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In some applications we need moments that are calculated up to or fkom a specific diameter Dmt, 

or over the intervals (0, Dmt) and (Dmt, 00). In this case the function F is give by 

and 

Here we need to distinguish these functional forms &om that of the truncated gamma distribution 

over the interval (0,  Dd)  and (Dd, 00). These are integrations over a part of the full n o d z e d  

distribution, whereas for the truncated distributions the distribution is normalized over that part 

of the spectrum. 

Gamma distribution 

The gamma distribution can be obtained h m  the modified gamma distribution by letting c = 1. 

Since the change in the mathematics is minimal, we will simply give the probability density function 

for reference, and the functional form far F. The probability density function is given by 

where the subscript gum refers to gamma. The functional form of F is given by 

For the rest of the equations the reader is referred to the previous section. 

Exponential distribution 

An important case of the generalized gamma distribution is that of purely exponential dependence 

when we set c = 1 and v = 1. This is known in atmospheric science field as the MarshalLPalmer 
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(MP) type size spectrum and the epnent ia l  prol~ability function in statistics. All the formulas 

are already derived in the previous section, but we repeat some of them here for completeness. For 

c = l a n d v = l w e g e t  

where Dn again is the scaling diameter. A related quantity is called slope and is defined as (Manton 

and Cotton, 1977) 

If Dn increases, the distribution is becoming flatter (less steep), and slope A decreases. Therefore, 

for large Dn the size spectrum becomes uniform. For the full exponential distribution (D E (0, oo)) 

the moments are again defined as 

where, in this case, the function F is defined by 

The exponential distribution has a maximum (mode diameter of the distribution) at D = 0,  as can 

be predicted from (2.32). The relationships between the scaling diameter and the mean and the 

effective diameters are then given by 

Thus, the scaling diameter is equal to the mean diameter if the exponential distribution is assumed. 

For completeness we will once again write down the functional forms for integration over the 

intervals (0, D,t) and (D,t, oo) F: 



2 SIZE SPECTRA AND TAEIR MOMENTS 

2.2.5 Half-normal distribution 

Another special case of the generalized gamma probability density function is the half-normal 

distribution. The half-normal distribution. is obtained from the generalized gamma distribution 

by setting c = 2 and v = 112. Of course all of the previous results (moments, mean, effective, 

and mode diameter, etc) apply. This distribution is a middle-step for the derivation of the normal 

and log-normal spectrum and we will provide the form of probability density function for hture 

reference. Let c = 2 and v = 112 in (2.16), and then also notice that F(1/2) = fi. This gives 

which is known as the half-normal distribution (hn stands for half-normal). The half comes from 

the fact that we deal with positive diameters D, i.e D defined on (0, oo). 

In both the exponential and the half-nonnal distributions the shape parameters c and v have 

been fixed, thus there will be less degrees of freedom. Only the scaling diameter D, and total 

concentration Nt can be varied. This, however, is not as restrictive as it appears at the first glance, 

since the choice of a particular distribution is more or less arbitrary in any case. 

2.3 Normal and log-normal distriibutions 

2.3.1 Normal distribution 

The normal distribution has the same mathematical structure as the half-normal distribution, but 

it is defmed for D E (-w, cm). The probabjity density function is given by 

The normal distribution has no real applications in the field of microphysics, since it predicts no- 

zero probabilities for negative diameters (L)  < 0). It can, however, suitably be transformed, such 

that diameters in the range (-cm, oo) are ]mapped to (0,oo). This is the case of the Zug-normal 

distribution, which will be defined in the next section. 



2.3 Normal and log-normal distributions 

2.3.2 Log-normal distribution 

The log-normal distribution is a transformation of the normal probability density function. Consider 

the standard mathematical form of the normal distribution (discussed in the previous section) of a 

variable x 

We will introduce the transformation 

1 
x = - h ( $ ) ,  u z€(-w,co),  (2.42) 

where D, and a are parameters. This transformation maps x E (-00, oo) into D E (0,oo). From 

(2.3) we then obtain 

In this distribution the logarithm of the diameter is; normally distributed. To find the mean of the 

distribution f (x) we multiply (2.41) by u and i n t e ~ ~ a t e  over (-oo, w). The result will be 0, since 

f (x) is symmetric about 0. Then from (2.42) we get 

where 

Similarly, it can be shown that 

The moments of fiw are 

where 
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The mean diameter is 

The effective diameter is 

The water content is 

2.4 Constant distribution 

The probability density function of the constant or monodisperse distribution is defined as 

The function S(D - D,) is the Dirac's delta function which will prove useful far definitions of 

distribution-averaged quantities. This function is 1 for D = D, and 0 otherwise. The moments are 

simple, and are given by 

Thus 

for all values of p. 



2.4 Constant distribution 

Figure 2: Liquid water dependence on shape parameter v.  This is for a modified gamma distribution 
(c = 1) with mean diameter 15 pm and total concentration 500 particles per d. 
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Relationships between parameters and other moments 

In atmospheric science applications it is often assumed that c = 1, which leave three fiee parameters 

in the gamma type distributions. It is sensible to choose three parameters which are measurable 

or are based on some physical intuition to characterize the size spectrum. The simplest one is (Nt, 

v, Dn). Another possibility is the triplet (Nt, Dde, I). Many devices can measure water content 

and total number directly, and while v or Dm& is obtainable from the size spectra. Other choices 

could be motivated by more theoretical reasoning. In radiative transfer the total extinction of light 

by the particle is related to the total surface of particles At. Thus, for theoretical purposes, it is of 

interest to keep the total area the same and vary other parameters to study the sensitivity of the 

radiative transfer of light to choices of those parameters, or thus for different clouds. The triplet 

(Nt, At, 1) would be advisable in such case. The total projected area can actually be estimated 

fkom PMS probes (2C and 2D probes) (e.g. Gordon and Marwitz, 1984). Other choices are also 

possible. 

A word of warning is in place here. The choice of a three-parameter (or in that matter four- 

parameter) distribution is quite restrictive as it forces us to define all physics in terms of a finite 

number of moments. For example Nt, Dmode and 1 defines the gamma distribution completely. 

Then the standard deviation or spread of the distribution cannot be controlled without difficulty. 

(2.5) shows two distributions for different u but the same modal diameter Dm& and total 

concentration Nt. The solid line is for v = 1.5 and the dashed line is for v = 3. The u = 1.5 case 

contains more large droplets, thus leading to much larger liquid water content. Fig. (2.5) shows 

the dependence of water content I on the parameter v defined by (2.21). It can be seen that small 

values of v indicate large values of water content. Thus, we can see the sensitivity of the physical 

moments to the parameters of the distribution. 

We will refer to the set (Nt, u, D,, c), c = 1, as the set of base parameters. We will now proceed to 

derive relationships between the base parameters and the more common measurable parmsters. 

From (2.26) we have D, = Dmd/(u - l/c)'lc, the relationship between Dm& and D,. If we 

substitute this into (2.27) we get 



2.5 Relationships between parameters and other moments 

Figure 1: Droplet size distribution for modifled gamma distribution, c = 1, with same modal 
diameter (15 pm) and total concentration (500 per an3), but with a) v = 1.5, b) v = 3. 
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This nonlinear equation may be solved for u. Thus, given observations of the modal diameter and 

the water content, the base parameters of the distribution can be determined. Similarly, if the 

liquid water content and the total projected area are known, then from equations (2.12) and (2.27) 

the following relationship can be derived 

Once u is defined from (2.56) the D, can be subsequently obtained fiom (2.12). With other 

measured quantities similar relationships can be derived. Thus, it is feasible, albeit not simple 

(equations 2.27 and 2.56 are non-linear), to extract the basic parameters &om a measured data set. 

In the following sections we will then develop the parameterization scheme in terms of the basic 

parameters. 

3 Summary 

In this section we have developed a general. mathematical structure that will be used throughout 

the rest of the document. A summary of the notations are given in Table 1 and Table 2. In Table 

3 the general forms of the truncated distributions are given, with the h c t i o n  G1 representing 

integration from 0 to a cut-off diameter Dd and G2 integration from Dmt to oo. It was shown 

that for most of the distributions the moments may be expressed in the same mathematical form by 

Equation 2.6, where only the function F change for the different distributions. Jf it is assumed that 

properties of the various water classes such as mass or vertical velocity can be written in the form 

of power laws, then the bulk parameterization scheme can be developed in a general form in terms 

of F. This will allow that any distribution may be assumed of any of the water classes, without 

duplication and hardwiring of code. We now have the mathematical tools needed to develop the 

parameterization scheme. 



Table 1: Summary of the size distributions and the shape parameters c and v .  

Table 2: General functional form and special moments for the more generally used size distributions 

Name 
F(P) 
D- 
Delr 
D- 
Water 
d e n t  q 

Table 3: Truncated distributions and their general functional forms. The function GI represents 
integration from 0 to a cut-off diameter Dmt and G2 integration from Dmt to oo. 

Expanential 
rg,+i) 
Dn 
3% 
0 

. A / ~ N ~ D : P ~ ( ~ )  

Modified gamma 
r ( ~  + plc)lr(v)  
I'(Y + l / ~ ) f l ( u ) D n  
P(v + 3 / c ) F ( ~  + 2/c)Dn 
(Y - ~ / c ) ~ ' ~ D ~  

? r / 6 ~ ~ 0 8 ~ r ( v  + 3/c) /r (u)  

Log-nod 
exp (*p?/2) 
e x ~ ( g / 2 ) D n  
. x P ( ~  /2)Dn 
Dn .xP(-2) 

u / 6 ~ ~ ~ ~ p e x p ( 9 ~ ~ / 2 )  

a 

Distribution 
Cosst~nt 

M-P 
W c a t e d ~ - P  

GI (p, Dwt) 
O f ~ r  D d <  Dn 
1 f w D d > D n  
7(v+ptl,o*) 

dr(v+l) 

~ ( P + l , q f )  
f [ 7@+1 ,&) -7 (~+1 ,* ) ]  

G2 (p, Dm&) 
1 f w D d < D n  
0 f m D d > D n  
r(v+P+l *a*) 

dr(v+l) 

r @ + l , $ f )  
! [ r @ + l , & ) - ~ b + l , k ) ]  



4 CLOUD PRYSICS 

Part I1 

CLOUD MICROPHYSICAL PROCESSES 
A REVIEW OF FUNDAMENTAL 
PRINCIPLES AND 
PARAMETERIZATIONS 

The microphysical processes in a cloud are those physical processes leading to the formation and 

growth of the particles. These particle can be liquid, or ice, or a combination of both, and may have 

a regular or irregular shape. They are generally classified in several categories as cloud droplets 

(c), rain drops (r), ice crystals (i), snow crystals (s) or aggregates (a), and graupel or hail (g). 

Depending on the application, all or only some of these categories may be selected. Each category 

may grow independently fiom vapor and self collection, or may interact with the other categories 

through collision and coalescence. It is hoped that this general parameterized scheme may provide 

a measure of comparison between schemes implemented on various models. The notation used in 

this section, and the rest of this document, will be to use no subscript when general single category 

equations are described (like the vapor deposition equation), and to use the subscripts x and y when 

we are dealing with general multiple category interactions (like riming growth). When dealing in 

specific applications, the subscript (s) for the specific category(ies) will be used. 

4 Cloud Physics 

The basic equations governing the physical processes leading to the formation of precipitation 

particles in clouds will be discussed in this section. It will f is t  be established that mass, density 

and terminal velocity may be expressed in the form of a power law relationship with diameter, 

and then some relations between mixing ratio, total concentration and diameter will be developed. 

Based on these relationships all the physical processes are then described. The development of all 

the equations follow the CSU-RAMS formulations to a large extent, although thought also is given 

to alternative ideas. 



4.1 Power law relationships 

4.1 Power law relationships 

Theoretical and/or empirically determined power laws of the form 

have been proposed for cloud microphysical particle characteristics such as density, mass and ter- 

minal velocity. In this formulation D is the particle diameter. 

4.1 .I Density-diameter dependence 

The density of a particle is denoted as p. In general this may be expressed in the form of a power 

law. 

For all the liquid water categories the density is constant, i.e. p, = 0. This will be true for some of 

the ice phase particles, such as hail, however, for most of the ice phase particles the more general 

formulation is needed. These formulations are generally empirically determined. Pruppacher and 

Klett (1978) , based on results from Heymsfield (1972) , and Ryan et al. (1976) have reported 

on relationships for single ice crystals (pristine ice), while Passarelli and Srivastava (1979) , based 

on data from Magono and Kakamura (1965) , have fitted a power law dependence of density to 

diameter for aggregates. 

4.1.2 Mass- diamet er dependence 

The mass of a individual particle depends on its shape and density and, therefore, may be a 

complicated function of diameter. However, we will again assume that it can be expressed in the 

form of a simple power law as 

m(D) = h D P " ,  

For spherical particles of diameter D this relationship may be derived analytically: 

Combining (4.4) and (4.2) we get 
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From equation (4.3) we notice that 

For ice phase particles empirical relationships derived from laboratory experiments reported 

by Locatelli and Hobbs (1974) can be used. For example, snow crystals have 

or, by simple algebra, 

where 

1 
4. = (yP, p,,, = P - 

4.1.3 Terminal velocity 

The terminal velocity of water droplets or ice crystals is derived in this section. For spherical 

particles theoretical formulations can be derived, but for more complex shapes such as hexagonal 

ice crystals empirical formulas are used. We will denote the terminal velocity by v. With the 

variety of formulations, most can be summarized by 

Theoretically terminal velocities can be derived by solving the Navier-S tokes equations with appro- 

priate boundary conditions. In the derivation a non-dimensional quantity, the Reynolds number, 

is used. The Reynolds number is a measure of the relative balance (importance) of non-linear 

advection term to viscous acceleration in the steady state Navier-Stokes equation and is defhed by 



4.1 Power law relationships 

where v is the kinematic viscosity. 

For small Reynolds numbers the non-linear terms in the Navier-Stokes equations can be neglected. 

It can then be solved analytically for simple geometries to give particularly simple formulas. Many 

cloud particles indeed have Reynolds numbers smaller than unity. But even in the small Reynolds 

number limit one has to use numerical solutions for more complex shapes. 

In the large Reynolds number (> 1) limit, things quickly become complicated. As Re increases, 

the flow becomes more complicated as the non-linear term becomes more important. An additional 

complication is the change of shape for larger drops. In the large Reynolds number limit solutions 

are virtually always obtained with the help of computer. It is interesting to note that only very 

idealized solutions exist for ice crystals with large Reynolds numbers. In this case it is better to 

resort to experimental formulations. 

Spherical particles 

For a spherical drop falling at its terminal velocity in air, the equation of motion reduces to 

the balance of gravity and viscous drag forces 

where CD is the drag coefficient. This can be rewritten as 

If the density depends on diameter as in (4.2) we can write (4.13) as 

thus 
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For small, spherical droplets one can show that the drag coefficient is (Stoke's solution) 

This equation, the definition of the Reynolds number (4.11) and the relationship between 

kinematic and dynamic viscosity (4.17) 

substituted into (4.13) give the following simple quadratic dependence for the terminal velocity 

This quadratic dependence of fall velocities on size is called Stoke's Law and applies to cloud 

droplets up to about 80 pm diameter (Rogers, 1979, p. 91). 

Non-spherical Particles. 

For non-spherical liquid drops the radius of a sphere of equal volume is normally used, and CD 

is adjusted accordingly. Clearly, the problem of using (4.14) to predict v is centered around 

the determination of CD, which for a rigid body, is a function of the Reynolds number. As 

was discussed, this may quickly become quite complex, therefore it is eassier to resort to 

empirical formulations. 

Empirical formulas. 

For ice crystals, which are of complex shape, porous, and of varying density, many empirical 

formulas have been proposed. Most are of the type given by (4.10). For example, results 

reported by Hobbs (91972) and Locatelli and Hobbs (1974) can by used. In using these 

laboratory results conducted at sea level, care should be taken to apply the Foote and du 

Toit (1969) , correction into account for the decreased resistance of air at  lower pressures. 

See for example Table 8 for the relationships used in the CSU-RAMS model. 



4.2 Mass- weighted terminal velocity 

4.2 Mass-weight ed terminal velocity 

The mass-weighted terminal velocity is given by 

which, after integration gives 

1 
= ~ v ( D n ) m ( D n ) N t F ( p m  + pv) (4.20) 

 PO 

wherep, andp, are the power coefficients arising in formulas (4.3)  and (4.10), and f is the weighted 

average mixing ratio defhed by 

Using the mass-diameter relationship (4.3) ,  integration of (4.21) gives 

- 1 
= -Ntm(Dn)F(pm)  (4.22) 

Po 

Substitution of this in (4.20) gives the desired simple formulation of the mass-weighted average 

terminal velocity 

4.3 Total concentration 

The mixing ratio is generally the prognostic variable and the total concentration can then be 

obtained diagnostically from (4.22) as 

Othexwise explicit predictive equations for Nt of a particular species is formulated. 

4.4 Diameter derived from concentration and mixing ratio 

If both the concentration Nt and the mixing ratio are derived fiom prognostic equations we can 

further manipulate (4.22) to get 
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Table 4: Summary of values of constants for CCN counts reported in literature for different locations 
and airmasses. 

4.5 Nucleation 

k 
0.7 
0.5 
0.4 
0.3 
0.9 
0.46 
0.63 
0.64 
3.85 

All particles in a cloud have to develop in some way or another either from nucleated cloud water 

or nucleated ice water. These processes and their mathematical description are therefore very 

important to any cloud model. 

Location 
Maritime air 
Continental air 
Australia (Con) 
Australia (Mar) 
Buffalo, N.Y. 
Hilo, Hawaii 
Hawaii (Con) 
High (S - 1) 
High (S - 1) 

C 
100 
600 
2000 
125 
3500 
53 
105 

3990 
6.62 x 10' 

4.5.1 Nucleation of cloud water 

Reference 
Twomey and Wojciechowski, 1969 
Twomey and Wojciechowski, 1969 
Twomey, 1959 
Twomey, 1959 
Kochmond, 1965 
Jiusto, 1967 
Jiusto, 1967 
Alofs and Lui, 1981 
Alofs and Lui, 1981 

The concentration of cloud condensation nuclei increases with increasing supersaturation. This can 

be expressed in the form 

where k and C are approximately constant and dependent on the type of airmass (Pruppacher 

and Klett, 1978). S, is the saturation value with respect to water. A variety of values have been 

reported in the literature for these constants (see Table 4). 

Tworney (1959) has obtained approximate expressions for upper bounds of (S, - 1) and N in rising 

air parcels. After deducing (S, - I),,, the corresponding value of N-, can be deduced from 

(4.26). This expression for (S, - I),, takes on the form 
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where w [cm s-'1 is the vertical velocity, Ic and C are the same as in (4.26), B(x,y) is the Beta 

function, and A is a constant, given by Pruppacher and Klett (1978) , as 6.9 x 

4.5.:2 Primary nucleation of ice 

There are four processes through which ice may be nucleated in the atmosphere: deposition nucle- 

ation, immersion freezing, condensation freezing and contact nucleation. The amount of ice nuclei 

(IN) active in each process, and its dependence on temperature and supersaturation is not well 

understood. The most common approach is to approximate the amount of ice crystals at a given 

degree of supercooling with the Fletcher curve (Fletcher, 1962) 

where No = 10-~l-' and a = 0.6(OC)-' are constants and T,, is the degree of supercooling. 

tion 4.28 was derived from the average spectra of ice nuclei measurements. Those measurements, 

however, were at water saturation and did not sustain a cloud long enough to measure contact 

nucleation. 

Cotton et al. (1986) , generalized the Fletcher equation to include a supersaturation dependence 

using equations developed by Hufban and Vali (1973) . The deposition/condensation freezing is 

then modeled by 

where b and B are constants and (So - 1) represents the percent ice supersaturation of a water 

saturated cloud. Cotton et al. (1986) chose b = 4.5 and B = 3.15 mV3 

Stepanov (1986) , have reported on ice nuclei concentration values as a function of temperature and 

supe.rsaturation with respect to ice. D. Rogers (personal communication) fit a bi-linear equation 

to the data of the form 
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which is valid for T < -8OC. We plan to implement (4.30) and examine the sensitivity of the 

model to the two formulations. Clearly Equation (4.30) is based on a consistent set of observations, 

whereas Equation (4.29) is based on a piecing together of independent observations and averages 

of observations from different ice nuclei counters. 

Based on Young (1974a,b) contact nucleation is treated by considering Brownian diffusion, ther- 

mophoresis and diffusiophoresis processes. Cotton et al. (1986) scaled Young's equations to come 

up with the following expressions: For Brownian diffusion nucleation 

for thermophoretic nucleation 

and for difisiophoretic nucleation 

where m;o corresponds to the initial mass of the nucleated ice crystal, Da,. is the aerosol dfisivity, 

and e, and e(&) are the vapor pressures at infinity and the droplet surface. Fl, F2 and ft are 

defined by the following expressions. 

0.4[1+ 1.45Kn + 0 . 4 K n ~ ( - l / K n ) ] ( k  + 2.5Knka) 
ft = (4.36) 

( 1  + 3Kn)(2k + 5kaKn + ka) 

where Rc is the cloud droplet radius, Nc is the cloud droplet concentration, N, is the concentration 

of active contact nuclei, k is the thermal conductivity, ka is the aerosol thermal conductivity, Kn 

is the Knudsen number, Tc is the cloud droplet temperature and T the environment temperature 

while p is the environmental pressure. The Knudsen number Kn is defined as 
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where I& is an assumed aerosol radius. The concentration of active contact nuclei Na is given by 

where Tc is the cloud droplet temperature and Nao = 2 x lo-' cmW3. The aerosol dfisivity D, 

is defined by 

The total number of crystals nucleated by contact nucleation is then given by the sum of the three 

process. 

4.5.3 Secondary nucieat ion of ice 

Gordon and Marwitz (1981) , have developed a parameterization for the Hallet-Mossop ice multi- 

plication theory. They have two basic models 

Approximately 350 ice splinters are produced for every milligram of rime accreted onto each 

graupel particle at  -5OC (Hallet and Mossop, 1974). This mechanism was formulated using 

where (dm/dt)lm is the riming rate for any of the ice categories and the function fl of 

the surface temperature of the ice particle Tc represents the temperature dependence of the 

process. The Hallet-Mossop mechanism is thought to peak at -5OC, and be about zero above 

-3OC and below -8OC. Linear interpolation then give (Cotton et d., 1986): 

0; Tc > 270.16 
[(Tc - 268.16)/2] ; 270.16 > Tc > 268.16 

fl(Tc) = [(T' - 268.16)/3] ; 268.16 > Tc 2 265.16 
0; 265.16 2 Tc 
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Approximately 1 ice splinter is produced for every 250 drops 2 24 pm accreted onto each 

graupel particle at -5OC (Mossop, 1976). The ice crystal production rate per particle, based 

on the continuous growth equation, is then given by (Cotton et al., 1986): 

where N24 is the concentration of cloud droplets greater than 24 pm in diameter, E(g/c24) 

is the collection efficiency for graupel collecting cloud droplets with diameter greater than 24 

pm, ;iis is the mean terminal velocity of the graupel distribution, and Dg is the diameter of 

the graupel particle. 

To derive an estimate of the number of cloud droplets greater than 24 pm, assume a gamma 

distribution (2.30). Following the derivation in Cotton et al. (1986) , and assuming that the 

mixing ratio is the model variable, the mass of a mean cloud droplet (m,) can be calculated. 

In their derivation they fixed the shape parameter v ,  which left the characteristic diameter DN 

as the only free parameter of the distribution. The characteristic diameter can be calculated 

using the formulation for the water content 1 of the modified gamma distribution given in 

Table 2 where, for this application, c = 1. Note that equation (76) in Cotton et al. (1986) 

was derived for a distribution specified in radius, and that the power is incorrectly specified 

as 1/2, which should be 1/3. Now that the distribution is completely specified, the number 

of droplets greater than any diameter can be determined. It can be written in the following 

form 

where f2 is the fraction of area under the distribution greater than the cut-off diameter, which 

is defined by 

where x = (Dz4/Dn), X = (DID,) and Dn is defined as 
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using the normalized version given for the liquid water content in Table 2. 

It can be questioned whether both these processes are independent processes or just different steps 

in interpretation of the Hallet-Mossop experiments. If this is the case, then Pp(I) and Pp(II) could 

to some degree be double counting the same process. Cotton et al. (1986) , argued that in that 

case it would be desirable to use Pp(II) as the only multiplication process. 

4.6 Vapor deposition 

The governing equation for vapor depositional growth is routinely derived in standard cloud physics 

textbooks (see Byers, 1965, Pruppacher and Klett, 1978 or Ludlam, 1980 for example), and it can 

be written in the following form 

where 

In these formulations D, is the vapor dfisivity coefficient and K is the thermal difisivity coeffi- 

cient in air. The shape factor C is D / n  for hexagonal plates, or D/2  for spherical particles. S is the 

degree of supersaturation relative to the phase of the particle, T is the environmental temperature, 

east is the saturation vapor pressure, L is the latent heat associated with the process and R, is the 

moist gas constant. 

When a particle becomes large enough to have a free-fall speed of a few centimeters per second 

or more, the vapor density gradient is increased ahead of the particle, and the rates of heat and 

mass transferred are also increased. The effect of ventilation on the mass transfer of vapor from a 

particle in air can be expressed in terms of ventilation coefficient f, defined by 
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where d m l d t  is the evaporation rate of a moving particle and subscript 0 indicates evaporation rate 

of a stationary particle. 

Based on the results reported in the literature (Pmppacher and Klett, 1978) the ventilation coeffi- 

cient for spherical water drops may be written as 

where a, p, n, m are coefficients and Re is the Reynolds number. The ratio va/Dv is defined as 

the Schmidt number Sc. Beard and Pruppacher (1971) , give the following expressions 

for S C ' / ~ R ~ ' / ~  < 1.4, and 

fv = 0.78 + 0.308~c ' /~Re~/~ 

for SC'/~IL~'/' > 1.4 Assuming Sc = 0.71 (as did Beard and Pruppacher, 1971) we get 

1.00 + 0.086Re f o r  Re < 2.5 
f v =  { 0.78+0.275~e'/~ f o r  Re>  2.5 

The ventilation coefficients of ice are poorly known. For several years we were using the formula 

given by 

fv = 1.0 + 0.297Re1i2. 

Cotton et al. (1982) defined the ventilation coefficient as 

This formulation of the ventilation c d c i e n t  is used for both the water and ice phase, and is still 

used in CSU-RAMS. 

A distribution mean value for the ventilation coeflicient may be obtained by multiplying (4.49) by 

the distribution function and integrating over the size spectrum. If we assume that the Schmidt 

number Sc is a constant, as in (4.52), (4.53) or (4.54), the Reynolds number as given in (4.11) and 

the terminal velocity of the form of (4.10), we get the general formulation of 



4.7 Surface temperature of hydrometeors 

If a basic assumption in a model is that the supersaturation with respect to water will remain zero, 

then it has to be assumed that the excess vapor, not consumed by vapor deposition on all the other 

categories, have to go to the cloud water category. The total amount of excess water, assuming 

moist adiabatic ascent, was given by Tripoli and Cotton (1980) : 

This equation will give the total amount of excess vapor, the vapor consumed by the other categories 

will then be subtracted from this amount. 

4.7 Surface temperature of hydrometeors 

Under the assumption that each hydrometeor is in thermal equilibrium such that the rate of heat 

released by vapor deposition and fkeezing is balanced by the rate of diffusion of heat fkom the 

particle surface, an evaluation of the surface temperature of the particle surface can be made. 

leads to an expression of the surface temperature as a function of the rate of vapor deposition and 

riming 

where the subscript VD refers to vapor deposition and CL refers to collection. 

4.8 Coagulation: collision and coalescence 

In this section we will look at the collection growth processes, where water categories grow by the 

collection of other water categories. The different water categories may be distributed according 

to different probability density functions. 

The average number of particles with diameters between Dx + dDx collected per unit time by a 

single droplet D, is given by 
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where E(x,y) is collision efficiency of water class x colliding with water class y. The mass increase 

of the particle D, is then given by (4.58) multiplied by the mass mx(Dx). Integrating over all 

particles in class x gives the average mass change of single particle of diameter D,. 

Finally, taking into account that class y is a collection of different sized particles, we get the mixing 

ratio change of class y due to collection with class x 

CLw = " p04 1- o lw ~ X ( S ) ( D ~  + D,)? v ( ~ )  - ( D )  nx(Dx)~(D,)E(z ,  y)dDxd~,. 

(4.60) 

where CLw refers to the collection of category x by category y. The absolute value of difference 

in terminal velocities in (4.60) makes the integration cumbersome and several approximations have 

been proposed in the past. In this section four different methods of evaluating (4.60) will be 

discussed. In all the methods it is assumed that an average value for the collection efficiency exits 

and is known. 

4.8.1 The continuous growth equation 

In this section we consider the collection process whereby small cloud particles are collected by 

other particles. The assumptions made are that the terminal velocity of the small cloud particles 

(x) is small in comparison with the typical terminal velocity of class of larger particles (y), as well 

as that the diameter of the smaller particle may be neglected in comparison with that of the larger 

particle. The change in mass of a single particle is then given by 

where is a cloud particle mixing ratio. Using this solution we can write a approximation for 

(4.60) as 
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This approximation will only be valid for large particles collecting small particles. All the following 

approximations are valid for similar sized particles collecting each other. 

4.8.2 Mean droplet terminal velocity 

In this approximation we assume that the terminal velocity difference 1 v,(D,) - vy (Dy)  1 can be 

replaced by the constant value v,(D,) - vy(Dnu) 1. We can then write (4.60) as 

1 n - 
CL,, --Av,,E(x,y)I 

Po4 

where 

and GXy is 

The integral I can easily be evaluated analytically following the procedures discussed in previous 

parts of this document. Assuming a mass-diameter relationship of the form of (4.3) we get after 

some simple algebra 

I = NtxNtym= (Dm)Cw 

where the constant C, is given by 

The functions F, and Fv depend on the distribution and are summarized in Table 2. Combining 

(4.63) and (4.66) we get 



Weighted root mean square (RMS) terminal velocity 

Again we assume that the velocity difference can be replaced by a constant value Avw. The 

mathematical formulation of the solution will thus remain the same as (4.63). But this time we 

define the velocity difference in the following manner 

where I,, is defined by 

Notice that the integral I in the numerator of (4.69) is given by (4.64). Thus, the weighting function 

is defined by 

ww = mx(Dx)(Dx + D ~ ) ~ ~ ~ ( D ~ ) ~ ~ ( D ~ ) .  

After some algebra we obtain as a solution for I, the following expression 

where Cl, C2 and C3 are coefficients which can be written in vector notation as 

The 3 x 3 matrix F of coefficients is given by 

and the 3 x 1 column vector D is defined by 
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D = ( X X ,  ~D-D,, D:=)~ 

Finally, if we define another 1 x 3 row vector V 

v = [ ~ ( D w ) ,  -2v . (~h)q , (~ , ) ,v : (~- ) ]  , 

then we can write CL, in a concise way as 

4.8.4 The analytical solution 

In this section we find the analytical solution to (4.60). Assuming that the terminal velocity can be 

represented in the form of (4.10) for both the categories, we notice that vx(Dx) - v,(D,) I changes 

sign when 

c"xDpD = + D p  

and by simple manipulation of (4.79) we get 

where 

=vE Pvz 
f w = - , p q f = -  (4.81) c.v p.ar 

By doing partwise integration with respect to y such that the velocity difference has the same sign 

over each part, we can write 



The integrals J1 and J2 are given by 

Integrating (4.84) we get 

In this equation the form of the function G1 is summarized in Table 3. The integral (4.85) has 

the same form as (4.86) but with G1 replaced by Gz. The functions G1 and G2 are expressed in 

terms of the incomplete gamma functions, and are dependent on D,. The integral (4.83) is thus 

not trivial to solve, but it can be done, at least numerically, as is shown in appendix D. 

4.8.5 Coalescence efficiency 

Another important parameter to be considered in the coagulation growth equation, is'the collection 

efficiency E. The collection efficiency contains two principle components; one the hydrodynamic 

efficiency or the probability of collision and secondly the coalescence efficiency or the probability 

that two colliding particles will stick. 

It is common in bulk microphysical models to set the collection efficiency for cloud droplets or 

raindrops, to any other category, to 1. It is also generally assumed that the collision efficiency is 1 

for all categories. The coalescence efficiency for ice-ice interactions are difficult to treat theoretically, 

and generally are parameterized from observational or laboratory studies. The results of these 

studies are somewhat confusing since the experiments reported by Hallgren and Hosler (1960) , and 

Hosler and Hallgren (1960) showed a clear temperature dependence. On the other hand, Latham 

and Saunders (1971) , found no such temperature dependence in their laboratory experiments. 

It has been suggested by Cotton et al. (1986) that the delicately branched dendrites yields the 



Melting of ice particles 43 

highest coalescence efficiencies. Passarelli and Srivastav (1979) inferred from aircraft observations 

a coalescence efficiency of 140% for large ice crystals or aggregates in the temperature range -12°C 

to -15OC. 

Cotton et al. (1986) , approximate Hdgren and Hosler's results with a temperature dependent 

coalescence efficiency formula: 

where T represents the surface temperature of the ice crystal, graupel or aggregate. In this for- 

mulation the maximum value for the coalescence efficiency will be 20%. For aggregates collecting 

crystals, they assumed that the aggregate temperature determines the efficiency, while for graupel 

collecting aggregates they assumed that the warmer of the two determines the efficiency. However, 

in the temperature range -12OC to -15OC the collection efficiency is set to 140% to conform to 

Passarelli and Srivastava (1979) . 

Melting of ice particles 

The heat balance at the surface of an ice particle falling through a cloudy atmosphere growing 

through vapor deposition and riming of cloud water (and rain water - only for aggregates and 

graupel), is given by Cotton et al. (1986) : 

where Tf is the fieezing temperature 273.16 K. For snow the (drn/dt)rn term should be neglected, 

since snow will not collect rain. 

Now, in a large model, the vapor depositional growth may be calculated before melting is considered. 

This knowledge may be used in the following manner (Tripoli, personal communication). If the 

estimate of the latent heat released due to vapor deposition is taken from the previous calculated 

rate which was calculated at  the environment temperature, then an additional term should be 

included in the sensible heat transfer term to bring the vapor deposition estimate to Tf. The 

resultant heat balance equation will then be 
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where again for categories that do not collect rain the (%)a term needs to be neglected. 

One more process needs to be considered, and that is the process through which cloud particles 

grow, through self-collection or diffusional growth, into a precipitation category. 

4.10.1 Cloud droplets to raindrops 

It used to be considered that the most important ingredient for self-broadening of the cloud droplet 

spectrum is the initial droplet spectrum as well as the liquid water content and time available 

for collection. Recent studies have suggested that turbulent inhomogeneous mixing, or ultra giant 

aerosols are important to self-broadening. These theories are however themselves still in a turbulent 

stage, with the basic processes not well understood. Therefore most parameterizations are still 

based on the work of Berry and Reinhardt (1974a,b,c,d) ,b,c,d, or Kessler (1969) . 
Manton and Cotton (1977) , suggested a scheme for the auto-conversion of cloud droplets to rain 

based on a threshold average diameter in the droplet distribution. They suggested that this pa- 

rameterization was an improvement on the Kessler (1969) , parameterization of the same process. 

This was expressed in the form 

where f, represents the mean collision frequency for cloud droplets which become raindrops after 

colliding, h(x) is the Heaviside unit step-function and r ,  is the minimum cloud water mixing ratio 

below which there is no conversion. There is a minimum diameter corresponding to this minimum 

cloud water mixing ratio. They estimated the mean collision frequency as 



where Dc is the mean cloud droplet diameter, Ec is the collection efficiency for this process, and vc 

is the termind velocity of the cloud droplets, given by Stokes Law (4.18). The collision efficiency 

for droplets as discussed by Scott and Chen (1970) , yields an average value of E, = 0.55. 

An alternative procedure to simulate the complete warm rain process was discussed by Clark and 

Hall (1983) , but this work was never completed. Ziegler (1985) , developed yet another parameteri- 

zation, including auto-conversion of cloud to rain, accretion of cloud by rain, and large hydrometeor 

self-collection and break-up. His parameterization was based on gamma distributed cloud and rain 

populations, and he predicted the mixing ratio and concentration tendencies independently from 

each other. 

4.10.2 Ice crystals to  aggregates 

The process is even less well understood. A parameterization suggested by Cotton et al. (1986) 

will be discussed. A simple model for the conversion rate was derived by considering the rate of 

collection amongst a homogeneous population of ice crystals which is given by 

where N; represents the concentration of pristine crystals and K; is the collection kernel. 

conversion rate of ice crystal mixing ratio to aggregates due to self-collection is then given by 

51 =K;N;vi 
dt aos 

To obtain an estimate for Ki they adapted the Passarelli and Srivastava (1979) , stochastic collection 

kernel model which estimates K; based on a distribution of particle densities for equal-sized crystals. 

This gives 

where X is proportional to the variance in particle fall speed. PassareE and Sriwstava (1979) , 
gave a best estimate of X = 0.25. Cotton et al. (1986) , suggest that this be adjusted for different 

cases to calibrate K; for specific cases. 
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This parameterization differs from the Lin et al. (1983) , parameterization in that theirs is based 

on the Kessler (1969) , warm rain parameterization. In that case the conversion rate is a linear 

function of the mixing ratio of ice crystals and a rate parameter which varied with temperature 

to simulate variations in collection efficiency such as discussed in the above section on collection 

efficiency. In the Cotton et al. (1986) , aggregation parameterization, the conversion rate also 

varies linearly with the mixing ratio of the ice crystals, but it also depend on N; and K;. As a 

result the conversion rate exhibits a strongly non-linear dependence on the characteristics of the 

ice crystal population, and particularly the concentration of ice crystals. 



Part I11 

DOCUMENTATION OF THE RAMS 
MICROPHYSICAL 
PARAMETERIZATION SCHEME 

5 Introduction 

The Colorado State University Regional Atmospheric cloud Modeling System bulk microphysical 

parameterization will be discussed based on the equations and ideas developed in the previous 

sections. The concepts and parameterization were developed in a very general sense, now the 

specific schemes will be presented as they have been implemented in the model code. The model is 

still in the process of development so that the purpose of this description is to provide a basis from 

which the continued work may proceed. This description is valid for the code as its was in early 

1989. 

The basic philosophy behind the development of the code was to have the flexibility to change 

formulation of the parameterization scheme of the model for different applications. Historically 

the number of categories of hydrometeors and the size-distribution of the hydrometeors assumed 

in a model vary from investigator to investigator. It seems that there is an almost infinite set of 

coml~inations of particle size distributions, particle size distribution parameters, and hydrometeor 

types that can be formulated in a cloud model. With the mathematical considerations presented 

in Part 1 of this document, a generalized bulk microphysics parameterization capable of meeting 

this challenge of greater flexibility can be developed. 

The current version of the model has as its primary prognostic microphysical variables the mixing 

ratios of rain, pristine ice, snow, aggregates and graupel/hail. The number concentration of pristine 

ice crystals is also predicted while the prediction of the concentrations for the other species is only 

partially implemented. The mixing ratio of water vapor and cloud droplets is diagnosed. At this 

stagt: the generalized distribution function approach has not been fully implemented yet. In general, 

the cloud droplet size distribution is not specified although it is assumed it is distributed in a gamma 

distribution in order to predict secondary ice crystal production. Ice crystals are assumed to be 

monodispersed, while all the other categories are distributed according to the inverse exponential 
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distribution function. There is some flexibilit$ ih the scheme, with cloud droplets the only required 

hydrometeor class, whereas the rest are all optional. The investigator has the further option of 
I 

deciding on how the various parameters of thd distributions are to be treated by the model. Either 

the slope or the intercept of the inverse exponential distribution function may be held constant, 

while the other is predicted, or both may be predicted independently. The parameter held constant 

by the investigator needs to be specified. No hydrometeor class is dependent on any other class 

for its existence, nor on the assumed distribution of any other class, or the selected option of the 

distribution parameter. This leaves the investigator with a large degree of flexibility in selecting 

a microphysics parameterization that is optimized for the specific application in mind, such as a 

regional-scale numerical study versus a s m d  continental cumulus simulation. 

Even though the mixing ratios of water vapor and cloud droplets are diagnosed by the model, they 

are treated in the microphysics package together with the other categories. This was necessary to 

compute the interaction of these two categories with all the others. How the mixing ratios for these 

two categories are derived, will be discussed in the next part of the paper. 

The software engineering aspects of the model will be ignored in this discussion, instead only 

consideration of the physics will be given. The general flow of the model will be retained, with 

reference to the specific subroutines where the various physical processes are treated. 

All processes in the model, and all constants, are given in cgs-units, thus all lengths are in centime- 

ters, all weights are in grams and time is given in seconds. All derived units are also in these basic 

units. 

6 Bulk microphysical parameterization 

6.1 The narnelist input 

In the current formulation of the model, the user has several options that may be set in the input 

namelist. These options include what water categories are activated, as well as specifying what 

variables are predicted (ie mixing ratio and/or concentration). The user further has to specify the 

number of cloud droplets per unit volume that is to be used in simulation (CON) and the minimum 

crystal mass (AMIO). Currently all the distributions for the various categories are fixed, in RAMS 

as either constant or exponential distributions. The cloud droplet category is always activated 

whenever the microphysics are activated, as is the vapor category. The user has the option whether 
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to activate the rain, pristine ice crystals, snow, aggregates and graupel categories. The model wiU 

function with any number of the categories activated, whether or not it is physically realistic has 

to be decided by the user. The current assumed distributions are: unspecified for cloud droplets, 

monodisperse for the pristine ice distribution, and exponential for the rain, snow, aggregate and 

graupel distributions. The user may also specify what parameters of the distribution are to be 

predicted, diagnosed or held constant. With the exponential distribution there are two degrees of 

freedom and the current formulation allows several ways this may be determined. The user may 

choose between: 

1. Mixing ratio predicted, while the distribution parameters are diagnosed from default mean 

diameters. These values are given in table 6. 

2. Mixing ratio predicted, and the investigator has to specify the mean diameter of the distri- 

bution. The total concentration will then be diagnosed. 

3. Mixing ratio predicted, and the investigator has to specify the intercept. The mean diameter 

and total concentration of the distribution will then be diagnosed. 

4. Mixing ratio predicted, and the investigator has to specify the total concentration. The mean 

diameter will then be diagnosed. 

5. Mixing ratio and concentration predicted, mean diameter diagnosed. 

These options are set by the five variables (NELCNFL), (NIPCNFL), (NISCNFL), (NIACNFL) and 

(NIGCNFL). Depending on the option specified here, the user has to give a value for the parameter 

that is held constant (if any). These values have to be specified in cgs units. Once again, it is up to 

the user to determine whether these values are physically plausible, although the model does have 

certain bounds on the parameters, it will default without giving warning messages. Some caution 

about concentration predictions should be given. Only the pristine ice concentration prediction has 

been tested, the concentration prediction for the other categories has been implemented, but has 

not yet been thoroughly tested. 
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6.2 The driver 

The driver subroutine (MICPWS) is the m u h e  called fkom the dynamical model. The code was 

developed in such a way that the microphysics package may be called fkom any dynamics package. 

This requires that all the model variables need to be passed to the microphysics package, which 

will then calculate the microphysical tendencies due to interaction between the various hydrom- 

eteor categories, i.e. the source/sink terms in the continuity equations for the water substance 

included in the model. The total concentration and mixing ratio tendencies for all the categories 

of hydrometeors are then passed back to the dynamical model. 

The model variables needed by the microphysics package are: The water vapor mixing ratio, the 

ambient dry air density, pressure, temperature, local vertical temperature gradient and the vertical 

motion of the air at each grid point where microphysical calculations are to be performed. The 

microphysical variables required from the dynamic model are the total concentration and mixing 

ratio for all the user specified categories. The user specified options for the prognostic distribution 

parameters are also passed, as well as the user specified constants. Currently the only user specified 

constant is the minimum mass that any ice crystal may have. It is envisioned that this will be 

increased. Finally, some engineering variables are also passed. 

The flow through this routine is simple. First, aJl the physical parameters needed are calculated 

(SOMTHNGS). Then a call is issued to a routine that builds a standard set of descriptive parameters 

for each category (DIAGNOSE), which contains information about the distribution type, the habit, 

the name and the functional dependence of mass, density and terminal velocity on diameter. These 

fist two routines set up required physical variables and customized arrays based on user-specified 

options for the microphysics for use in the following general routines. 

Next, the routine for calculating all the microphysical tendensies is called (MTEND). Since all 

the calculations are performed independently of each other and are summed afterwards, at; times 

more than what is available in a category may be consumed. These processes are not necessarily 

independent, and there is no clear indication as to which processes will be preferred over. other 

processes, or how they may non-linearly interact. Based on the above, another routine (MDLTEND) 

is called which adjusts the tendencies such that all categories will remain positive definite at each 

grid point. After these corrections have been made, control is passed back to the dynamic model. 
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6.3 Physical parameters 

It tkis section, the steps followed in routine (SOMTHNGS) will be followed through. This routine is 

just a driver routine which calls several other routines. Various quantities that are used throughout 

the microphysics package are calculated in this routine. 

First, the Heaviside step function for temperature dependence is calculated (HEAVSTEP). 

function is used to discriminate between above and below freezing ambient temperatures. 

function is very simple, it is simply set to 1 if the temperature is less that O°C, and 0 otherwise. 

Then the saturation value over water and ice is calculated for all the grid points in the micre 

physics vector. This is accomplished through calls to the subroutines (QSPCGS), (ICESAT) and 

(WATSAT). The routine (QSPCGS) calculates the saturation vapor pressure over water and ice, 

following the procedure outline by Derickson and Cotton (1977) . Once the saturation vapor 

pressure is known, the saturation mixing ratio (the model variable is mixing ratio) can easily be 

calcillated using the formula 

where r is the mixing ratio, p the pressure, e the vapor pressure and E: = 0.622. When the 

teml~erature is above O°C, the saturation mixing ratio with respect to ice is taken as the value with 

resp,ect to water. 

The dynamic viscosity, thermal conductivity and the vapor difisivity are next calculated by c d s  

to the routines (XDVISC), (XXK) and (XDFV). The dynamic viscosity is calculated according to 

where T is the temperature in OK, po is the dynamic viscosity at a temperature To, and C is a 

constant (C = 120K). At TO = 273 OK, po = 1.718 poise. The thermal conductivity and the vapor 

diffusivity are calculated by interpolation of the List (1968) , data. These values are valid for a 

teml~erature range for -40°C to 40°C. The correction for reduced pressure required for the vapor 

diffusivity calculation is not added in the (XDFV) routine, but is rather included in the following 

call to (XGTPD). 

The term G(T,p) in the vapor deposition growth equation is calculated next with the call to 

(XGTPD). This term is defined by (4.47) in part 2 of this document. The pressure correction for 
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Table 5: The FUNFO array as it is currently inplemented in the model. The distribution can only 
be a constant distribution or an inverse exponential distribution (IE). The predition option indicate 
whether the investigator has an option of prediction parameter (see text). Allowable habits are 
only spherical or hexigonal. 

the vapor diffusivity is done in this routine. The term is calculated for both the liquid and the ice 

vapor deposition modes at each grid point. 

Finally, a call is made to a routine that sets a look-up table that is used for the integration of 

the distributions. Currently in RAMS only calculations for the exponential distribution function 

is tabulated. 

6.4 Distribution diagnostics 

This is the second call from the driver subroutine. The first call calculated some of the physical 

values needed for the microphysics calculations, this routine will now translate the model variables 

into distribution parameters, since the microphysics is prognosed for the distribution parameters. 

Once again this routine is just a driver routine calling a series of subroutines, one for each water 

category. 

The characteristic diameter and the total concentration for each category is diagnosed from the 

mixing ratio and the concentration [(DLANo), (DIANT) and (NTDIA)]. These routines utilize 

equations (4.24) and (4.25) to diagnose either the diameter from a concentration value [(DIANO) and 

(DIANT)] or the total number concentration from a given diameter. For the constant distributions 

the number concentration will be specified, and the mean diameter diagnosed. Thus, the cloud 

water category may have a different diameter at each grid. 

The various distribution characteristics for the different categories are also set in this routine. 

The information array for each category is built in this section. This array contain the following 
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Table 6: Default values set in the model with the user prediction option 1. 

information: the name of the category, the phase, the distribution type, the parameter prediction 

flag, the habit of the category, and the constants and power values of the mass and terminal velocity 

power relationships. Table 5 gives a summary of how the variables currently are set in the model. 

The prediction option "user" refers to the distribution flag set by the user in the namelist. 

The model provides for three size classes in the pristine category: smd,  medium and large. These 

size classes differ in mass-diameter relationships, depicted in Table 5. The decision on what mass- 

diameter relationship will be used in the calculation of the density and mean diameter is made by 

calculating the mass of a single ice crystal and then use mass criteria of 10-7g and as the 

two (%vision values. 

All the ice categories have limitations on the mean diameter of the distribution. When the distribu- 

tion obtains a mean diameter out of bounds, it is set at the bound and the number concentration is 

recalculated. These bounds are given in Table 7. The investigator has some control over the lower 

bound, in that the variable PMAS is a option that needs to be declared in the input namelist. The 

upper bound was derived by Cotton et al. (1986) , from the Rogers (1973) , data, and it implies 

that a breakup mechanism is able to maintain a constant slope in the inverse exponential distribu- 

tion. The user has to carefully consider this if he decides to predict the number concentration of 

that category as well. 

The mass-weighted distribution mean value of the vertical velocity is calculated in a call to (CALVT). 

The equations used in this routine were developed in Sections 4.1.3 and 4.2 in part 11 of this doc- 

ument. The various constants in the equations are defined in Table 8. The variables are defined 

as follows, PI, pa and a1 are the coefficients of density, terminal velocity and mass respectively, 

while Po, f iT  and PM are the powers of the density, termind velocity and mass respectively of 
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Table 7: Density and mean diameter bounds employed in the model. 

Graupel 

Table 8: Summation of the power law relationships used in the calculation of the terminal velocity 
for the various categories. The variable CNST is defined in the text. 
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the diameter power law (see Section 4.1). The coefficients for spherical categories are derived in 

(4.13) and (4.18). The variable CNST is defined by 

4 pgPl ' I2 CNST = (--) 
3 P ~ C D  

The constant drag coefficient used for the bigger spherical categories are also included in this table. 

Based on (4.23) the vertical velocity of a particle of characteristic diameter (mean diameter for 

the inverse exponential distribution) is calculated first, and then multiplied by the functional form 

which is dependent only on the power values of mass and terminal velocity. 

A distribution value for the ventilation coefficient is also calculated in a c d  to (VENT). 

calc~dation is based on the definition of the ventilation coefficient given by Cotton et al. (1982) as 

in (4.54), and the formulation of (4.55) is used for the calculation of the distribution mean value. 

Finally, a surface temperature value and the surface saturation mixing ratios are calculated in 

(CALTRX). For water substance the surface temperature is assumed to be the environmental 

temperature, while for ice substance the calculation for the surface temperature is based on (4.57). 

The rate of growth due to riming is calculated in a preliminary way in this routine by assuming that 

the terrninal velocity and the diameter of the cloud droplets are negligible compared to the collector, 

and that the coalescence efficiency is 1. Based on this calculated temperature the surface saturation 

mixing ratio is then calculated by calls to (WATSAT) or (ICESAT), which were discussed earlier. 

The temperature is a function of the saturation value, which again is a function of the temperature, 

thus this needs to be an iterative process. For expediency this iterative process is only executed 

twice. 

This brings us to the conclusion of the diagnosis routine. This information is used to define the 

"R"-array in the model that is defined for all the categories. This m a y  contains the following 

information about each category: 

1. The mixing ratio (g/g) 

2. The total concentration (#/cm3) 

3. The distribution mass-weighted mean velocity (cm/s) 

4. The distribution characteristic diameter (cm) 
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5. The average particle density (g/cm3) 

6. The distribution mean ventilation coefficient 

7. The surface temperature of the partide 

8. The saturation mixing ratio at the surface of the particle 

The information in the arrays "RINFO" and the "R" arrays is all the required information needed 

for the calculations of the conversion tendencies. 

6.5 Conversions between categories 

Now the call to (MTEND) will be followed. As the other routines called from (MICPHYS), this 

routine is just another driver routine that calls a variety of routines based on certain conditions. 

This routine calculates the tendencies of mixing ratios and concentration for all the categories of 

condensate interacting with each other and the vapor category. This routine calculates the ten- 

dencies due to five conversion processes: collection (CALCLXY), vapor deposition [(CALVDVCL) 

and (CALVCVX)], melting (CALMLXR) and ice crystal production (CALSDVI), (CALPHVI) and 

(CALSPVI) based on a call to (SUPSATL), which calculates an accurate value for the local super- 

saturation. The total tendency for each category is then calculated by a linear summation of all 

the calculated tendencies in (CALCNVSN). Finally a check of the tendencies is made in (REPAIR) 

to make sure that all categories will remain positive d a t e  when these tendencies are applied over 

one time step. 

6.5.1 Collection 

The collection tendencies are calculated for each category in (CALCLXY). This is accomplished 

by calculation of rate of collection of each category by all the others, i.e. the collection of A 

by B, as well as the collection of B by A will be calculated. This will result in a tendency for 

both the mixing as well as the concentration. The equations were developed in section 4.8, with 

the general equation for the mixing ratio tendency given by (4.60). The weighted RMS terminal 

velocity method as described in section 4.8.3 was used to solve for the integral. Currently the code 

is constructed in such a way that only interactions between either two constant distributions, a 

constant and an inverse exponential distribution or between two inverse exponential distributions 



6.5 Conversions between categories 57 

can be considered. The code does not reflect the general formulation of (4.78), but does accomplish 

the :;ame in a more laborious way. The various terms of the solution is determined in (CALCLXY), 

(CALAVXVY) and (EFFAB). The last two routines calculate the RMS terminal velocity difference 

[(CALAVXVY)] and the average collection efficiency [(EFFAB)]. 

The matrix F is calculated only for the f ist  pass through (CALCLXY) since it is only dependent 

on t.he power of the mass-diameter and tenninal velocity-diameter relationships, which are set in 

the model. The average collection efficiency is then calculated. This is done in routine (EFFAB). 

Results reported by Slinn and Hales (1971) , is used to make an approximation for the collision 

efficiency at  the smaller end of the spectrum. An efficiency of 0.0 is assumed for particles with 

diameter less that 0.1 pm, and 1.0 for particles with diameter greater that 2.0 pm, while a Linear 

interpolation between the two extremes are used for the range in between. Slim and Hales (1971) 

, reported these values for aerosol scavenging, though it is applied to cloud substance for this 

application. 

The coalescence efficiency is calculated in (CALTRX). Where either category is liquid, or if the 

surface temperature of any ice substance is greater that freezing, it is 1.0. The remainder of the 

discussion is applicable only if both the categories are ice. For graupel collecting graupel the 

coalescence efficiency is given by (4.87), which has a upper limit of 20%, irrespective of the surface 

temperature. Graupel colliding with other ice categories will have the same efficiency as above, 

provided that the surface temperature of both categories are below O°C, otherwise it will be 1. 

For the snow or pristine categories collecting either the snow or pristine category, coalescence 

efficiencies are based part on interpretations of observations, and part on very loose arguments. 

Passarelli and Srivastava (1979) , inferred fiom observations coalescence efficiencies of 140% in the 

temperature range - 11.5OC to - 15.5OC in water saturated environments where the dendritic habit 

dominates. Thus, under these conditions, the coalescence efficiency is set to 1.4. In other cloud 

conditions, the maximum of the (4.87) value and the linear interpolation between a maximum value 

of 1.4 at the maximum cut-off diameter and 0.0 at the minimum cut-off diameter is assumed. In 

other words, The value given by (4.87) will be the minimum, but for bigger mean diameters the 

efficiency may be considerably higher. When aggregates collide with pristine, snow or aggregates, 

the collection efficiency is set to 0.3. 
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The weighted RMS velocity difference is then calculated in (CALAVXVY), and then finally the 

collection tendency is calculated in the calling routine (CALCLXY) according to (4.78). 

6.5.2 Vapor deposition 

Vapor deposition is calculated for each category. First, the amount of available vapor, based on 

movement along a moist adiabat, is calculated in (CALVDVCL). This calculation is based on (4.56) 

in Section 4.6. There is a section added in this subroutine which allows for an option of concentration 

prediction of cloud droplets which is not an option in the model and is therefore dead code. Then 

there is a section that will reduce the vapor deposition tendency for cloud water with the amount 

consumed by other processes. The total amount of vapor available for vapor depositional growth 

of the non-cloud water categories is the excess water vapor with respect to saturated movement 

along a moist adiabat, as well as the total amount of liquid water in the cloud water category at 

the beginning of the time step. It is assumed that the cloud water will evaporate to provide the 

necessary vapor if required. This is even valid for vapor depositional growth of rain, which is also 

collected, although it should be a miniscule number. In the evaporation case, ie. subsaturation, 

rain and ice may evaporate. If the model produces more evaporation than the saturation mixing 

ratio then cloud water will be created. 

Routine (CALVDVX) then calculate the vapor depositional growth/evaporation of all the other 

categories based on (4.48). A check is performed to ensure that no more than half of the available 

mixing ratio of each category may be evaporated during one time step, or that any category may 

consume more than half the available vapor. If the concentration is forecasted independently, then 

in the case of evaporation, this will probably lead to a reduction of the number concentration. For 

growing particles, no change in the number concentration may be expected. 

Smaller particles in the distribution would tend to completely evaporate first. Therefore it is 

assumed that the calculated mass tendency is applied solely to the small particles. The percentage 

of the total mixing ratio consumed in one time step by evaporation in the category is calculated. 

The number concentration tendency is then calculated based on the same percentage reduction of 

the number concentration over one time step. 
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6.5.3 Melting 

The next process that is considered is melting. The melting is currently being calculated according 

to (4.89). The melting routine (CALMLXR) is only executed for the ice categories with mixing 

ratio greater than zero and a surface temperature exactly equal to 273.16 K. This calculation 

is ptdormed in the model by using the previously calculated collection, vapor deposition and 

ventilation coefficient. If the melting tendency calculated is negative, then freezing will take place. 

If the total water substance collected is more than the amount that can be frozen in a time step, 

then the excess which cannot be frozen, will be shed as rainwater. If the melting tendency calculated 

is positive, then melting takes place at this rate. It is possible in the model for melting to take 

place at sub-zero ambient temperatures. This is not realistic, however, and if it occurs probably 

reflects errors in the calculated thermodynamic budget of the ice particle. 

The prediction of the number tendency is made following the same argument that was used for the 

evaporating case. It is assumed that the calculated mass tendency comes from the smaller particles, 

and that the larger particles remain unaffected. The percentage of the total mixing ratio consumed 

in one time step by melting in the category is calculated. The number concentration tendency is 

then calculated based on the same percentage reduction of the number concentration over one time 

step. 

6.5.4 Nucleation 

The nucleation of cloud water is not explicitly considered in the model, but rather, the user is 

allowed the option to prescribe the number concentration of cloud droplets. If not specified, then 

the number will default according to Table 6. 

Ice n.ucleation however is explicitly calculated based on the discussion for ice nucleation in Sec- 

tion 4.5 in Part 11. Three processes for ice nucleation are considered: sorption/deposition nucle- 

ation., phoretic contact nucleation and splintering production (secondary ice production). These 

procc:sses will only be considered in the model if either of or both the pristine ice or snow categories 

in the model is activated. 

At this point accurate computations of the vapor depositional growth rates of the cloud water have 

been made. This is used to re-compute the local supersaturation and the cloud droplet temperature 
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(SUPSATL). If the air is saturated and cloud water exists, then the dihional  growth equation 

(4.46) is solved for (S - I), while, if the air is sub-saturated, the sub-saturation is calculated from 

The surface temperature is then recalculated based on (4.57) where for the cloud category (dm/dt)c~ 

is zero. Finally, based on this temperature, the final saturation mixing ratio over the droplet is 

calculated. 

In all the routines it is assumed that the nucleated ice will grow rapidly in the course of one time step 

to the user specified minimum ice crystal mass. The sorption/deposition nucleation is considered 

in (CALSDVI). If the number concentration is explicitly predicted (in other words, you 

must have either the pristine ice activated with option 5, or else the snow activated with option 

5 with the pristine ice not in the model), then a expected initial number concentration diagnosed 

from the Fletcher curve given by (4.28) is calculated. An upper bound of the concentration of 1 

is enforced on this value. The Fletcher curve value is then adjusted according to (4.29). In 

the current version the constant B has been reduced from 3.15 m-3 as used in Cotton et al. (1986) 

, to 1 m-3. The constants b = 4.5 and a = 0.6 remain the same. Another limit is placed on the 

number that can be nucleated, namely that this process may not consume more that 50% of the 

available water vapor. Now that the number tendency is known, the mixing ratio tendency follows 

from the assumption that all the crystals grow to the minimum crystal mass in one time step. For 

the more common case where only the mixing ratio tendency is forecast, the mixing ratio 

tendency is calculated from 

where w is the local vertical velocity, (dT/dz) is the local environment temperature gradient and 

w h  is the minimum ice crystal mass as specified by the user in the input namelist. 

Phoretic contact nucleation is considered in (CALPHVI). This process can only operate when 

there is a coexistence of supercooled cloud water (Tc < 270.16 K) and ice, which, in the model, 

is rare. This routine is derived from Young (1974a) and applied by Cotton et al. (1986) . The 

equations are reproduced in this document in (4.31 to 4.38). The routine opens with a call to 
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(AERSTUFF), which ealdates the Knudsen n d h  according to (4.37), the number of active 

contact nuclei according to (4.38) and the aerosol difdsibity according to (4.39). In these equations 

Nao = 2 x lo-' and & = 3 x lo-'. The aerosol dhennd conductivity is also assigned in this 

routine, it is given the constant value of 5.39 x lo4/ The contact nucleation is then calculated 

in (CALPHVI) based on (4.31) to (4.36). The sum h ihe Brownian, the thermophoretic and the 

diffusiophoretic diffusion tendencies are then calculated. This is restricted to be a positive definite 

number, and similar to the sorption tendency, it is ndt allowed to consume more than 50% of the 

available vapor over the time step. Again, these crystals are assumed to grow to the minimum 

crystal size within one time step. 

Fially, secondary ice production will be considered. This is calculated in (CALSPVI), a routine 

which will be called for all the ice categories with the exclusion of the pristine ice category. The 

calculations are based on (4.40 to 4.45), in other words, both processes are included. For a more 

detailed explanation and derivation of the equations, see Cotton et al. (1986) , equations (71) 

through (82). Note that currently the approximation for the function nz (f3 in Cotton et a'., 1986) 

is no longer used, but the integral is analytically evaluated. The dispersion y, in the code is now 

set at 1 instead of 0.18 as in the paper, which makes the assumed cloud droplet distribution an 

exponential distribution. Similar to the previous nucleation processes, the crystals are assumed to 

grow by vapor deposition to the minimum crystal mass within one time step. The same restriction 

that this process may not consume more that 50% of the available vapor also applies here. 

6.5.5 Conversions actually applied 

At this stage in the model, most of the basic interactions have been calculated, and we are almost 

in the position to determine the final conversions amongst the categories. This is accomplished 

through a double loop over all the microphysical categories, calculating sources and sinks for each 

category through repeated calls to (CALCNVSN). 

The basic idea in this routine is to go to each category and look at it as a source. Then a loop 

is run through d the other categories where they are treated as potential sinks, calculating the 

net conversion to each. Since the complete arrays of nucleation, deposition, melting and collection 

tendencies have already been calculated, this can be done. The only basic process still needed is the 



62 6 BULK MICROPRYSICAL PARAMETERIZATION 

auto-conversion routines. These processes are computed in routines (CALCNCR) and (CALCNIA). 

These routines are actually called from within the major double loop in (CALCNVSN), but it will 

be discussed here not to break the flow of the discussion of conversion processes later. 

The conversion of cloud to rain is the Manton and Cototn (1977) , parameterization discussed 

in section 4.10.1. The collection efficiency is defined as E, = 0.55 while the minimum diameter 

corresponding to the minimum mixing ratio is defined as Dm = 0.002 cm. This routine is only 

executed if the cloud mixing ratio is greater that zero, and the cloud droplet diameter at that grid 

is greater than Dm. 

The ice-autoconversion routine is called for the conversion of pristine ice to aggregates and for the 

conversion of snow to aggregates. The model parameterization is that discussed in section 4.10.2. 

The collection efficiency for autoconversion is calculated in a call to (EFFAB). The factor X in 

(4.94) is set to 0.25 in the code. 

I.. order that corrections to the tendencies for excessive transfers can be made at a later stage, 

it is required that the transfers be positive definite &om a source to a sink. All the interactions 

described in the following sections are summerised in Figure 6.5.5. The effect in the different 

categories are indicated in the boxes as (r) for changing the mixing ratio and (N) for changing the 

number concentration. Processes dependent on the inclusion/exclusion of another category are in 

brackets, with the category on which the process is dependent as a superscript outside the bracket. 

1. Vapor as a source 

To cloud: This occurs by condensation onto cloud droplets. This is done diagnostically 

based on movement along a moist adiabat. 

To rain: Although condensation on raindrops can be expected to be small, it is routinely 

calculated, since the effect of evaporation can be quite important to the simulation. This 

process will affect only the mixing ratio and not the concentration tendency of the rain 

drops. 

To pristine ice: Sublimation of vapor into the pristine ice category occurs both by nucle- 

ation and diffusional growth. Since the early growth of pristine ice crystals are fast, it is 

assumed that all the nucleated crystals grow within one time step to a minimum mass, 

which is specified by the user. All three the modeled nucleation processes are included. 
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In this setup both the mixing ratio and the number concentration are predicted due 

to the nucleation, vapor deposition does not lead to a increase in the number concen- 

tration. Although the diEusional growth of pristine ice is included here, if the snow 

category is turned on, the mixing ratio gain due to diffusional growth is converted 

into the snow category, such that the pristine category experience no growth except that 

included in the nucleation parameterization. This results into a fixed pristine ice mean 

size as specified by the user in the input namelist. 

To snow: If the pristine ice category is not included in the model formulation, then 

the nucleation of ice needs to be included in the snow category. In that case, this is 

handled identical to the above discussion. If the pristine ice category is included only 

diffusional growth is considered, which will only impact the mixing ratio and not the 

number concentration. 

To graupel: Similar to the diffusional growth of rain, this can be expected to be very 

small. It is included for completeness and because it is routinely calculated in case the 

more important evaporation is occurring. 

To aggregates: Similar to rain and graupel. 

2. Cloud as a source 

To vapor: This is the evaporation of cloud droplets. This can change both the number 

concentration and the mixing ratio of the cloud droplet population. However, since in 

the model the cloud droplet number concentration is a specified constant in the current 

formulation, in reality only the mixing ratio will be changed. With the constant number 

concentration this will of course lead to smaller and smaller droplets, which will all of a 

sudden disappear when the liquid water runs out. 

To rain. The direct conversion of cloud droplets to rain can occur by two mechanisms. 

First there is auteconversion by cloud droplets forming rain, the second mechanism for 

moving cloud droplets to rain is collection by rain. The autcxonversion is calculated in 

the routine (CALCNCR) which was discussed above. This will impact the mixing ratios 

and the number concentration of both categories. 
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To pristine ice: Although cloud droplets can convert directly to pristine ice crystals 

through contact nucleation, the mass transfer through this process is considered negli- 

gible in the model. Therefore, the only process considered in the model for this transfer 

is the collection of cloud droplets by pristine ice crystals (riming). This process does 

not affect the concentration of the pristine crystals, but it does that of the cloud droplet 

concentration. But, as with the vapor deposition on pristine ice, if the  snow category 

is turned on, the mixing ratio tendency is removed from the pristine ice category and 

included into the snow category, such that the pristine ice crystal mixing ratio can only 

increase through the nucleation of pristine ice. The conversion of pristine ice to graupel 

due to riming will be dealt with in the section of pristine ice to graupel. 

To snow: Once again only riming is considered. This can change the mixing ratio 

and concentration of the cloud droplets, and the only the mixing ratio of snow. The 

conversion of snow to graupel due to riming will be dealt with in the section of snow to 

graupel. 

To graupel: Riming again, mixing ratio and concentration change for cloud droplets, 

only mixing ratio for graupel. 

To aggregates: Riming again, with the same consequences. However, if sufficient riming 

occurs, then it will covert into graupel. All the three category conversions will be treated 

in their steps, thus this will be considered when we discuss the conversion of aggregates 

to graupel. 

3. Rain as a source 

To vapor: Rain is converted to vapor through evaporation (negative vapor deposition). 

This can lead to a concentration tendency for rain (if predicted), depending on whether 

the time step is long enough to completely evaporate a droplet (ie. a maximum drop size 

that can be evaporated totally over one timestep is calculated - then all drops smaller 

than that size will be removed from the distribution). This calculation is made in the 

vapor deposition parameterization. 

To cloud: This does not happen. 
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To rain: This happens when collected rain is shed by ice hydrometeors. This does not 

currently impact the rain category at all, it is only mentioned here to indicate that it 

can happen. 

To pristine: This does not happen. 

To snow: This does not happen. 

To graupel: This can happen in two ways, first by graupel collecting rain, secondly by 

contact freezing of the rain droplets. 

Graupel can grow through collection of rain through the dry- or the wet growth process 

at subfreezing temperatures, while rain collected by graupel at temperatures above freez- 

ing will just be returned (shed) to the rain category, as will the non-frozen water from 

the wet growth regime. However, at this stage, all rain collected by graupel is added to 

the graupel category, the shedding is handled when graupel is considered as a source, 

This process affects both the mixing ratio and number concentration (if predicted) of 

the rain category. 

The second way that rain may produce graupel is through contact freezing. This can 

happen in two ways. If rain collides will ice at warmer subfreezing temperatures and 

the ice is undergoing wet growth (as evidenced by a surface temperature of 273.16 

K, then some of the collected rain will fieeze and some will be shed off (which can 

change the size distribution of the rain). At cold temperatures, contact with i.ce will 

immediately cause fieezing. For simplicity it is assumed that droplets smaller than 

the ice particle will become rime on ice particles while droplets larger than the ice 

will freeze and become graupel. Fur this process only interactions with the remaining 

ice categories (pristine ice, snow and aggregates) are considered since the graupel was 

treated separately above. These collisions results in a reduction in mixing ratJo and 

concentration (if ~redicted) of both the rain and the ice category, while it produce an 

increase in the graupel concentration and mixing ratio. 

To aggregates: This does not happen. 

4. Pristine ice as a source. 
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To vapor: Pristine crystals convert to vapor when they evaporate. It is also assumed in 

the model that the melting of pristine ice also converts to vapor (see next point). 

To cloud: This might actually happen for small pristine ice crystals, but it is ignored 

in the model. It is assumed that the melting pristine ice converts to vapor, and if this 

leads to a supersaturation, that the cloud water mixing ratio will increase. 

To rain: It does not happen. It is assumed that the pristine ice is to small to melt into 

the rain category. 

To snow: Due to different options (as far as what categories are included) that can be 

set in the model, there are various options here. 

First, pristine ice can be collected by snow. This process will result in a mixing ratio 

and concentration tendency for the pristine ice, and only in a mixing ratio tendency for 

the snow. 

Then, if there is no aggregate category, the snow category has to function as the 

aggregate category. The collection of pristine ice by pristine ice (aggregation) which 

would normally end up in the aggregate category, then end up in the snow category. 

In this section it was chosen not to use the ice-autoconversion routine (CALCNIA), 

but rather the rates calculated in (CALCLXY) for pristine ice collecting pristine. This 

process will result in mixing ratio and number concentration (if predicted) for both the 

snow and the pristine ice categories. 

Now, when both the pristine ice and the snow category is turned on, then the pristine 

ice category is not allowed to grow by either vapor deposition or riming, and these 

tendencies are added to the snow category. This will produce no concentration tendency 

for the pristine ice crystals. To calculate a number tendency for the snow crystals, it is 

assumed that the total of the mixing ratio tendency due to vapor deposition and riming 

may be converted to a number tendency based on a mass per snow crystal of 10 x the 

user specified minimum ice crystal mass, 

To graupel: This is accomplished through the collection if pristine ice by graupel, which 

results in a number and mixing ratio tendency for the pristine category, but only in 

a mixing ratio tendency for the graupel category. If the snow category in not 
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included in the model formulation, then the pristine category is allowed to grow 

through vapor deposition, but the growth through riming is converted to the graupel 

category. This results in a mixing ratio and number concentration tendency for both the 

pristine and the graupel categories, with the number concentration tendency determined 

from the mixing ratio tendency and a assumed mass for a single graupel partic1.e which 

is equivalent to a 540 pm diameter drop. 

To aggregates: This can occur by two processes. First there is the auto-coriversion 

of pristine ice to aggrgetes, calculated in (CALCNLA), while the second process is the 

collection of pristine ice by aggregates. The collection process will change the number 

concentration and mixing ratio of the pristine ice, and only the mixing ratio of the 

aggregates, while the auto-conversion process will change the mixing ratio and number 

concentration of both categories. 

5. Snow as a source 

To vapor: Snow converts to vapor by evaporation. This will affect the mixing ratio and 

may affect the number concentration of the snow category. 

To cloud: This does not happen. Snow melts into the rain category. 

To rain: It is assumed that melting snow will form rain droplets. Melting of snow only 

occurs when the surface temperature of the snow is greater or equal to 273.16 K. If this 

is the case, then the cloud droplets collected as well as the vapor deposited on the snow 

category is assumed to be shed together with the mass melted. This results in a rlumber 

concentration and mixing ratio tendency for both the rain and the snow categories. 

The number concentration tendency for the snow category is the sum of the tentlencies 

calculated in the melting and collection routines, while the number of rain drops shed is 

based on the mixing ratio shed and a assumed rain drop diameter of 540 pm. 

To pristine ice: This does not happen in the model. 

To snow: This is calculated only if the aggregate category is not active for a simula- 

tion. This then is an implied aggregation process which will only affect the number 

concentration of the snow. 
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To graupel: Snow converts to graupel through the collection of it by the graupel. This 

results in a concentration and mixing ratio tendency for the snow, and only a mixing 

ratio tendency for the graupel. Heavily rimed snow will also convert to graupel. The 

philosophy used here is to transfer the amount of rime in excess of the deposition and ice 

crystal collection rates. The physical reasoning is that when riming dominates growth, 

then there will be a rapid conversion to graupel. Once the mixing ratio tendency has 

been determined, a number concentration tendency has to be determined. The average 

snow mass is calculated based on the power law coefficients for the snow category defined 

in Table 8 and the mean snow diameter. It is assumed that the rimed snow crystals will 

be bigger than the average snow crystal, so that the average mass of the converted 

crystals is twice that of the average snow crystal. This concentration change will be the 

same for the snow and the graupel categories. 

To aggregates: Snow can convert to aggregates due to collection of snow by aggregates 

or through the autoconversion of snow (calculated in (CALCNIA)). The first process 

impacts the number concentration and mixing ratio of the snow category, and only the 

mixing ratio of the aggregate category, while the autoconversion process impacts the 

number concentration and mixing ratio of both categories. 

6. Graupel as a source 

To vapor: Graupel can convert to vapor by evaporation. This will result in a mixing 

ratio tendency, and may also result in a concentration tendency. 

To cloud: This does not happen in the model. 

To rain: Graupel can convert to rain through melting or through the shedding of water 

during wet growth at sub-freezing temperatures. (Currently wet-growth is not imple- 

mented in the model - there is an if statement that will calculate this conversion only at 

temps warmer than freezing, nothing is done at temps colder than freezing). The sum 

of the diffusional growth/evaporation, the collection of cloud droplets and the collection 

of rain is computed, and the amount of ice frozen/molten is included. The difference is 

then shed into the rain category. The number concentration tendency for the graupel 

is based on the amount of graupel molten, while the number of raindrops shed includes 
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the number of molten graupel as well as a number calculated from the accreted cloud 

water and a drop of diameter 540 pm. 

To pristine ice: This does not happen in the model. 

To snow: This does not happen in the model. 

To aggregates: This does not happen in the model. 

7. Aggregates as a source 

To vapor: Aggregates convert to vapor when they evaporate. This results in a mixing 

ratio tendency, and may also result in a number concentration tendency. 

To rain: It is assumed that melting aggregates have sufficient mass to be classified as rain. 

Once again, this will only be computed when the surface temperature of the aggregates 

are at or warmer than freezing. The sum of the diffusional growth/evaporation and 

the collection of cloud droplets is computed, then the amount of ice frozen/molten is 

included, and the amount of aggregates collected by rain at environmental temperatures 

greater the freezing is added. Of course, at temperatures below freezing, the collection 

of aggregates by rain results in graupel. For the number concentration tendency of the 

aggregate category, it is assumed that the number of aggregates molten and the number 

of aggregates collected by rain at warmer than freezing temperatures contribute, while 

the number concentration tendency for the rain category is made up of the number of 

aggregates molten plus the number of 540 pm diameter droplets making up the amount 

of mass added to the aggregate category due to diffusional growth/evaporation and the 

collection of cloud droplets. 

To pristine: This does not happen in the model. 

To snow: This does not happen in the model. 

To graupel: The same philosophy is used here as in the snow conversion to graupel. 

First, aggregates can convert to graupel through the collection of it by graupel. This 

results in a concentration and mixing ratio tendency for the aggregate category, but only 

a mixing ratio tendency for the graupel category. Secondly, at sub-freezing temperatures, 

the amount of rime (cloud and rain) in excess of the deposition and ice crystal collection 
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rates is transferred to the graupel category. The average aggregate mass is calculated, 

and it is assumed that the average rimed aggregate converting to graupel is twice the 

mass of the average aggregate. This concentration change will be the same for the 

aggregate and the graupel categories. 

This is the end of the conversion subroutine. It is possible that over the course of a time step, that 

the cdculated conversions may completely consume a category, or even produce a negative mixing 

This, of course, is not physical, and is prevented such that the maximum amount of any 

category that may be consumed is the amount that is available. 

6.5.6 Repairs to conversions 

In tlie flow of the program as we have been following it, the call to (REPAIR) is the last call from 

the clriver routine (MTEND). This routine checks al l  computed conversions to see if they will cause 

a quantiity to become negative over the course of a time step. If so, the losses are reduced. If this 

is required, this is the point were the program departs from its physical base. The tendencies for 

the category that obtain negative mixing ratio values (concentration currently is not checked) are 

redu.ced on a percentage basis to give a zero mixing ratio at  the end of the time step. However, since 

the loss of one category is a gain for another category, everything is interrelated, and therefore this is 

done as a iterative process which will continue until all the categories remain positive definite. The 

repair is done with some physical insight: For instance, vapor deposition cannot reduce the vapor 

mixing ratio below saturation, while the Bergeron-Findeisen process allows the cloud water to be 

an ixlstantaneous source for vapor. At the end of this routine, the control is returned to (MTEND) 

and then from (MTEND) back to (MICPHYS), the top level microphysical driver subroutine. 

Calculation of the final tendencies 

The last call from (MICPHYS) is made to (MDLTEND), another driver subroutine which then 

calculates the mixing ratio and number concentration tendencies required by the model. The 

routine (CALTEND) is called from (MDLTEND) for each category turned on in the model, and 

h d . y  the vapor mixing ratio is calculated in (MDLTEND) itself'. 

Sincc? each category in (MTEND) was considered only as a source to the other categories, the final 

mixing ratio tendency for any category has to be constructed by the addition of all the conversions 
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of all categories towards this category, minus the sum of all the conversions from this category to 

all the others. 

The number concentration tendency for each category is constructed by adding the number concen- 

trations produced (3 in the second dimension of the CNVSN array) for a category and subtracting 

the numbers lost (2 in the second dimension of the CNVSN array) for that category. (The com- 

ments in the code say that this is converted into a log tendency, but there is no evidence in the 

code. 

This completes one run through the microphysical package. 



Part IV 

CIONSERVATION EQUATIONS 

7 In the dynamic model 

The microphysical package only calculates the various sources and sinks of all the microphysical 

categories, and it does not address advection, precipitation or turbulent effects. To describe the 

above dynamic processes fall beyond the scope of this paper, but we will list all the relevent 

equzrtions. In this discussion a quick overview of the routine (THERMO) of the dynamic model 

will be given. To do this, it is necessary to define two variables used by the model, the Exner 

function ?r 

and the ice-liquid water potential temperature (Tripoli and Cotton, 1981) eiI 

where ~p is the specific heat capasity for dry air at constant pressure, P i s  the total ambient pressure, 

Poo = 1000 Wa, R is the gas constant for dry air, LV1 is the latent heat of condensation, Lc is 

the 1.atent heat of sublimation, and T and 8 are the temperature and the potential temperature 

respectively. The quantities rl;, and T&, are the total liquid water and ice water mixing ratios 

resptxtively. 

The Exner function, the total pressure, the dry potential temperature and the mixing ratio is fist 

calculated. Then the saturation mixing ratio is calculated and it determined whether or not there 

is any condensate or supersaturation at any gridpoint. Gridpoints with condensate are gathered 

into one dimensional vectors for the optimization of code on vector computors. The mixing ratios 

of wiiter vapor and cloud droplets are diagnosed from the total water mixing ratio (rT) ,  which is a 

model variable, in the following way. First the total liquid water mixing ratio (rliq) is calculated as 
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If any of the ice categories has been activated, the total ice water mixing ratio (rke) is calculated 

as 

The cloud droplet mixing ratio (r,) and the water vapor mixing ratio (r,) are diagnosed from (rT), 

(rl;,) and (r;,,) by using the saturation mixing ratio (r,,) over water. 

and 

rc = max(0, rT - r1iq - r;, - r,,) 

This set of equations can be solved iteratively to produce a diagnosis of T, 8, T,,, r,, and r, from 

predictions of Oil,  T ,  r ~ ,  r;, r,, r,, r8, and T,. 

To force complete freezing at a specified homogenous nucleation temperature (TH), the above set 

of equations is changed as follows (for T < TH): 

where the asterisk means temporary values during iteration. After iteration the permanent values 

of T, and ri are altered to the temporary values. 

With the mixing ratios of cloud droplets and water vapor now diagnosed, the microphysics module 

is called. The microphysics package calculates the mixing ratio and concentration tendency due to 

the sources and sinks, as well as the mass-weighted mean terminal velocity for each category. These 

values are used in the conservation equations for rain, pristine ice, snow, aggregates and graupel. 

Upon completion of the above calculations, the one dimensional vectors are scattered back into 

three dimension space, and the precipitation tendencies are calculated. At this stage, all the terms 

in the conservation equations have been calculated, and the microphysical tendencies are calculated 

from the following set of equations. 



The following notation conventions will be used in this section, first, the operators: 

ADV(A) is the advection operator, defined elsewhere 
TUFU3(A) is the turbulence operator, also defined elsewhere 
CLd is the collection of category a by category b 
VDa is vapor deposition/evaporation on category a 
NUCa is nucleation of category a 
MLa is the melting of category a 

We will also make extensive use of delta functions, which we modified to operate on temperature 

criteria. The subscripts of the delta functions will identify the temperature regimes where it is 

effective, i.e. 

1 if T < 273.16 K where T is the temperature 

The condition may be on the temperature of the air (T) or the surface temperature of a particle 

(T,)., and it will be conditioned on whether this temperature is equal, greater, greater or equal, 

etc., that the freezing temperature 273.16 K. 

The following subscripts are used: 

v for vapor 
c for cloud droplets 
r for rain 
i for pristine ice 
s for snow 
a for aggregates 
g for graupel 

The conservation equations will be written in three parts, the advection terms, the sinks a.nd lastly 

the sources. Subscripts indicate the categories involved - a double subcript indicate a conversion 

from, subscript one to subscript two, a triple subscript indicates interaction between subscripts one 

and .two that convert to subscript 3. Superscripts indicates interactions that will only be considered 

if thi3t category is not included. 

Watcr vapor - although it is diagnosed in the model, there are implied sources and sinks: 



7 IN THE DYNAMIC MODEL 

+ VD,  + VDa + VD,] 

+PO [max(o, - VD;)c]  

Cloud water - although it is diagnosed in the model, there are implied sources and sinks: 

+PO [VDCI 

Rain: 

Pristine ice: 



Snow: 

-Po [ ~ T , > { ~ W ( O ,  - VDa + CLc, + ML,) + ST2(CLsr))a 

+ max(O,S~,={max(O, -MLa)) + ~T,<{CLC~ + CLp,) - V D ,  - CLi, - CL,,),, 

+ CL,  + CL,,, + CL,, 1 

Graupel: 

+po [ VDg + bT<(CL6 + CLra + CLro)rg 

+ CL, + CL,, + CLi, + C L ,  + CLog 

+ -(o, 6T,,{max(0, -ML.)) + b ~ , ~ { c L -  + CLra} - VDn - CLia - C L t - ) a ~  

+ -(o, f i T . , { ~ ( O ,  -MLa)} + &,<{CLca + CLra) - VDa - CLb - CLaa)ag 

+ [ST<(CL&)I$ I 
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Aggregates: 

7 IN THE DYNAMIC MODEL 

-PO [ ST • >{max(O, - VDO + CLco + MLa) + S T ~ ( C L ~ ~ ) } ~  

+ max(0, S~.={max(O, -MLo)) + ST.<(CL- + CL,,) - VDa - CLM - CL,,),, 

+ CL,  1 

+PO [VD, + CL, + CL, + CL,, + CL;;, + CL,,,] 



A The gamma function 

The gamma function is defined by the following formulas (taken from Gradshteyn and Ryzhik, 1980 

and Abrarnowitz and Stegun, 1964): 

n-1 

r(nx) = ( 2 ~ )  9 n ~ - 5  (x + ) [product theorem] 
k=O 

220-1 
r (22) = - F ( x ) ~  (X + 5) [doubling f o d a ]  

4 f  

A few particular values of the gamma function are: 

and for n a natural number: 

As a quick lookup guide for the use of the gamma function, the values of I?(%) has been tabulated 

for 1.0 < x < 6.9 in Table 9. 

B Incomplete gamma function 

Next the basic formulas defining the two incomplete gamma functions ~ ( a ,  x) and r (a ,  z) are given. 



B EVCOMPLETE GAMMA FUNCTION 

Table 9: Tabulation of complete gamma function for 1.0 < x < 6.9 

Some special cases are also defined: 

The incomplete gamma functions may generally also be approximated in a series representation 

given by 

( - l )nZa+n 
r ( a ,  x )  = r(a) - [a! # 0 ,  - 1 ,  - 2 , .  . .] 

n=o n!(a + n) 

Some functional relationships involving the incomplete gamma functions are given by 



C Integrals often used in microphysics parameterization 

Zn this section some standard forms of integrals that are often used in microphysical pararneteriza- 

tion are listed. These integrals were taken fiom Gradshteyn and Ryshik (1980) 

I, ~ ~ - ~ e ' ~ d x  = pY"v, pu) [u > 0, Re p > 01 
1 

xu-le-P = -I'(v) P e p >  0, Rev > 01 
cry 

w L, =I) ( -P2Z2 * *.)& = exp (l) fi > o] 
4 9  P 

where 2Fl is the Gauss hypergeometric series. 



D COLLECTION lNTEGRALS 

D Collection integrals 

To calculate collection terms we need integral of the form 

Using (B.3) we have 

Integration of each term of the sum gives 

We found this series suitable for calculations in some cases but for large n the I' functions becomes 

excessively large leading to numerical difficulties. Thus we reexpressed (D.3) in terms of complete 

beta h c t i o n  defined as 

The ratio of gamma functions in (D.3) become 

and 

Using the second form of the series representation of incomplete gamma function (B.3) we have 

or, integrating 

and using beta function we get 

Representation (D.8) and (D.9) is convergent for a < P, thus it is less suitable for calculations than 

(D.3) and (D.6). We found (D.6) to have good numerical behavior. 



We were not able to integrate in closed form the more general case of 

This integral was evaluated numerically using QAGI routine from the QUADPACK package (avail- 

able in SLATEC, lMSL or NETLIB libraries). 
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