

Economic analysis of range improvements

J. S. Murphy and E. T. Bartlett ${ }^{1}$

Quick Facts

Rangeimprovements are structures, practices or developments that increase the sustainableyield of goods and services from rangeland while maintaining or improving its condition.
Proftability is one important criterion that should be used indeciding whether to implement any range improvement.
Costs for range improvements often are paid out initially, but returns flow back to the investor in amual increments.
Present value analysis is method commoniy used to detemine the profitability of range improvements.

Range improvements arestructures, practices or developments that increase the sustainable yield of goods and services from rangeland. Improvements can vary from sophisticated grazing systems to simple water developments. These improvements maintain or improve range condition lor a particular use or combination of uses.

Range improvements must produce tangible benefits to the range user and the resource. One important cxiterion is the ability of that improvement to produce a reasonable return on investment.

Time Value of Money

Most range improvements are long-term investments. The largest portion of costs for im provement practices are paid out initially and returns come back to the investor in annual increments. In some cases, returns may not be produced untila few years after the initial investment. Because of this time difference, a simple comparison of the total costs and returns for an improvement will not provide an accurate picture
of its return on investment. Therefore, when calculating the profitability of any range improvement, it is important to consider not only total costs and returns, but when they occur.

Money has a time value. A dollar earned today is more valuable than a dollar earned in the future. This is true because a dollar earned today could be invested and be accruing interest. For example, if an investment returned $\$ 100$ in one year, that investment would be better than one that returned $\$ 100$ at the end of two years. The return from the first investment could be reinvested to return more than $\$ 100$ by the second year.

Present value analysis is a method commonly used to determine the economic feasibility of range improvements. This method takes into account the time value of money by "discounting" the value of future costs or returns to their value today. Once monetary values have been adjusted in this way, a direct comparison of costs and returns can be made.

To perform present value analyses, is is necessary bo understand how to discount stocks and flows of money. The amount of the initial investment and/or annual netincome flow is multiplied by a discount rate. Discountrates usually are provided in tables, such as Tables 1 and 2, although hand-held financial calculators and computer spreadsheet software programs also can makesuch calculations. The correct discountrate depends on the rate of retum of the next best investment (also called "opportunity cost") and the number of years the investment is made. Table 1 provides discount rates for stocks (a single sum received at one point in time) while Table 2 prom vides rates for flows (an amount received annually for several years).

The following two examples nlustrate the use of discountrates. Suppose an investment at percent interest will return $\$ 100$ in six years. To find the present value of that $\$ 100$, multiply by the
14. S. Murphy, Colorado State University Southeast Area Cooperative Extension agent, Crowley County unit leader; and E. T. Bantlett, Colorado State University professor, range science (4/89)

Table 1: Discount rates for stocks (sums received or paid out at a single point in time). ${ }^{1}$

	6%	7%	8%	9%	10%
1	.9434	.9346	.9259	.9174	.9091
2	.8900	.8734	.8573	.8417	.8264
3	.8396	.8163	.7938	.7722	.7513
4	.7921	.7629	.7350	.7084	.6830
5	.7473	.7130	.6806	.6499	.6209
6	.7050	.6663	.6302	.5963	.5645
7	.6651	.6227	.5835	.5470	.5132
8	.6274	.5820	.5403	.5019	.4665
9	.5919	.5439	.5002	.4604	.4241
10	.5584	.5083	.4632	.4224	.3855

${ }^{1}$ For discount rates not included use the formula:

$$
V_{0}=\frac{V_{n}}{(1+i)^{I}},
$$

where V is the future value of a stock at the end of n years, V_{0} is the present value of V, i equals the interest rate and n is the number of years over which the stock is to be discounted.
appropriate discountrate. The discount rate from Table 1 thatcorresponds to 7 percent and six years is 0.6663 and this mulliplied by $\$ 100$ equals the present value of that stock sum, or $\$ 66.63$. Again, suppose an investment is made at7 percentover a six-year period, butin this case itreturns $\$ 100$ per year. Multiplying the $\$ 100$ annual return by the appropriaterate from Table 2 for 7 percent and six years (4.766) gives the total present value of that income hlow over the investment period, or $\$ 476.60$.

Analysis Steps

The analysis of any rangeimprovementusing a partial budget and present value analysis can be applied through the following steps.

1. List the sources of additional costs and returns from the proposed improvement.
2. Calculate the present dollar values of individual added costs over the life span of the improvement and total these amounts.
3. Caloulate the minimum amount of retum (e.g. pounds of Livestock gain, pounds of forage) required to cover the costs of the improvement. If the break-even value appears unattainable, then the improvement will not be profitable. If the required response appears attanable, go to step 4.
4. Calculate the present values of individual added returns and total these amounts.
5. Subtract the present value of the total added costs from the present value of the total added returns to determine the net present value for the improvement.

Example Analyses

To understand how to analyze the economic feasibility of range improvements work through the following two scenarios. Steps 1 through 5 are applied in each example.

Water Devglopment. A 640-acre pasture produces 400 pounds of forage per acre. Although the pasture is accessible to livestock during grazing

Table 2: Discount rates for nows (amounts received annually over a period of several years). ${ }^{1}$

	6%	7%	8%	9%	10%
1	0.943	0.935	0.926	0.917	0.909
2	1.833	1.808	1.783	1.759	1.736
3	2.673	2.624	2.577	2.531	2.487
4	3.465	3.387	3.312	3.240	3.170
5	4.212	4.100	3.993	3.890	3.791
6	4.917	4.766	4.623	4.486	4.355
7	5.582	5.389	5.206	5.033	4.868
8	6.210	5.971	5.747	5.535	5.335
9	6.802	6.515	6.247	5.995	5.759
10	7.360	7.024	6.710	6.418	6.145

${ }^{1}$ For discount rates not included use the formula:

$$
V_{0}=\frac{R\left[(1+i)^{n}-1\right]}{i(1+i)^{n}}
$$

where V_{0} is the present value of the annual flow over n years, R is the amount received each year, is the interest rate and n is the number of years over which R is to be discounted.
season, it remains unused because the nearest water source is almost 2 miles away. The producer would like to install a water tank so livestock use the forage, and grazing is more uniformly distributed. The water would be delivered to the tank through a pipeline from an existing source. The question is: "Will this project be profitable?"

The first step is to list the added costs and returns produced by the water development, as shown in Table 3. The added costs include materials and labor. All costs, exceptmaintenance, are borne initially. The added return from the project is an annual flow of additional forage over the estimated 10 -year life span of the improvement.

The second step is to estimate the present dollar values of the added costs. The tank maintenance cost (\$100 per year) is a flow that must be discounted. Using an interest rate of 10 percent (the return produced from the next best investment) and an estimated project life span of 10 years, the factor given in Table2 is 6.145. Multiply $\$ 100$ by 6.145 to get $\$ 615$. This is the total present dollar value for maintenance over the life of the project.

Once the present value of the costs have been calculated, calculate the break-even value. What needs to be known is the minimum level of annual retum (eitber in dollars or production units) that must be produced by the improvement to cover the annual cost of that improvement.

There are advantages to calculating the breakeven response before estimating the individual added returns. It is easier to accurately estimate the dollar values of itemized costs for an improvement than the dollar values of itemized returns. Use this cost information to determine how much of the return is necessary each year to cover costs. If this break-even value is not attainable, then no further analysis is necessary. The improvement will not be profitable. A number of possiblerange improvement alternatives can be examined quickly in this way.
C. Table 3: Economic analysis for a hypothetical stockwater development with a useful life span of 10 years and a 10 percent opportunity cost.

Added Costs:	Present Value	Your Values
Initial costs:		
Tank, float valve, cement	\$ 800	
Installation labor	200	
Pipe, trenching, labor	5,808	
Total Initial Costs	\$6,808	
Future costs:		
Maintenance ($\$ 100 /$ year)	\$ 615	
\$100*6.145 = \$615		
Total Added Costs	\$7,423	
Break Even Requirement:		
A. Annual equivalent of total present value of costs:$\$ 7423=\$ 1208 / \text { year }$		
6.145		
B. Annual return:		
Forage available $=320$ AUMs		
C. Break-even response:		
\$1208 $=151 \mathrm{AUMs}$	\$1208	$=\$ 3.78 / \mathrm{AUM}$
\$8/AUM	320 AUMs	
Added Returns:		
	Present Value	Your Values
Available forage $\quad \$ 15,731.00$		
320 AUMS * $\$ 8 / \mathrm{AUM}=\$ 2560$		
\$2560/year* $6.145=\$ 15,731$		
Total Added Returns	\$15,731.00	
Net Present Value	\$8,308.00	

Table 3 illustrates the break-even value calculations as a three-step procedure. First, calculate the annual equivalent of the present value of the total added costs for the improvement. To do this divide the total present value of added costs by the discount rate for 10 percent and 10 years, or 6.145 (Table 2). This converts the total added costs (\$7423) for the improvementover its 10 -year life to an annual cost flow. In other words, the initial costs and maintenance of the water development will be equivalent to $\$ 1208$ per year. Second, estimate the dollar value of one unit of the return (use a conservative market value) and the quantity of the return produced each year from the improvement. For the water development, the added return is estimated at 320 AUMs² per year with a market value of $\$ 8$ per AUM. Third, divide the annual equivalent cost by the value of one unit of the return or by the total number of units produced annually to find the break-even value. To cover the costs of the water development, a minimum of 151 AUMs must be avallable each year and the market value of an AUM must be at least $\$ 3.78$ for the 320 AUMS to cover the improvement costs. These calculations show the improvement to be a promising investment.

Next, estimate the value of the added returns.

[^0]The project is expected to add 320 AUMs, valued at $\$ 8$ per AUM, over a 10 -year period. The annual value of this incorne flow is $\$ 2560$. Multiply $\$ 2560$ by the discount factor from Table 2 for 10 percent over 10 years (6.145) to get the total present value for that flow, or $\$ 15,731$.

The net present value for the improvement is calculated in the last step. Net present value is the present value of total added returns minus present value of total added costs, or $\$ 15,731-\$ 7,423=$ $\$ 8,308$. With the information in Table 3, the producer can decide if the water development project will be profitable. The answer is: "Yes."

Range Seeding. A ranch currently supports 100 head of brood cows that graze on a Forest Service allotment during summer. Herd size is limited primarily by a lack of forage during the spring and fall, and high winter feed costs. The producer owns 1,000 acres of poor condition spring-fall range that has a high potential for establishing a crested wheatgrass seeding. The seeding is expected to increase forage production by 500 pounds per acre, increase calf crop from 70 percent to 80 percent and weaning weights from 350 pounds to 375 pounds, and reduce winter feeding by 60 days. The producer plans to buy steers to graze forage not used by the cows to provide additional income. On the other hand, the seeding would require building 2 miles of fence, paying the seeding costs, the grazing deferment costs, steer purchases, added steer and calf costs, and increased grazing fees. The question is whether or not this seeding would be profitable.

The analysis assumes that the total life of the seeding is 20 years. This includes 18 years of grazing use and 2 years of deferment to allow the seeded stand to establish. Note that an allowance for seeding failure is made in the initial costs given in Table 4. This risk of failure estimate allows for a one-in-five chance of failing to achieve a satisfactory grass stand. Reseeding costs are builtinto the analysis. Also, 75 percent cost-share is available for this project, so calculations were made with and without this cost-share money.

Fence maintenance, grazing deferment, added calf costs, steer purchases, direct steer costs and added grazing fees are treated as future costs. With the exception of grazing deferment, the present values of future costs are calculated in two steps. First, the estimated annual costs are discounted as flows over the 18 years when the seeding is grazed and those costs are incurred. Next, these values are discounted back over the two-year deferment as stocks to find the present value of future costs. Fence repair costs were discounted similarly, but the calculations assume that repairs will not be necessary during the first five years of improvement life. Therefore, fence maintenance costs were discounted as a 15-year flow and to present value as a stock using the discount rate for five years at 10 percent.

Grazing defermentcosts were considered equal to the price that the producer must pay to lease pasture until the new seeding is ready for grazing. Four months of grazing must be leased during each year of deferment. The annual deferment

Table 4: Economic analysis of a hypothetical 1000 -acre range seeding with a 20 -year expected life and a 10 percent opportunity cost.

Added Coster,	Present Value	Cost Shaxe	W/75\% Youx Vabues
Initial costs			
plowing (\$9/ae)	\% 8,000	\$2,500	
Drining (88/a9)	8,000	2000	
Seed (3403ec).	49,000	10,000	
Weed control (s30/8en)	30,000	7.300	
Fence (materhas, Isbor, 2 * \$2000/mi.)	4,000	1,000.	
Hisk of failure 20% " (seed + carling + weed onntrol costs)]	15,600	S900	\square
Total Trithat Costs	S106,600.	\$86650,	
Future costs:			
$81001+606,6761,06209$			
	5.555	5,536	
$\begin{aligned} & 4 \text { movthe/gy. } 100 \mathrm{AUMB}=400 \mathrm{AUMs} \\ & 400 \mathrm{AUM}=\$ 8 / \mathrm{AUM}=\$ 3200 \end{aligned}$			
\$3000 * $17730=\$ 5655$			
Addedcelf costs.	339	339	
4/hear 10 calves $=80$			
\$50. $8.201-410$			
\$410, 08824-8369			
Yearing steer purchase	57.187	57.187	
30 head © rris mbe			
\$69200*08864 $=877187$			
Added steeroosten, 1.017 . 1.017			
\$3 head * 30 heas $\$ 150$			
\$150-8201-81230,			
\$1230 * 08264 $5810{ }^{\text {a }}$			
Graing fees $\quad 1.182$			
3 montis * \$ 186 Ledad month			
\$5.58 Herd 30 head $-\$ 167$:			
\$126. $8.201=588 \% 0$			
Total Future Costs	8.65.702	\$65,700	
Break Even Requireraent			
A. Armual equivarent of total present			
Watue of costs			
1. Without cose share,			
\$172.00\% $=\$ 808.497$			
0.8264			
2.201			
2. Weth cost sharet			
$89,66 \mathrm{E}, \mathrm{Q} 1,72$			
08864			
\$111.752 - 613,687 (mmuna cost)			
8201			
B. Annual rehras			
7 c calves $\times 2516$ S			
10 calves \%46 los:			
30 steest 700865.			
Total los beef - 26 ,600			
C. Breateven response.			
1. Without costshare 㐌 With cost ghare:			
26,500 hos. \quad \% $26,500 \mathrm{hes}$			
Reducedred coste			
$100 \mathrm{heat} \$ 81 / \mathrm{day}=\$ 800$			
$3100 / 6 \mathrm{y}$ \% $60 \mathrm{days}=66000$			
\$6000 * 8 $201,449,206$,			
\$49205 0 8264 - S00664			
Mereaseawemuntweggtte. $\quad 8.889$			
70 calves $2 \mathrm{cmbs}-1$ \% 14 s .			
$1760165 *$ Sombu			
\$1312*8201-810\%eg.			
moreased bat crop, , 19,004			
\$2813 $4801-$ Y83969			
\$3,600 18824 , 19066			
Stecrsmeg , \quad, 32.511			
21,004			
Netresent V/wery (ocosesmate) - -			
Net Fresent Watue (w/7steost shate)			

cost is $\$ 3200$ and is discounted as a flow to present value over the twoyear deferment period.

Break-even value calculations in Table 4 are made with and without cost-sharing. The calculations follow the same procedure used in the water development example, with one minor variation. Because the seeding will not begin to produce returns antil two years after money is invested, two years of interest must be charged to the seeding. That interesteither would have been paid on a loan to begin the improvement or lost because the producer's own money was invested in the seeding rather then elsewhere at 10 percent. To account for this interest cost, the total added costs are compounded over a twoyeax period a 10 percent. To do this divide the total added costs by the dis-
count factor for two years and 10 percent. The new values, $\$ 208,497$ and $\$ 111,752$, are then payed off over the remaining 18 years of seeding life. Use the discount factor for 18 years and 10 percent, or 8.201 to arrive at the annual equivalent of total costs.

The annual return was estimated as the pounds of beef produced. This included 70 calves weighing 25 pounds more at weaning, 10 additional 375 pound calves and 30 steers weighing 700 pounds each for a total of 26,500 pounds of beef. Divide the annual equivalent costs by the total pounds of beef produced annually. This gives the breakeven values of $\$ 0.96$ per pound without cost-share and $\$ 0.51$ per pound with cost-share. From these values, it is clear that only the cost-share option appears profitable. It is unlikely that the producer will receive an average price of $\$ 0.96$ per pound of beef in every year over the next 20 years.

Added returns from this improvement include reduced winter feeding costs, increased weaning weights, increased calf crop and receipts from steer sales. The seeding also increases forage production, but the value of that extra forage is equal to the value of steer sales because the grass is harvested by the steers. All added returns are flows discounted over the 20 -year life of the seeding. Because returns are not expected until after the second year of deferment, their income flows are discounted over an 18-year period, and then discounted to present value.

In the last step of the analysis, present value of total added returns from this improvement are subtracted from present value of total added costs to find the net present value. The net present value over the 20 -year life of the seeding without 75 percent cost-share results in a loss of $\$ 11,184$; net return with cost-share is a positive $\$ 68,766$. Therefore, the seeding appears to be a good investment if it is cost-shared.

Other Considerations

While net return and break-even value information provide important economic measures of the profitability of range improvements, other factors require consideration. Biological, ecological and production concerns should enter into the decision. A producer should know how a partieular improvement affects present and future cash flow. Certain improvements may make it more difficult to meet financial obligations on time or restrict cash avallabilty. Producers also need to consider whether sumficient cash is available to cover the large initial expenses required. Some improvements may be cost-shared through local Agricultural Stablization and Conservation (ASC) offices. This can help ease the initial investment problem. Finally, the effect of any range improvement on income taxes should be assessed, preterably by a competent agricultural tax accountant.

Several sources of assistance are available to producers. Colorado State University Cooperative Extension and USDA-Soil Conservation Service personnel can help estimate and quantify the expected benefits of improvement practices and provide technical assistance for planning and implementation.

[^0]: 2AVM (animal-unit month) is the amount of forage consumed by a 1,000 -pound cow in one month. In general usage, this amount is considered 800 pounds of forage on a dry matter basis.

