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ABSTRACT 

Basic thermodynamic concepts a r e  applied to the 

condensation of a vapor resulting in a general expression for the 

f ree  energy change of the system for the formation of a nucleation 

embryo. No assumptions about the geometry of the embryo a r e  

made. Spherical approximation of the shape of the embryo leads 

to the usual free energy change expressions. 

A nonspherical embryo, the sessi le  drop, is inves- 

tigated a s  a nucleation embryo. The surface a reas  and volume of 

the sessi le  drop a r e  developed for use in the free energy change 

equation and a r e  found to reduce to those of a spherical cap for 

limiting conditions of size, contact angle, and gravitational effect. 

Numerical computations of the free energy change 

for a sessi le  drop shaped embryo a re  made for water and for 

mercury. These computations demonstrate that the spherical cap 

approximation adequately describes the free energy change for the 

formation of an embryo shaped a s  a sessile drop. 

William Richard Barchet 
Atmospheric Science Department 
Colorado State University 
For t  Collins, Colorado 80521 
June, 1968 
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INTRODUCTION 

The phenomena of phase changes can be examined 

from several view points. Using statistical mechanics and molecular 

models, the physical mechanism of each step in a phase change can 

be theoretically described. A more general approach is to apply 

basic thermodynamic concepts to changes of phase. With the thermo- 

dynamic a2proach only the initial and final s tates of the system a re  

of importance. The actual physical mechanism of the change of the 

system is avoided in the thermodynamics. Using the basic principles 

presented by Gibbs (1906) and by Frenkel (1946) it  is possible to 

derive an equation which describes the formation of the condensed 

phase in terms of the f ree  energy change of the system. A particular 

feature of this derivation is that no assumption about the geometry 

of the condensed phase is necessary to obtain the free energy change 

expression. Mason (19 57) and Fletcher (1962) present s imilar  

derivations of the free energy change for the system except that they 

assume the embryo of the condensed phase is spherical. 

The derivation of the free energy change of the system 

for the formation of an embryo of the condensed phase leads to the 

question about the effect of nonspherical shapes on the f ree  energy 

change. The work of Bashforth and Adains (1883) on the shape of the 



sessile drop is extended to provide information on the surface areas  

and volume of the sessi le  drop. Using this information the effect of 

a nonspherical embryo shape on the f ree  energy change is compared 

to the free energy change using a spherical embryo for water and for 

mercury systems. 

F o r  the convenience of the reader the definitions of 

the symbols used in the text a r e  given below. Where several  defini- 

tions a re  used for the same symbol, the definitions a re  given in the 

order of occurrence in the text. Also, the page number on which the 

symbol f irst  appears is given to the right of the definition. The con- 

text in which such symbols a r e  used thereafter should make the 

definition which applies obvious. 

A - Surface area  (6) 

A A  - Change in surface a rea  (6) 

A, - Surface a rea  correction term (27) 

b - Radius of curvature at the vertex (21) 

p - Shape parameter for the sessile drop (21) 

d - 1) Differential operator (8) 

2) Density of sessile drop (20) 

A - 1) Finite differential operator (7) 

2) Absolute e r r o r  (27) 

6 - 1) Variation differential operator (10) 

2) Relative e r ro r  (28) 



6 - Par t ia l  differential operator (6) 

G - F r e e  energy (6) 

A G  - Change in free energy (7) 

A G:: - Critical free energy change (17) 

g - 1) Number of molecules in embryo (5) 

2) Acceleration of gravity (20) 

i - Summation index (6) 

M - Grarn-molar weight of a substance (31) 

m - Number of moles of a substance (8) 

N - Number of molecules in the system (5) 

n - Number of molecules (6) 

p - Vapor pressure  (6) 

p~ - Reference vapor pressure  (9) 

+ - Angle parameter  (19) 

R - 1) Universal molar  gas constant (9) 

2) Principal radius of curvature (20) 

r - Radius (1 5) 

r - Critical radius (1 5) 

p - Meridional radius of curvature (20) 

L, V - Subscripts denoting the liquid-vapor interface (1 2) 

S, L - Subscripts denoting the solid-liquid interface (13) 

S, V - Subscripts denoting the solid-vapor interface (13) 

C - Summation over values of i (7) 
i - 

o i - Surface f ree  energy of the i -th interface (6) - 



T - Temperature (6) 

8 - Contact Angle (1 3) 

p0 - Standard state chemical potential (9) 

' e 
- Chemical potential of a substance in the condensed 

phase (7) 

pv 
- Chemical potential of a substance in the vapor phase (7) 

V - Volume (8) 

vc 
- Volume correction term (27) 

A V  - Change in volume (8) 

V 7 - Molar volume (8) m ' 

AV* - Critical volume change (11) 

x - 1) Horizontal coordinate (19) 

- 2) Radius of embryo compared to critical radius (27) 

z - Vertical coordinate (20) 



THE THERMODYNAMICS OF NUCLEATION 

A physical description of the process  by which a 

vapor condenses was given by Frenkel  (1939) a s  an increase in the 

number and s ize of heterophase fluctuations within the vapor. A 

heterophase fluctuation in the vapor is an aggregation of molecules 

forming a smal l  c luster ,  an embryo, resembling the condensed 

phase. When the temperature and pressure  of the vapor approach 

the condition for condensation the number and s ize  of these embryos 

increase. In a discussion of the thermodynamics of this  process,  

the physical mechanism by which molecules collide and aggregate 

to form c lus ters  is not of interest  o r  importance. The system to 

which the following discussion applies contains molecules of one 

substance in the vapor state and in one embryo. The thermodyna- 

mics  of nucleation within this system is concerned only with the 

initial and final s ta tes  of the system. 

Generalized Thermodynamics of Nucleation - 
The system to be examined is a volume initially 

containing N molecules of one chemical substance a s  a vapor a t  - 

a constant temperature and pressure.  The total pressure  on 

the system is the pressure  of the vapor. By some unspecified 

process  g molecules aggregate to form a single embryo within the - 



volume. The'final state of the system is (N-g) - molecules in the 

vapor phase and - g molecules in the embryo, the condensed phase. 

This change of the system can be schematically written a s  

N 4 

vapor 'embryo + (N  - g)vapor 

where the subscripts re fe r  to the phase in which the molecules a re  

found. The relative probability that the system will undergo such a 

change is determined by the free energy change of the system. 

Fo r  a one component system the free energy per 

molecule in the vapor is given by the chemical potential of the sub- 

stance in the system. The chemical potential of a substance in a 

one component system is defined a s  

The subscripts refer  to quantities that a re  held constant during the 

differentiation. The free energy of the embryo is given by the sum 

of the bulk free energy of the substance in the embryo and the free 

energy due to the surface areas  of the embryo. The bulk free 

energy is given by the product of the chemical potential and the 

amount of substance in the condensed phase. A surface f ree  energy 

represents the work required to form an interface between two 

phases and is defined a s  



for a one component system. The subscript - i is used to allow for 

more  than one interface and surface free energy to be associated 

with the embryo. The total f ree  energy of the embryo is then 

where IJ. is the chemical potential of the substance in the condensed 
e - 

phase. If more  than one interface is present, the summation is over 

the total number of interfaces and AA. is the change in surface a r e a  
1 

of the i - t h  interface having a surface f ree  energy of o With these 
i' - 

definitions the free energy change of the system from the initial to 

final state can be written a s  

The chemical potentials, a s  used in equation 3, a r e  

given on a per  molecule basis.  However, since thermodynamics is 

designed to deal only with macroscopic systems, the concept of 

molecules is irrelevant. Much discussion has been lavished on the 

problem of extending thermodynamics to deal with these microscopic 

systems by assuming the microscopic system has the properties of 

s imi lar  macroscopic systems. Stating that a cluster  of g molecules - 

has a surface energy equivalent to a macroscopic drop immediately 

ra i ses  the question of how many molecules a r e  necessary to consti- 

tute a new phase. It is difficult to assume that a cluster of three o r  

four molecules has a surface free energy equal to that for  the 



condensed phase. This problem is avoided here by assuming that 

the final state of the system is such that the embryo is large enough 

to possess macroscopic properties. As stated by Guggenheim (1949), 

the embryo is assumed to constitute a condensed phase. Since 

thermodynamics deals only with the end states, the physical process 

of changing the system from one state to another does not enter the 

picture. Conclusions based on the thermodynamics must be made 

with the nature of this assumption in mind. 

The molecular concept can be abandoned in favor of 

molar quantities. Now the chemical potentials a r e  given for one 

mole of substance and g is replaced by the volume change of the - 

embryo divided by the molar volume of the condensed phase. The 

free energy change expression becomes 

Changes in volume and surface a rea  of the embryo a r e  used to 

represent the volume and surface a reas  so that growth of an embryo 

can be discussed later  in the paper. In the process of formation of 

an embryo there is no difference between these two statements of 

the volume and surface areas. 

The differential change in free energy a t  constant 

temperature of a single component phase is 

dG = VdP + pdm 



where - m is the number of moles of the substance. The differential 

dG is exact; therefore, cross-differentiation of the right-hand t e r m s  - 

yields 

where 7 - is the molar  volume of the substance. Considering the 

vapor to behave a s  an ideal gas, equation 5 becomes 

Integrating equation 6 gives 

p = RTlnp + p.O 

where p0 is an arb i t rary  constant evaluated at some standard 

pressure.  Using this definition, the chemical potential of the sub- 

stance in the embryo is 

where pm is the vapor pressure  of the condensed phase in equilibrium - 

with its vapor, i. e . ,  over a plane surface. The chemical potential 

pv 
is given by the vapor pressure  on the system, thus 

pv = RTlnp + p . O  



The difference behreen the chemical potentials defined in equations 

7 and 8 is 

If the embryo-vapor system is considered to be in 

equilibrium with regard to a change in volume of the embryo, a 

volume variation of the free energy change yields 

Substituting equation 9 into equation 11 results in the Kelvin equa- 

tion in a more general form than usually seen: 

The Kelvin equation states that i f  the embryo-vapor system is to be 

in equilibrium, the chemical potential of the substance in the vapor 

must be larger  than i t s  chemical potential when in equilibrium with 

a large enough quantity of the condensed phase so that surface effects 

a re  negligible. The difference is due to the surface free energy 

and the curvature of the surface of the embryo. 

The free energy change of the system for the forma- 

tion of an embryo becomes 



When the ratio p/pW is greater than unity, the inter- 

action of the right-hand terms of equation 13  leads to a maximum 

value of - AG at some volume change, the critical change in volume, 

AV::. Differentiating equation 1 3  with respect to - A V  and setting the 

differential to zero, evaluation at the critical volume change yields 

That a maximum in A G  exists is significant. Once - 
formed, an embryo must increase in volume to grow. If the 

volume of the embryo after it  is formed, is less  than the critical 

volume, growth would be accompanied by a positive change in the 

free energy of the system. However, a process for which the free 

energy of the system increases is not thermodynamically feasible 

in a statistical sense. But, i f  the volume of the embryo after i t  is 

formed is equal to o r  greater  than the critical volume, growth would 

lead to a reduction in the free energy of the system. The critical 

volume is the lower size limit for embryos which may spontaneously 

grow into larger drops. The critical free energy is the energy 

bar r ie r  which must be overcome to form embryos of this size. 

Throughout the derivation of equations 13 and 14 no 

reference is made to homogeneous or  heterogeneous nucleation. 

These equations a r e  completely general since no assumptions a r e  

made about the nature of the process o r  geometry of the embryo 



other than that the embryo is an aggregation of molecules. Assump- 

tions have been made on the nature of the thermodynamic properties 

of the embryo such that these properties were taken to be the same 

a s  for  the condensed phase. Two of the more common applications 

of equations 13 and 14 a r e  presented below. These a r e  by no means 

the only nucleation processes to which these equations can be applied. 

Nucleation at lattice step sites,  on curved surfaces, nucleation of 

the solid phase, both homogeneous and heterogeneous, a r e  some of 

the nucleation processes that a r e  governed by these equations. 

Applying these equations to physical systems is possible only i f  

information on the surface free energies is available. 

Homogeneous Nucleation 

The formation of an embryo in a system containing 

only one chemical species and, initially, only one phase is called 

homogeneous nucleation. In this case equation 13 becomes 

where the subscripts denote the nature of the interface, i. e. , for 
L, V 

the condensation of a vapor to the liquid, the liquid-vapor interface. 

The surface free energy of a liquid-vapor interface is identical to 

the surface tension. Only one surface a r ea  and surface free energy 

is involved in homogeneous nucleation. Equation 14 becomes 



Heterogeneous Nucleation 

If in the initial state of the system more than one 

phase is present, i. e . ,  the pure vapor and a solid phase, the forma- 

tion of an embryo on this solid is called heterogeneous nucleation. 

By assuming the solid has the form of a plane substrate, three 

surface areas  and surface free energies a r e  involved such that 

equation 13 becomes 

where the subscripts, a s  above, refer  to the nature of the interface. 

The surface areas  involving the solid substrate a r e  related such that 

Substituting this relation into equation 1 7  yields 

The Young-Dupr'e equation gives the relation between the surface 

f ree  energies used in equation 18 and the contact angle 8 of the bulk - 

liquid on the solid substrate a s  

(T 
S, V 

- (T 
S, L 

rr = cos (3 



Using this concept of contact angle, equation 18 becomes 

AV 
AG = - R T  ln (p/pm) + o L, V ( A A ~ ,  V 

- cos BAA 
S, L) 

(19) 
m 

which is the free energy change for the formation of an embryo by 

heterogeneous nucleation on a plane substrate a s  given by Volmer 

(1939, and cited by Fletcher (1962)). 

Proceeding in a s imilar  fashion, equation 14 for 

heterogeneous nucleation becomes 

- - RT ln(p/poo) 
aav 
- cOs 

L') AV* (5 L, V V m 

i f  the contact angle is independent of the volume of the embryo. 



SPHERICAL APPROXIMATION O F  THE EMBRYO SHAPE 

A natural choice for a f i r s t  approximation to the 

shape of an embryo is a sphere.  F o r  homogeneous nucleation the 

embryo is assumed to be a sphere,  while for  heterogeneous nucle- 

ation the embryo is taken to be a segment of a sphere.  

Homogeneous Nucleation 

The spherical embryo in the homogeneous case  is 

assumed to have a radius r. Substituting the volume and surface 

a r e a  of a sphere into equation 15  gives 

and equation 1 6  becomes 

where is the cr i t ical  radius. These equations a r e  given by Gibbs 

(1906), Frenkel  (19461, Volrner and Weber (1926) and cited by 

Fletcher  (1962) and a r e  most  often derived in a l e s s  general manner  

by introducing the spherical shape into equation 4. 



Heterogeneous Nucleation 

The embryo in heterogeneous nucleation is taken to 

be a spherical cap resting on a solid, plane, insoluble substrate a s  

shown in figure 1. Adamson and Ling (1964) point out that the su r -  

face of the substrate must  be homogeneous i f  the embryo is to be a 

volume of revolution. The contact angle plays an important role in 

determining the volume and surface a reas  of an embryo of given 

radius of curvature. The volume and surface a r e a s  a r e  found to be 

AA 
2 

L, V 
=  IT r (1 - cos 8) ( 2 3 4  

VAPOR 

2 2 
Tr r (1 - cos €3) 

IT r 
3 

(2 + cos  8) (1 - cos 8) 
2 

3 

\ 

Figure 1. The spherical cap heterogeneous nucleation embryo 



Substituting equations 23 into equation 19 gives 

2 
where f(8) = ( 2  + cos 8) (1 - cos 8) 14. Notice that the free energy 

change for heterogeneous nucleation on a plane substrate differs 

from that for homogeneous nucleation only by the factor - f (8) which 

is dependent on the contact angle alone. Using the spherical cap 

approximations equation 20 reduces to the same expression a s  given 

by homogeneous nucleation, 

Volmer (1939, and cited by Fletcher (1962)) also 

arr ives  at equations 24 and 2 5 and concludes that the influence of 

an inert, plane substrate on nucleation is to reduce the free energy 

bar r ie r  to the formation of the critical embryo but not to change the 

critical radius of the embryo. 

Nonspherical Shapes 

Examination of equation 16 gives some insight on the 

effect of a nonspherical shape of the embryo on the results obtained 

by the spherical approximation for homogeneous nucleation. It is 

well known that the differential ( a A / 8 ~ )  is a minimum for a sphere 

and that all  other shapes give r ise  to values of (aA/aV) larger  than 



that for the sphere. Therefore,  to obtain the same cr i t ical  volume 

a t  the same temperature the rat io  p / p ~  must  be l a rge r  for non- 

spherical embryo shapes. 

Such an easy analysis for  the heterogeneous case  is 

not possible since more  information on the surface area-volume 

relations is needed. The next section will investigate a more  rea l i s -  

tic shape for  the embryo in the process  of heterogeneous nucleation 

on a plane substrate.  By comparing the f ree  energy change expres- 

sions for the nonspherical embryo to that for  the spherical  cap a s  

shown in equation 24, the accuracy of the spherical cap approxi- 

mation can be determined. 



THE SESSILE DROP 

To  investigate the influence of a nonspherical drop 

shape on nucleation consider a sess i le  drop rest ing on top of a plane, 

horizontal, insoluble homogeneous substrate  under the action of 

gravity and in equilibrium with its vapor. Bashforth and Adams 

(1883) point out that the differential equation describing the shape 

of the sess i le  drop a s  a function of the s ize  and surface tension of 

the drop has been derived by Laplace, Gauss, and Young by very  

different approaches, each resulting in the same  s e t  of equations. 

A straightforward derivation on the basis  of mechanical s tat ics  

alone with no inference a s  to the origin of the surface tension of the 

liquid-vapor interface follows . 

By symmetry the drop surface will be a surface of 

revolution about a vert ical  axis, parallel  to the action of gravity. 

A vert ical  section through the axis of revolution is presented in 

figure 2 with the contact angle exaggerated. The principal radi i  of 

curvature a r e  given by - p in the plane of the paper and by x/sine 

normal to the plane of the paper. The angle 4 var ie s  from ze ro  a t  - 
the vertex to - 8, the contact angle of the liquid on the substrate.  

By the Young-Laplace equation the difference in 

pressure  ac ross  a curved fluid surface is 



where R1 and R2 a re  the principal radii of curvature. Because of - - 

the action of gravity a hydrostatic pressure within the drop contri- 

butes to the pressure difference such that 

Ap = gdz + C 

where - d is the density, g the acceleration of gravity and C an arbi- - - 

t r a ry  constant. Equating equations 26 and 27 and substituting for 

the principal radii yields 

gdz + C = o 
1 + sin4 

Figure 2. The sessi le  drop 



At the origin the two radii  of curvature a r e  equal to 

the radius of curvature a t  the vertex, b, i. e . ,  - 

A 
l im p = l im - = b . sin 4 
z-- 0 z-- 0 

This fixes the value of - C such that 

By dividing the variables x, z,  and p by the parameter  b, equation - - - - 

2 9 is nondirnensionalized to 

where 

Equation 30 gives the shape of the sess i le  drop in t e r m s  of three 

nondimensional coordinates x, z, and p and the shape parameter  P. - - - - 

A differential equation involving only x and z can be - - 

obtained by substituting the differential forms for p and s in4  - 

to yield 



Equation 31 is a non-linear, second degree and o rde r  two differ- 

ential equation; a closed form solution is impossible. This 

differential equation along with the equations 

dx = p cos  4 d 4 

dz = p sin (b d 4 

form a se t  of differential equations describing the sess i le  drop 

which can be solved by s e r i e s  techniques. 

Bashforth and Adams (1883) obtained solutions for  

the variables x, z,  p ,  and 1 / p  a s  power s e r i e s  of the variables 4 - - - - - 

and . These solutions a r e  given in Appendix I. F rom these 

solutions, which a r e  exact provided that $ and fi a r e  smal l  s o  that 

the s e r i e s  converge rapidly, the surface a r e a s  and volume needed 

in equation 19 can be derived. 

The a r e a  of the interface between the substrate  and 

embryo is found to be 



The a r e a  of the liquid-vapor interface is given by the 

integral 

which leads to 

The volume of the sessi le  drop can be found by 

differentiating equation 30 to give 

F o r  a volume of revolution, a volume element can be represented a s  

thus 
L 

Tr X 

d V = ~ - T  dp + x cos Qd4 - sin Qdx . 
P 

Integrating by parts  and using the differential relation 



the volume is found to be 

Algebraically combining the se r ies  forms of the t e rms  in equation 3 5, 

the volume of the sessile drop becomes 

As they now stand, equations 32, 33,  and 36 do not 

give any insight into the departure from sphericity of the surface 

areas  and volume of the sessile drop without a more detailed exami- 

nation of the spherical cap. However, by expanding equations 23 a s  

power ser ies  in 8, the surface a rea  and volume of the spherical cap 

become 



where the subscript - s re fe r s  to the spherical cap. Comparing equa- 

tions 32 and 37 ,  33 and 38, and 36  and 39 i t  is apparent that the 

sess i le  drop shape can be represented a s  a spherical cap plus co r -  

rection t e r m s  to account for the departure from a spherical shape. 

When the parameter  P o r  the contact angle becomes smal l  the - 

sess i le  drop reduces to a spherical cap. P becomes smal l  for  smal l  - 

drops o r  in the absence of gravity since P is real ly a measure  of the - 

hydrostatic pressure  within the drop that causes the departure from 

sphericity. 



THE SESSILE DROP AS AN EMBRYO 

The ser ies  forms for the surface a reas  and volume 

of the sessile drop a r e  substituted into equation 19 to give the free 

energy changk of the system for the formation of an embryo shaped 

a s  a sessile drop. By writing the volume and surface areas  a s  a 

sum of the corresponding spherical cap term and se r ies  correction 

terms the free energy change becomes 

AG - - 3 6  5 
sessile drop V '  

m €I [ - (  



The spherical cap t e r m s  may be combined a s  in equation 24 and the 

se r i e s  t e r m s  for the surface a r e a  corrections may be combined to 

give 

AGsessi le  drop = AG - A .  
spherical cap 

In assuming the free energy change for the spherical cap is that 

for the sessi le  drop, the e r r o r  is 

where 

and 

The t e rm containing V gives that portion of A which is due to the 
C - - 

difference in volume between the spherical cap and the sess i le  drop 

while the t e rm containing A gives that portion of A due to the su r -  
C - 

face a r e a  differences. 



Equation 42 may be further simplified by noting that 

V is always larger  than Ac , thus 
C - - 

where 

The term (1 - x)A represents the interaction of the volume and sur-  
C 

face a rea  differences between the spherical cap and sessi le  drop. 

Physical interpretation of this term for x <  1 is that the difference 

in surface area  between the sessile drop and spherical cap plays 

the major role in the e r ro r  while for values of - x >  1 the difference 

in volume plays the greatest role. The remaining term,  

2 xfl0 (Ac - V ), indicates that the volume difference always plays a 
C 

role in A - and is the residual e r r o r  when x = 1. 

By writing the free energy change for the spherical 

cap, equation 24, as  

= Tro 
2 2 2  

AGspherical cap L, V (1 -7) x r* f(0) 

the relative e r ro r  in assuming the free energy change for the 

sessile drop to be given by that for the spherical cap 'is 

6 = A 

A Gspherical cap 



6 2  
X 

2  
d9 r* 

6 = 8  2 
[(l - x)A + K(A - V )x3]  

C C C f(Q) (1 --x) 
L, v 3 

where 

Use of equation 48 is limited to values of x < 3 / 2  since at this value 6 - 

becomes infinite. 

Examination of the equations for A and 6 indicates - - 

that a maximum for each should occur at some value of x. These - 

maxima a re  found by differentiating equations 45 and 48 with respect 

to - x ,  setting the differentials to zero and solving for x. By assuming - 

,!3- to be small the terms V and A can be considered independent 
C - C - 

of - x. The value of x for a maximum inA is given by - - 

while that for a maximum in 6 is given by - 

For  most real  systems the value of K is much less  than unity so 

that equations 49 and 50 can be written a s  



for 'max 
and 

for 6 o r  
m ax 

Because the term (1 - x)Ac changes sign a s  - x increa- 

s e s  beyond unity both A - and - 6 must have zeros at some value of - x. 

Setting the bracketed factor in equation 48 to zero gives 

and for K <  1 a s  discussed above the zero must be very near to but 

just slightly greater  than x = 1. 
Thus AGspherical cap 

is an over- 

estimation of AGsessile dro for values of x<l and an underestima- 

tion for x >  1. 

The dependence of A - and - 6 on the physical parameters 

temperature, supersaturation, contact angle, density, and surface 

tension can be seen by examining the coefficients of the t e rms  in - x 

of equations 45 and 48 



where g(x, 8, /3 ) and h(x, 8, /3 ) are  given in equations 45 and 48. 

Substituting for - r:I: these equations become 

where M is the gram-molar weight and clearly shows how A - and d - 

depend on the physical parameters. Since fi is defined a s  
, 

then 

Both A - and - 6 approach zero a s  PJ1:, 0, o r  g become small. This - 

result agrees with the behavior of the volume and surface areas  of 

the sessile drop at small values of @, 8, and g; they reduce to the 

spherical cap values and so does the free energy change for the 

formation of an embryo. 



NUMERICAL COMPUTATIONS 

Using the computer program presented in Appendix I1 

numerical values of the e r r o r  in assuming the free energy change of 

the system for the formation of a sessi le  drop embryo is given by 

the free energy change for a spherical cap were computed for two 

contrasting systems: water and mercury. Since surface tension 

data is readily available for water the e r r o r s  were computed a t  two 

temperatures. However, only one value of the surface tension of 

mercury was found in the literature. E r r o r s  were computed for 

supersaturations ranging from 0. 1 to 1000 percent, for contact 

angles from 11. 5 to 57. 3 degrees, and for values of - x from 0.05 to 

1. 5. 

Figure 3 illustrates the variation of A - withx - and 

clearly shows the maximum occurring at x = 0. 8. As equation 52 

indicates, a higher temperature gives smaller e r rors .  This trend 

is seen throughout the remaining graphs. At a given supersaturation, 

contact angle, and - x, say at the maximum, equation 52 can be modi- 

fied to give the relationship between the - A's at two different temper- 

atures a s  



F o r  water the constants a re  

and the ratio A l / a 2  = 0. 605, which is equal to that using the computed 

data. 

The variation of the relative e r r o r  with size is shown 

in figure 4 for 0. 1 percent supersaturation and a contact angle of 

34.4 degrees. As with A ,  6  has a maximum at the predicted value, - - 

x = 0. 75. Higher temperatures reduce the relative error .  Using 

equation 53 in a modified form the relationship between 6  's at - 

different temperatures for a given supersaturation, contact angle, 

and - x, again taken for the maximum 6 ,  is - 

Using the values given above for water the ratio 6  /6 = 0. 809 which 
1 2  

is the same a s  that given by the computed data. The ratios 41% 

and 6  /6 a re  valid only when g(x, 0, P ) and h(x, 0, 6 ) are  not nearly 

- 
zero, i. e. , x <<1 o r  x>> 1 but not x = 1. 

Since the relative e r r o r  is perhaps the more useful 

measure of the e r r o r  made by using the free energy change for the 

spherical cap a s  that for the sessile drop figures 5, 6, 7, and 8 



show how - 6 varies  with supersaturation and contact angle at  the 

rnaxirrLurn and at the cr i t ical  radius. The smal l  c i rc le  and triangle 

at  the vertex of the 0°C and 25°C curves in figure 4 a r e  placed at 

the cor.responding points on the other curves. E'igure 5 clearly 

shows llow small  the maximum relative e r r o r  is and that - 6 decreases 

r5apitllg with increasing supersaturation. The relative e r r o r  at  the 

c:ritlcsl radius is shown in figure 6 and is severa l  o rde r s  of magni- 

tude smaller- than the maximum relative e r r o r .  Curves a t  other 

c:ontacl angles a r e  parallel to the curves in figures 5 and 6. Figure 

7 shows that the maximum relative error .  vanishes for small  contact 

angles and that in the range of contact angles for which this study is 

valid the rnaximum relative e r r o r  is negligibly small.  At the cr i t i -  

ca l  radius the relative e r r o r  a s  a function c > l '  contact angle is shown 

in figure 8. Curves for other supersaturations a r e  parallel  to the 

curves o f  the relative e r r o r  in figures 7 and 8. 

In order  to find a substance which would serve  a s  a 

comparison to water equations 52 and 53 were manipulated to give 

the ratios of A - and - 6 for  different substances a t  the same temperature,  

supersa.turation, contact angle, and size a s  

and 



Comparing substances of known surface tension to water,  mercury  

was found to give the la rges t  ratios. The data for mercury  that were 

used in the computations a r e  for a temperature of 25"  C: 

Using these values the rat io A  / A  
4 

= 1 . 2 7  x 10 and 
Hg H20  

- 

A graph comparing A  - for water and mercury  is found 

to be impractical because of the very large difference in magnitude 

of the e r r o r s .  However, a graphical comparison of 6 is feasible - 

and is shown in figure 9. Using the computed data the rat ios  

*Hg/%I90 and 6 H,O 
agree very closely with the values 

presented above. By virtue of the logarithmic presentation a com- 

parison of the maximum relative e r r o r  for  water  and for mercury  is 

much more  descriptive of the great  difference in e r r o r  a s  shown in 

figure 10 a s  a function of the supersaturation. This figure again 

points out the very negligible e r r o r  even for the worst  system inves- 

tigated. Figure 11 compares the contact angle dependence of 6 for - 

mercury  and water and again emphasizes the great  difference be- 

tween the two systems. The small  c i rc le  and triangle at  the 



maximum of each curve in figure 9 a r e  located at corresponding 

points in figures 10 and 11. 

The computer generated data used for drawing these 

graphs is presented in tabular form in Appendix 111. 



Figure 3. The e r r o r  in assuming AG is given by 
sess i le  drop 

AGspherical cap fo r  0. 1 percent supersaturation and 

a contact angle of 34.4 degrees a s  a function of & 



Figure 4. The relative e r r o r  in assuming AG is 
sess i le  drop 

given by AGspherical cap for  0 .1 percent super-  

saturation and a contact angle of 34.4  degrees a s  
a function of X - 



Figure 5. The maximum relative e r ro r  a s  a function of the 
supersaturation at a contact angle of 34 .4  degrees 



Figure 9. The relative e r r o r  for  mercury compared to water at a 
supersaturation of 0.1 percent and contact angle of 
34.4  degrees a s  a function of - X 



PERCENT SUPERSATURATION 

Figure 10. The maximum relative e r ro r  for mercury compared 
to that for water a s  a function of supersaturation at 
a contact angle of 34.4 degrees 



MERCURY / 

WATER 
A 

1 

0 10 2 0  3 0  40  5 0  60 

CONTACT ANGLE, 8 IN DEGREES 

Figure 11. The maximum relative e r ror  for mercury compared 
to that for water a s  a function of the contact angle 
at a supersaturation of 0. 1 percent 



CONCLUDING REMARKS 

A direct application of thermodynamics to the nuclea- 

tion of a condensed phase leads to f ree  energy change equations that 

a r e  not based on a specific embryo geometry. Spherical approxima- 

tion to the shape of the embryo results in the equations generally 

seen in texts on nucleation. In such texts, however, the problem of 

nonspherical embryos is generally avoided. A conclusion based on 

equation 16 is that for  homogeneous nucleation a spherical embryo 

has the lowest free energy change of formation. 

The effect of a nonspherical embryo on heterogeneous 

nucleation is investigated using a sessi le  drop a s  the embryo. 

Series equations describing the volume and surface a reas  of the 

sessile drop a re  derived. These equations a r e  then substituted into 

the general free energy equation. The result is that the free energy 

change of the system for  the formation of a sessi le  drop embryo can 

be expressed a s  the f ree  energy change of the system for the forma- 

tion of a spherical cap embryo plus a small  correction term. 

Because the correction term is small, an expression for the rela- 

tive e r r o r  is also derived. The behavior of these two e r r o r s  is 

investigated fo r  maxima, zeros, and dependence on physical pararn- 

eters .  From equations 52 and 53 a general set  of comparison ratios 

can be derived that allow a comparison of e r r o r s  for different 



systems o r  sets  of parameters; 

These ratios a re  valid only i f  - x is ,much different from unity and 

taken to be the same value in each system. With equations 58 and 59 

i t  is possible to evaluate the e r r o r s  for  any system o r  conditions i f  

the values of the e r r o r  a r e  known for one se t  of data. By using the 

following hypothetical data a set  of e r r o r s  is computed and pre- 

sented in figures 1 2  and 13: 

Values of the e r r o r  presented in these figures a s  a function of - x can 

be used along with equations 58 and 59 to give the e r r o r s  for any 

real  system. (except near the critical radius). 

The magnitude of the e r r o r  for rea l  systems dis- 

cussed in the last  section and presented in figures 3 to 11 indicates 

that these e r r o r s  a r e  negligible from an experimental view point. 

-7 
A relative e r r o r  of 10 , the maximum relative e r r o r  for mercury, 

is probably beyond the limit of detectability. At the critical radius 

the relative e r ro r  is several orders of magnitude smaller than the 



maximum error .  These results, therefore dispel1 the uncertainty 

of using the spherical cap model in heterogeneous nucleation on 

a plane, horizontal surface. While only computations for the 

sessile drop a re  made, i t  seems reasonable to extend this general 

conclusion to other shapes such a s  pendent drops o r  drops on non- 

horizontal surfaces. However, a s  pointed out by Fletcher (1962) 

and Turnbull (1950) nonplanar surfaces have a large influence on 

the energetics of nucleation. 



Figure 12 .  The e r ro r  in assuming AG 
sessile drop is given by 

AG spherical cap for the hypothetical case a s  a 

function of X 



Figure 13. The relative e r r o r  for the hypothetical 
case a s  a function of X - 
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APPENDIX I 

SERIES SOLUTIONS FOR SESSILE DROP SHAPE 

Series solutions to the equations describing the 

sessile drop developed by Bashforth and Adams (1883) a r e  based 

on the following equations 

A se r ies  solution to p is assumed to be of the form - 

(I- 1) 

Using the se r ies  expansions for sin4 and cos 4 equations 1-2 and 

1-3 can be integrated to give - x and - z a s  power se r ies  in & . The 

coefficients of the powers of & a re  functions of b 2, b4, b6, . , - - -  
etc. By generating the inverse of p and sin 4/x a s  power ser ies ,  - 
equation 1-1 is used to obtain expressions for b 

2' b4' b6, , - - - 
etc. in t e rms  of p - 

Substituting for  the coefficients of 4 found for the 

variables 5, z, p , and lip results in the following se r ies  in 4 and P - - - 



The coefficients of the powers of q5 a r e  exact. These - 

ser.ies soiutions give the exact value of the variables 2, 2, 1, and 

I / p  provided that /3 and 4 a r e  small  so  that the s e r i e s  converge -.. -- - . - - 



APPENDIX I1 

COMPUTERPROGRAM 

The data for the curves in figures 3 to 13 were com- 

puted by using the modified Fortran IV program presented in figure 

14 on the CDC 6400 computer at Colorado State University. This 

program was a simplification of the program used to generate most 

of the data and was modified by removing DO loops that previously - 
incremented the values of super saturation and contact angle. 

Numerical values printed by the computer include the 

free energy change of the system for the formation of both the spher- 

ical cap and sessi le  drop embryo, the e r r o r  4 the relative e r r o r  6 , - - 

and the critical radi,us of the spherical cap embryo. The e r r o r  and 

relative e r r o r  were computed from equations 42 and 48, respectively. 

The free energy change for  the sessile drop case was computed a s  in 

equation 4 1. 

Only four significant figures were used in the output 

since the magnitude of the e r r o r  was much smaller  than the free 

energy changes and could have only been detected by using double 

precision computations. A larger  number of significant figures 

would not have added appreciably to the value of this study. 
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Figure 14. The computer program for computing 
the free energy change 



A P P E N D I X  I11 

TABULATED DATA 

A summary of the numerical computations involved in 

producing figures 3 to 13 is given in the following tables. Table 1 

gives the values of the physical parameters used a s  input data to the 

computer program presented in Appendix 11. 

Table 2 summarizes the variation of the e r rors ,  A - 

and 6 ,  as a function of x. The units of the e r ror ,  A, a r e  ergs, - - - 
while - 6 is nondimensional. 

Table 3  summarizes the variation of the maximum 

relative e r ror ,  6 and the relative e r r o r  a t  the critical radius, 
rn ax 

r*, a s  a function of the supersaturation a t  a constant contact angle - 
of 3 4 . 4  degrees. 

Table 4 summarizes the variation of the maximum 

relative e r ro r  and the relative e r ro r  at the critical radius a s  a 

function of the contact angle a t  a constant supersaturation of 0. 1 

percent. 



WATER 

MERCURY 
- 

HYPOTHETICAL 

TABLE 1 

INPUT DATA 

degrees 



TABLE 2 

THE ERRORANDRELATIVEERROR 

AS A FUNCTION O F  X 
- 

X 

0.10 

0 .20 

0 .30  

0. 40 

0. 50 

0.60 

0. 70 

0. 75 

0. 80 

0 .85 

0 .90 

0 .95 

1 . 0 5  

1 .10 

1 .15  

8 = 34.4" 

T = O ° C  HYPOTHETICAL 

(p/m - 1) x 100 = 0. I 

WATER 

A x  1017 

0.03 

0 .39 

1 . 7 4  

4. 72 

9. 60 

15.92 

22.12 

24.29 

25. 16 

24.04 

20.15 

12. 51 

-18. 66 

-44.96 

-80. 56 

A X  lo3' 

0 . 0 1  

0. 17 

0. 77 

2. 09 

4. 24 

7 .04 

9 .78  

10.74 

11.13 

10.63 

8. 91 

5. 53 

-8.25 

-19.88 

-35.63 

6 x 1 0 l o  

0. 44 

1. 68 

3. 59 

5. 97 

8. 54 

10.89 

12. 56 

12. 82 

12. 50 

11.40 

9. 23 

5. 61 

-8.37 

-20.68 

-38.75 

6 x 10 1 5  

0 .43 

1. 64 

3 . 4 9  

5. 80 

8. 31 

10. 64 

12.22 

12.47 

12.16 

11.09 

8. 98 

5.46 

-8.14 

-20.11 

-37. 68 - 

OC 

MERCURY 

A x  10 8 

0. 27 

1. 04 

2 .21  

3. 67 

5. 26 

6. 73 

7.73 

7.88 

7. 69 

7.01 

5. 68 

3.45 

-5 .15 

-12.72 

-23.83 

T = 25 

WATER 

A x  1017 

0. 05 

0. 65 

2. 88 

7. 80 

15.90 

26.31 

36. 56 

40.15 

41. 58 

39.74 

33.30 

20.67 

-30.85 

-74.31 

- 

6 x 10 lo 

0. 54 

2. 08 

4 .44 

7. 38 

10.57 

13. 53 

15. 54 

15.85 

15.46 

14.10 

11.41 

6.94 

-10.36 

-25.58 

-47. 92 



TABLE 3 

DEPENDENCE OF THE RELATIVE ERROR 

ON THE SUPERSATURATION 

t 

(p/pco - 1) X 100 

0. 1 

1.0 

10. 

100. 

1000. 

0 = 34.4O 

T = O O C  

WATER 

T = 25 OC 

X = 0.75  

6 
m a x  

1. 585 x lom9  

1 .600 x lo-'' 

1 .743 x 10 - I 3  

3.296 x 10 - I 5  

2.754 x 10 - I 6  

X =  1 . 0  

6 r4: 

8.633 x 10  - I 7  

8.790 x lom2 '  

1.057 x 10 -24 

6.231 x 10  -28 

2 . 3 4 8 ~ 1 0  
- 29 

MERCURY 

X = 0.75 

6 m a x  

7.885 x 

7.956 x 10 -10 

8.671 x 10 
-12 

1.639 x 10  
- 13 

1 . 6 2 2 ~ 1 0  
-14 

A 

WATER 

X =  0.75 

6 
m a x  

1.282 x lo-' 

1.293 x lo-'' 

1.410 x 

2.665 x 10 - I 5  

2.227 x 10 - I 6  

X =  1 . 0  

r* 

5. 644 x 10 
-I7 

5.747 x 

6.932 x 10 -25 

6 . 4 8 0 ~ 1 0  
-28 

1.858 x 10 -29 


