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ABSTRACT 

An eighteen level axisymmetric primitive equation tropical cyclone 

model which incorporates the Arakawa-Schubert (1974) spectral cumulus 

parameterization is presented. The quasi-equilibrium hypothesis, which 

involves the solution of an integral equation for the cloud base mass 

flux distribution, is successfully formulated as an optimization pro-

blem to guarantee a nonnegative solution. A linear analysis suggests 

that in the tropics a large fraction of the available potential energy 

generated by the release of latent heat is partitioned to gravity-

inertia wave motion and hence is radiated away to the far field. There-

fore, an approximate pure gravity wave radiation boundary condition is 

derived which minimizes the reflection of gravity-inertia waves by the 

lateral boundary of the model. 

The sensitivity of axisymmetric model storm development to the 

exact form of the lateral boundary condition, initial moisture distri-

bution, and latent heat release mechanism is tested. It is demon-

strated that the development of a hurricane-like circulation can be 

simulated without parameterized convection as suggested by Rosenthal 

(1978). Several other sensitivity experiments are conducted to address 

the roles of radiation and cumulus momentum transport in tropical 

cyclone development. The numerical results lead to the conclusion that 

neither of these processes should be neglected in attempts to numeri-

cally simulate the life cycle of the tropical cyclone since they appear 

to contribute significantly to the organization and scale of tropical 

disturbances. 
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1.0 INTRODUCTION 

The genesis and intensification of the tropical cyclone must cer-

tainly rank: among the most spectacular of atmospheric phenomena. 

Observational studies have long since established that the energy to 

drive these storms is obtained from the release of latent heat in deep 

cumulus convection (e.g. Riehl and Malkus, 1961; Yanai, 1961a, b). 

Unfortunately, however, the details of the interactions between the 

cumulus and large-scale which give rise to the formation of a tropical 

storm are much less well understood. 

Early linear stability analyses of the growth of small amplitude 

perturbations in a conditionally unstable environment were unable to 

explain the observed size and growth rates of the tropical cyclone 

(e.g. Haque, 1952; Syono, 1953; Lilly, 1960). Thus, Charney and 

Eliassen (1964) and Ooyama (1964) proposed a mathematical theory in 

which the cloud field is organized so as to give rise to a heat source, 

which causes amplification of the large-scale disturbance, which in 

turn amplifies the cloud field. This cooperative interaction between 

the cloud field and large-scale circulation is more commonly referred 

to as Conditional Instability of the Second Kind (CISK). 

Since the dynamical processes of the tropical cyclone generally 

occur on two widely different space and time scales (large-scale and 

cumulus-scale) both Charney and Eliassen and Ooyama treated the 

convective-scale implicitly, or by what is now called cumulus param-

eterization. Their approach stimulated many efforts to numerically 

simulate the life cycle of the tropical cyclone with more complicated 

nonlinear models (e.g. Ooyama, 1969a, b; Sundqyist, 1970a, b; Yamasaki, 

1968a, b; Rosenthal, 1970; Anthes, 1972). The cumulus parameterization 
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methods employed in these models were highly empirical, neglecting 

many of the physical processes involved in the mutual interaction of 

the convective-scale and large-seale. Although these schemes have 

performed rather well, it is generally agreed that their relatively 

crude character 1imits their ability to contribute to a greater under-

standing of the processes which lead to tropical cyclone formation. 

A theoretically complete and much more satisfying approach to 

cumulus parameterization has been proposed by Arakawa and Schubert 

(1974). Their theory describes the mutual interaction between an 

ensemble of cumulus clouds and the large-scale environment. The 

cloud field (or cloud ensemble) is represented by a spectrum of ideal -

ized model clouds ( 'sub-ensembles') each of which has its own mass, 

heat and moisture budget. The vertical transports accomplished by 

this spectrum of model clouds are actually the convective-scale eddy 

fluxes which appear, for example, in the horizontally averaged budget 

equations for dry static energy s, and water substance q (e.g. Yanai 

et al. s 1973). Thus, knowledge of these eddy fluxes reduces to the 

determination of the cloud base mass flux for each member of the 

spectrum of model clouds. In order to predict the convective-scale 

eddy fluxes, Arakawa and Schubert propose the concept of quasi -

equilibrium which assumes that the cloud base mass flux distribution 

can be related to time changes in the large-seale thermodynamic 

fields. Since this theory is the most physical and mathematically 

elegant approach proposed to date we believe it has the most potential 

for providing additional insight into the interactions between the 

cumulus-scale and large-scale which lead to tropical cyclone develop-

ment. Surprisingly, with the exception of one investigation 
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(Wada, 1979), the theory has yet to be used in the numerical simulation 

of a tropical cyclone. 

In this thesis, we briefly review the axisymmetric primitive 

equation tropical cyclone model first presented by Hack and Schubert 

(1976). The two unique aspects of the model are the convective param-

eterization, which follows the theory presented by Arakawa and Schubert 

(1974), aid the formulation of the lateral boundary condition, which 

can be described as an approximate pure gravity wave radiation condi-

tion. 

From a computational point of view, the most difficult aspect of 

the Arakava-Schubert cumulus parameterization is the solution of the 

integral equation for the cloud base mass flux distribution. The 

various techniques suggested for solving this equation are all deficient 

since they do not guarantee a nonnegative mass flux distribution which 

is a necessary constraint if the solution is to be considered physically 

reasonable. By relaxing the quasi-equi1ibrium assumption, however, 

it is possible to formulate an optimization problem which constrains 

the cloud base mass flux to be nonnegative. This procedure, which 

is referred to as the optimal adjustment method, is discussed in 

chapter 2. 

The particular formulation of the lateral boundary condition is 

motivated by the recent 1inear studies of geostrophic adjustment by 

Schubert et al. (1980) and Silva Dias and Schubert (1979) which suggest 

that in LOW latitudes most of the available.potential energy generated 

by the release of latent heat is partitioned to gravity-wave motion 

and Is therefore radiated away to the far field. A similar argument 
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is extended to a fully stratified model atmosphere (chapter 3) which 

gives rise to the lateral boundary condition employed in the model. 

For nearly two decades the numerical simulation of the development 

of a hurricane circulation with the explicit release of latent heat was 

regarded as unachievable since early attempts to do so ended in ap-

parent failure (Kasahara, 1961, 1962; Syono, 1962). Recently, however, 

Rosenthal (1978) has successfully simulated the development of a 

tropical cyclone in which convective elements are explicitly resolved, 

demonstrating that the failure of these early investigations was 

probably not related to the explicit release of latent heat in a con-

ditionally unstable atmosphere, but rather to a deficient model design. 

In chapter 5 we show that the tropical cyclone model used in this study 

is also capable of producing a hurricane circulation using only the 

explicit release of latent heat, although the desirability of such an 

approach is questionable. 

Recent diagnostic studies of tropical weather systems have iden-

tified net longwave radiational cooling and cumulus-scale transports 

of horizontal momentum as two processes which appear to contribute 

significantly to the large-scale dynamic and thermodynamic budgets 

(e.g. Yanai et al., 1976; Reed and Johnson, 1974; Shapiro, 1978, 

Stevens, 1979). Previous numerical simulations of ths tropical cyclone 

have generally neglected each of these convectively modulated processes. 

In chapter 6 we consider the sensitivity of model storm development to 

the incorporation of each process as well as to the combination. Other 

experiments which examine the sensitivity of model storm development 

to the initial moisture field and the lateral boundary condition are 

also conducted (see chapter 5). The response of. the model is used to 
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assess the significance of each of these effects on tropical cyclone 

development. 



2.0 MODEL DESCRIPTION 

2.1 Large-Scale Governing Equations 

We begin by noting that the large-scale governing equations are 

formulated for an f-plane using axisymmetric cylindrical coordinates 

in the horizontal, and the σ-coordinate in the vertical. Following 

Arakawa and Lamb (1977) we define a as 

where the top boundary pressure pT is a specified constant, and the 

surface pressure p s (or equivalently π) is a function of the horizontal 

coordinate and time. The upper and lower boundaries are respectively 

given by σ = 0 and σ = l. In the special case where p T = 0, (2.1) reduces 

to the definition originally proposed by Phillips (1957). 

The governing equations, which consist of the horizontal momentum 

equations, the hydrostatic equation, the mass continuity equation, the 

thermodynamic equation, the ideal gas law, and the water vapor mass 

continuity equation can be written 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

6 

(2.1) 
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(2.7) 

(2.8) 

where the individual time derivative of an arbitrary scalar quantity 

Ψis given by 

(2.9) 

and the symbols are defined as follows: 
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The formulation of the convective-scale source/sink terms is discussed 

in sections 2.2 and 2.3, while the formulation of the large-scale 

condensation (C) and evaporation (E) is presented in section 2.4. In 

the absence of these terms, (2.2)-(2.7) govern adiabatic inviscid flow. 

As upper and lower boundary conditions we require that air par-

ticles do not cross the σ = 0 and σ = l coordinate surfaces, i.e. 

If we now integrate (2.5) from the top of the vertical column to σ 

using the upper boundary condition, we obtain yet another form of the 

continuity equation 

(2.12) 

Thus, knowledge of the radial wind component u allows computation 

of If by means of (2.11), and πσ may then be diagnosed at any σ level 
dt 

using (2.12). 

Defining the potential temperature 

(2.13) 

(2.10) 

Integrating (2.5) over the entire vertical column using the boundary 

conditions (2.10) gives 

(2.11) 

and using the definition of the vertical coordinate (2.1), allows us 

to rewrite the thermodynamic equation (2.6) as 
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(2.14) 

The system of equations is now complete consisting of ten equations 

(2.11, ?.. 2, 2.3, 2.14, 2.8, 2.1, 2.12, 2.7, 2.4 and 2.13) in the ten 

unknown variables π, u v, T, q, p, σ, α, φ, and θ, all of which are 

functions of the three independent variables (r,σ,t) with the exception 

of π which is a function of (r,t) only. Five of these variables are 

predicted (π, u, V, T and q) while the others are diagnosed. 

For purposes of numerical integration it is more convenient to 

consider the five prognostic equations in flux form rather than in the 

advective form in which they have been introduced. Using the form of 

the continuity equation given by (2.5) and the definition of the total 

derivative (2.9), we obtain the flux form of the individual time deriv-

ative of an arbitrary scalar quantity as 

Accordingly, the prognostic equations can be rewritten, and the com-

plete system of equations can be arranged for numerical integration in 

the following order. 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 
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(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

Initial conditions are required on the five prognostic variables 

π, u, v, T and q. The initialization procedure as well as the initial 

conditions are discussed in chapter 4. The procedure followed in a 

single prognostic cycle is as follows. 

1) Calculate the tendency of π from (2.16). 

2) Using the tendency of π just calculated, calculate πrσ from 

(2.17). 

3) Using (2.18) and (2.19), calculate the geopotential φ from 

(2.20). 

4) Calculate the tendencies of u and v from (2.21) and (2.22). 

5) Using (2.23) calculate the tendency of T from (2.24). 
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6) Calculate the tendency of q from {2,25}. 

7) Return to the first step. 

The discrete model consists of 18 levels in the vertical direction 

( p T = 100 mb) and 64 grid points in the horizontal direction (&r = 15 km). 

Horizontal and vertical finite differencing of (2.16}-(2.25) follow the 

schemes proposed by Arakawa (1972) and Arakawa, Mintz et al. (1974) for 

the UCLA SCM. The vertical differencing is identical to the 1972 UCLA 

scheme while the horizontal differencing is somewhat different due to 

the use of cylindrical coordinates and considerably simpler due to our 

assumption of axisymmetry. A discussion of the finite differencing of 

the large-scale governing equations (2.16)-(2,25) is included in 

Appendix 

2•2 Paramaterization of Cumulus Convection 

The importance of cumulus convection to the genesis, intensifica-

tion and maintenance of the tropical cyclone has long been established 

by observational studies (e.g. Riehl and Maikus s 1961; Yanai, 1961a, b). 

However, early stability analyses (Haque, 1952; Syonot 1953; Lilly, 

1960), which treat the dynamics of the cyclone in most respects like 

a cloud, were unable to account for the observed size and growth rates 

of tropical cyclones. This apparent failure of theory led Charrey and 

Eliasser [1964) and Ooyama (1964) to Introduce the concept of Condi-

tional Instability of the Second Kind (CISK) which embodies 2 coopera-

tive interaction between the cumulus-scale and large-scale. In a 

broad sense, CISK describes a situation in which the large-scale 

circulation is responsible for organizing and maintaining cumulus 

convection by providing the necessary transport of water vapo r , while 

the cumulus-scale drives the large-scale circulation through the 
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release of latent heat in deep convective elements. Both Charney and 

Eliassen and Ooyama dealt with the large-scale explicitly, but treated 

the convective scale implicitly, i.e. the cumulus activity was 

specified to be a function of the large-scale field:;, or was treated 

by what is now commonly referred to as cumulus parameterization. 

Although Charney and Eliassen's and Ooyama's work dealt only with 

the initial growth of a tropical depression, their approach stimulated 

efforts to numerically simulate the life cycle of tropical cyclones 

with more complicated non-linear models. The convective parameteriza-

tions employed in these tropical cyclone models were highly empirical, 

neglecting many of the physical processes involved in the mutual inter-

action of cloud and environment. These included schemes in which the 

convective-scale heating rates were dependent upon the large-scale 

convergence of water vapor in the atmospheric boundary layer (Ooyama, 

1969a, b; Ogura, 1964), and the net large-scale convergence of water 

vapor.throughout the depth of the troposphere (Kuo, 1965). Such schemes 

have performed surprisingly well in numerical integrations (e.g. 

Yaraasaki, 1968a, b; Ooyama, 1969a, b; Rosenthal, 1970; Sundqvist, 1970a, 

b) in which. the model s have produced many of the important features 

observed in tropical cyclones. It is generally agreed, however, that 

these relatively crude techniques are limited in their ability to 

contribute to a greater understanding of the interaction between 

cumulus clouds and the cyclone-scale flow in tropical storms, 

especially during the developing (or nondeveloping) stages. Unfor-

tunately, suitable alternatives were lacking for many years, primarily 

because of a lack of knowledge regarding the interaction of clouds 

with the larger scale. 
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The problem of establishing the physical nature of the interaction 

of organized cumulus convection with the large-scale fields is funda-

mental to tropical meteorology. A clear understanding of this inter-

action is in all likelihood essential to an understanding of why the 

tropical cyclone is such a rare event. In recent years, many diagnos-

tic (and some prognostic) studies have been made which have led to an 

improvement in our knowledge of cumulus convection, and consequently 

to an improvement in cumulus parameterization theory. Simple one 

dimensional cloud models have proven to be useful in diagnosing the 

interaction of precipitating cumulus ensembles with the larger-scale 

motions (e.g. Yanai et al., 1973; Ogura and Cho, 1973; Gray, 1973; 

Nitta, 1377, 1978; Yanai et al., 1976; Johnson, 1976, 1977). The use 

of such idealized models of convection has enabled observationalists 

for the first time to extract convective-scale properties directly 

from the large-seale observations. The simpler problem of non-

precipitating trade wind cumulus convection has also been studied 

(e.g. Augstein et al., 1973; Holland and Rasmussen, 1973; Betts, 1975; 

Nitta, 1975) and has contributed to a better understanding of the way 

in which the convective-scale fluxes contribute to the growth and 

maintenance the trade inversion. These and other studies have hel ped 

to establish a general consensus on how cumulus clouds modify the 

large-scale thermodynamic fields. 

Ooyama (1971) recognized the need to improve cumulus parameteriza-

tion theory, and was the first to propose a theory taking into account 

the coexistence of a spectrum of clouds. The clouds were represented 

by independent entraining buoyant elements dispatched from the mixed 

i 
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layer. The theory was not closed, however, since the determination 

of the 'dispatcher function' was left to future consideration. Even 

so, several numerical experiments have been conducted with the theory 

(using empirically derived forms of the dispatcher function) yielding 

reasonable results (Ooyama, 1973; Rosenthal, 1973). 

Arakawa and Schubert (1974) have proposed a closed cumulus param-

eterization theory which describes the interaction of a spectrally 

divided cumulus cloud ensemble with the large-scale environment. With 

the exception of one investigation (Wada, 1979) this theory has yet 

to be used in the numerical simulation of a tropical cylcone. Since 

the theory is the most complete theory proposed to date, we will make 

use of it in this study with the hope that it may help provide 

additional insight into the interactions between the cumulus-scale 

and large-scale which lead to tropical cyclone development. In this 

section we discuss the formulation of the Arakawa-Schubert cumulus 

parameterization theory. Several simplifications have been made 

to the theory for computational reasons and will be noted in the 

discussion. 

The mutual interaction between the cloud ensemble and the large-

scale environment is conceptually illustrated in Fig. 2.1 where the 

equations of the theory have been grouped into three categories: 

feedback, static control, and dynamic control (Schubert, 1974). The 

equations which constitute the feedback part of the loop describe 

how the cumulus-scale transport terms and source/sink terms modify 

the large-scale thermodynamic fields, while the equations comprising 

the static and dynamic control parts of the interaction loop describe 



Figure 2.1 Schematic representation of cloud-environment interaction 
(after Schubert, 1974). 

15 
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how the properties of the cloud ensemble are controlled by the large-

scale fields. We continue our discussion of the parameterization 

theory within this framework. 

2.2.1 Feedback 

The complete theory divides the large-scale environment into a 

subcloud mixed layer of variable depth and the region of cumulus con-

vection above the mixed layer, separated by an infinitesimally thin 

transition layer (see Fig. 2.2). In the subcloud mixed layer the dry 

static energy (s = CpT + φ), water vapor mixing ratio q, and therefore 

the moist static energy h, are constant with height and are denoted 

by the symbols s M , q M , and h M . The top of the subcloud mixed layer 

PB is generally somewhat below cloud base p C . Below P B , convective-

scale transports are accomplished by the turbulence of the mixed layer, 

where the turbulence is confined below pB by the stable and infinites-

imally thin transition layer. Across the transition layer there can 

be discontinuities in the dry static energy and moisture, as; well as 

discontinuities in the convective-scale fluxes. Above p B the convec-

tive-scale transports are accomplished by the cloud ensemble. Let us 

write the heat and moisture budget equations for this region in terms 

of dry static energy -s and water vapor mixing ratio q (c~. Yanai 

et al., 1973). These are 

9S 

9t 
4- U ' s ' ) + Lb + qD (2.26) I 

and 



Figure 2.2 Typical ITCZ profiles of s , h , and F * . Above p g these profiles are 

those of Yanai et al. (1973). The schematic sub-ensemble has cloud 

base p_ slightly above p^. The mass flux at level p is r,(p,p)mB(p)dps 

while the mass flux at p R is m R(p)dp. 
B B 

1
7 
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The barred quantities represent horizontal averages over an area large 

enough to contain an ensemble of clouds, but small enough so as only 

to cover a fraction of a large-scale disturbance. The primed quanti-

ties represent deviations from the horizontal averages and are inter-

preted as convective-scale properties, while the quantity F; is the 

convective-scale liquid water sink (i.e. the water removed by convec-

tion in the form of precipitation). The 1iquid water static energy 

s = s - La is the static energy analogue of the liquid water potential 

temperature introduced by Betts (1975). 

In addition to the vertical transport of heat and moisture, we 

allow the cumulus ensemble to vertically transport (i.e. redistribute) 

horizontal momentum. A budget equation, which is similar to those 

for heat and moisture, can be derived for the horizontal momentum W 

and is written 

(2.27) 

(2.28) 

Following Schubert (1974) we express the convective-scale fluxes of 

dry static energy, water vapor, liquid water, and horizontal momen-

tum as 

(2.29) 
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We see from (2.29)-(2.32) that the cumulus cloud ensemble has been 

spectrally divided into 'sub-ensembles' each of which is characterized 

by its pressure depth p E P B ~ P D , where p Q is the detrainment pressure 

level. Our use of p as the spectral parameter differs from the origi-

nal formulation in which the sub-ensembles were characterized by the 

fractional entrainment rate X . This alteration is motivated by 

computational convenience and will be discussed further when we con-

sider the dynamic control part of the theory. Thus, the dry static 

energy, water vapor, liquid water and horizontal vector momentum inside 

sub-ensemble p at level p are respectively denoted by s (p,p), q (p,p), 
c c 

£(p ,p) cind (p,p). The vertical mass flux at level p due to sub-

ensemble p is n(p,p)m B(p)dp where n(p>p) is the normalized mass flux 

(2.30) 

(2.31) 

(2.32) 
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which has unit value at the top of the sub-cloud mixed layer pR. A 

simple physical interpretation of (2.29)-(2.32) is that for each sub-

ensemble p, the net upward flux at level p of a particular quantity 

(such as s or W) i s given by the difference between the upward flux 

of that quantity inside the sub-ensemble (denoted by subscript c) and 

the downward flux of the environmental value (denoted by a bar). This 

downward mass flux in the environment is merely the compensating sub-

sidence produced by the sub-ensemble. Since the environment does not 

contain liquid water there is no downward flux of l iquid water due to 

environmental subsidence, and the convective-scale liquid water flux 

takes a simpler form. The total ensemble flux at level p> of any 

quantity (such as F s or F^) i s then given by an integral over al l 

sub-ensembles which penetrate level p. 

By combining the three basic fluxes F s , Fq, and F^ we can rewrite 

(2.26) and (2.27) as 

and 

where 

(2.33) 

(2.34) 

(2.35) 

(2.36) 
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and the larger scale contributions to the time derivatives on the left 

hand side of (2.26) and (2.27) have been grouped into one term denoted 

with the subscript. L.S. Similarly, (2.28) can also be rewritten 

The expression for R states that the quantity of water removed from 

the atmosphere at level p by sub-ensemble p is simply proportional to 

the sib-ensemble liquid water content at that level. Physically this 

means that a certain fraction of the liquid water content (or cloud 

droplets) of each sub-ensemble is converted to raindroplets (as 

specified by the coefficient c Q(p)) which are immediately removed 

from the system (i.e. they are assumed to reach the ground without 

evaporating). As originally formulated, Arakawa and Schubert chose 

a constant autoconversion coefficient c of 2.0 x 1 0 " \ f ̂  so that the 
o 

calculated values of the cloud liquid water content would approximately 

agree with observed values. However, Silva Dias and Schubert (1977) 

used ;he results of a theoretical parametric model of cumulus convection 

(Lopez, 1973) to demonstrate that a constant value of c probably 

underestimated the precipitation associated with deep clouds while 

overestimating the precipitation associated with shallow clouds. In 

a one dimensional ('semi-prognostic') model which incorporated the 

(2.37) 

(2.38) 

The convective liquid water sink R is defined by 
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Arakawa-Schubert parameterization scheme, they went on to show that the 

choice of a variable autoconversion coefficient (which p-oduced more 

reasonable precipitation rates) had little effect on the cloud popula-

tion produced by the model, although it did slightly decease the 

magnitude of the temperature and moisture tendencies associated with 

the parameterized convection. Thus, we have chosen to use an auto-
A 

conversion coefficient c Q which is dependent upon p 'see Fig. 2.3) 

such that the deep clouds are more efficient at producing precipita-

tion while the shallow clouds are less efficient. 

Since R(p) then represents the total ensemble sink of liquid 

water at level p, we obtain the total ensemble precipitation rate (P) 

by integrating R(p) over the depth of the model atmosphere, 

Below Pg the convective-scale fluxes of s, q and W are linear in 

pressure with the values (Fg)^ a n d ^S a t : h e 5 U r f a c e > and 

the convective-scale flux of I is zero everywhere. In the complete 

theory, the surface fluxes and convective-scale fluxes of heat and 

moisture at Pg determine the time variation of the depth of the sub-

cloud mixed layer. However, the present version of the tropical 

cyclone model does not include a mixed layer of variable depth, but 

rather a 'mixed layer' whose top is defined by a fixed sigma coordinate 

surface. Thus, for computational reasons, we find it necessary to 

modify the way in which the cumulus ensemble interacts with the mixed 

layer. This modification involves allowing the cumulus convection to 

directly influence the energy budget of the mixed layer, rather than 

(2.39) 



p 

Figure 2.3 The autoconversion coefficient c (p). 
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We note that in the above formulation, the convective-scale fluxes of 

s and q are continuous across the top of the subclouc mixed layer even 

though the large-scale values are not. One additional approximation 

we make is that the cloud base p^ and the top of the model mixed layer 

Pg are one and the same. 

(2.44) 

In (2.43) the symbol delta represents the jump of the particular 

property across the top of the sub-cloud mixed layer p B(e.g. As E 

s(p B )-s M). The quantity Mg is the total cloud base mass flux 

associated with the cumulus ensemble, i.e. 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

and 

where 

determining the depth of the mixed layer as in the more general theory. 

The budget equations for the dry static energy, moisture and momentum 

of the mixed layer (s^, q^ and W ^ respectively) are given by 
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The cumulus ensemble transport terms, , F ^ , Mg, and 

the cumulus ensemble source/sink term R constitute the feedback part 

of the interaction loop shown in Fig. 2.1. From (2.29), (2.30), (2.31), 

(2.,32), (2.38) and (2.44) we see that the determination of these quan-

tities is equivalent to the determination of r|(p,p), s (p,p), q (p,p), 

Jl(p,p), \V (p,p) and m D(p). All except m D(p) are determined in the 
C D D 

static control part of the interaction loop while nig(p) is determined 

by the dynamic control. Once these quantities are known, it is possible 

to predict the time variation of the temperature and moisture field 

both above and below p D . o 

2.2.2 Static control 

The sib-ensemble normalized mass flux, moist static energy and 

total water' content are determined from their respective budget equa-

tions. These are given by 

(2.45) 

(2.46) 

(2.47) 

and 

where the fractional entrainment rate A(p) has the units Pa~^ . The air 

inside the sub-ensembles (or clouds) is assumed to be saturated at a 

temperature only siightly different than the environment, an assumption 

which gives rise to the saturation relation 

(2.48) 
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where q*(p) is the saturation value of q at level p, h*(p) is the 

saturated moist static energy at level p and y ( p ) = ~ (cf. 

ol „ 
P
 L J P 

Arakawa, 1969). In order to determine the individual sub-ensemble 

budgets, knowledge of the fractional entrainment rate X(p) is required. 

This entraiinment rate is given by the vanishing bouyancy condition 
(2.49) 

(2.50) 

or using the definition of the virtual dry static energy^ 

where 6 = 0.608 . 

The sub-ensemble horizontal momentum W c(p,p) must be determined 

as a function of the large-scale dynamic and thermodynamic fields. 

This is a more difficult problem, since W (p,p) is not a conserved 

quantity as are some thermodynamic properties. Convective-scale 

pressure gradients, as well as stresses produced by the large shears 

present between the updraft and environment motions, are likely to 

produce some modification to the 'in cloud' horizontal momentum. How-

ever, here we follow the simple alternative (e.g. Ooyama, 1971; Arakawa, 

Mintz et al., 1974; Schneider and Lindzen, 1976) of assuming that \\'c 

is conservative. This leads to the sub-ensemble budget equation for 

momentum 

(2.51) 

Thus, the static control part of the interaction loop consists of 

the six equations (2.45)-(2.48), (2.50), and (2.51) in the six unknown 

The effects of liquid water have been neglected. 
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variables n(p,p), s c(p,p), q c(p,p), &(p,p), X(p), and \Vc(p,p). Since 

(2.45)-(2.47) and (2.51) are differential equations which are solved 

upward from Pg, they require the appropriate boundary conditions which 

are r,(pB p) = 1, h c(p B,p) = h M , q c(p B,p) = q M , A(p B >p) = 0 and W c ( p B , p ) = 

W M ' 

2.2.3 Dynamic control and the optimal adjustment method 

The last remaining problem is the determination of the mass flux 

distribution function m B(p) since once it is known, the time variation 

of the temperature, moisture and momentum fields can be predicted from 

(2.33), (2.34), (2.37) and (2.40)-(2.42). In order to determine 

mg(p), Arakawa and Schubert first introduce the cloud work function 

(2.52) 

an integral measure of the bouyancy force associated with sub-ensemble 

p, with the weighting function n(p»p)• Physically, A(p)> 0 can be 

thought of as a generalized criterion for moist convective instability, 

while A(p) £ 0 is indicative of a neutral or stable situation. It is 

also a measure of the efficiency of kinetic energy generation by buoy-

ancy forces for sub-ensemble p. Since the variables in the integrand 

of (2.52] are either prognostic variables, or are related diagnostically 

to prognostic variables, the time rate of change of A(p) can be written 

in terms of the time derivatives of s^, q^, s(p), and q(p) (we here-

after refer to barred and mixed layer quantities as 'large-scale' 

quantities). These time derivatives are in turn related to two types 

of terms convective-scale terms which are proportional to the cloud 

base mass flux distribution m D(p), and the large-scale terms which 
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include horizontal and vertical advection, radiation, and surface 

eddy fluxes (see equations (2.26), (2.27) and (2.40)-(2.41)). Thus, 

the time rate of change of A(p) can be expressed as the sum of convec-

tively induced changes and large-scale changes (in wrich we have in-

cluded surface eddy fluxes), or 

Since the convective-scale terms depend linearly on m B(p) and a' 

sub-ensembles participate in determining j , we can write 
a t C.S. 

where the kernel K(p,p') and the forcing F^ $ (p) are known. The 

kernel represents either a destruction or generation of A(p) by sub-

ensemble p' if sub-ensemble p" has unit cloud base mass flux. 

Arakawa and Schubert proposed a closure hypothesis, referred to 

as quasi-equilibrium, which requires balance between tie large-scale 

generation of A(p) and the convective-scale destruction of A(p) for 

all sub-ensembles. Mathematically this closure hypothesis takes the 

form 

( 2 . 5 3 ) 

( 2 . 5 4 ) 

( 2 . 5 E i ) 

It is appropriate at this point to consider the use of p (pressure 

depth) as the spectral parameter, rather than X (fractional entrainmert 

rate) as in the original theory. Because we will be incorporating 

the parameterization scheme in a vertically discrete model atmosphere. 
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The use o- p as the spectral parameter gives rise to a second term 

which was not present in the original theory. This involves the time 

rate of change of the fractional entrainment rate of sub-ensemble p, 

since A is now an independent variable. The selection of the spectral 

parameter is one of the arbitrary aspects of the cloud model, and it 

is not clear that the choice of X has any more physical significance 

than the choice of p; i.e. the choice of p as the spectral parameter 

may be just as reasonable as the choice of X. As one example, Lord 

(1978) has recently assembled observational evidence which shows the 

cloud work function to be a quasi-universal function of detrainment 

level Pj, , Since this is yet an unresolved aspect of the cloud model, 

In the absence of surface pressure variations, our spectral 
parameter of sub-ensemble pressure depth reduces to sub-ensemble 
detrainment pressure level as suggested by Lord (1973). 

(2.56) 

the use of A as the spectral parameter must be reconsidered since in 

order to follow sub-ensemble X in time, the detrainment pressure level 

Pg(A) (and hence the detrainment sigma level a^(A)) would become a 

function of time. Since the vertical coordinate is fixed for all time 

at a finite number of points, X could be retained only with interpola-

tion of the cloud work function in X-space which would introduce sig-

nificant errors in the application of the theory. Thus we have chosen 

p, the cloud depth pressure as the spectral parameter since the cal-

culation of -^[P^ poses much less of a computational problem. 

dt 

We now note that this change in the spectral parameter somewhat 

alters quasi-equilibrium as originally formulated, since f ' 

The exact relationship between the two forms can be written 
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and since from a computational point of view we are forced to use a 

spectral parameter other than fractional entrainment rate, we proceed 

with our use of p noting the modification this makes to the original 

formulation of quasi-equilibrium. 

Requiring balance between the large-scale generation and convec-

tive-scale destruction of A(p) means that our equation for mg(p) takes 

the form of a Fredholm integral equation of the first kind. The 

various schemes suggested for solving this type of equation do not 

guarantee a non-negative mass flux distribution which is a necessary 

constraint if the solution is to be regarded as physically reasonable, 

In order to avoid the difficulties associated with obtaining negative 

cloud base mass fluxes in the solution, we have chosen to restate the 

quasi-equilibrium hypothesis as an optimization problem (Hack and 
A 

Schubert, 1976) which can be written in the following farm. Let P 

represent the subset of the p domain for which F̂  (p) > 0. We wish 

then to 

subject to 

(2 .5 ; ' ) 

Formulating the problem in this way requires quasi-equilibrium to be 

satisified as closely as possible while constraining the cloud base 

mass flux distribution to be non-negative. This particular formulation 
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of the problem is referred to as the 'overadjustment case' by Silva 

Dias and Schubert (1977) who have investigated other formulations of 

the optimation problem (underadjustment and free variable cases). In 

(2.57) both and m D ( p ) are regarded as unknowns while c(p), 
dt D 

K(p,p') and F^ s (p) are regarded as knowns. The weighting function 

c (p) is defined to be negative in order to maintain a mathematically 

well posec minimization problem. The discrete form of (2.57) turns 

out to be a linear programming problem which is readily solved using 

the simplex method (Dantzig, 1963; Luenberger, 1973) and is discussed 

in the following paragraphs as the optimal adjustment method. 

As we saw in section 2.2.1, the processes which contribute to 

changes in the large-scale temperature, moisture, and momentum fields 

can be divided into two parts: large-scale terms, consisting of large-

scale horizontal and vertical advection, large-scale pressure gradient 

and Corio is accelerations, radiation and surface eddy fluxes; and 

convective-scale terms, consisting of convective-scale flux divergence 

and source/sink terms (see equations (2.26), (2.27), (2.28), (2.40)-

(2.42)). In the tropical cyclone model, the large-scale terms and 

convective-scale terms are computed separately using different time 

steps. Typically these time steps are 20 seconds for the large-scale 

terms and 300 seconds for the convective-scale terms. Thus, it is 

convenient from a computational point of view to formulate the cumulus 

parameterization in terms of an adjustment process. Although we have 

used the word 'adjustment' our procedure should not be confused with 

the moist convective adjustment methods used in many numerical models. 

The adjustment process we will discuss is purely a consequence of the 

time discretization associated with the numerical model. 
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Let us define the atmosphere to be stable to sub-ensemble p if 

the cloud work function A(p) is smaller than some critical value A c ( p ) . 

Thus, the atmosphere is considered to be respectively neutral or un-

stable to each sub-ensemble depending on whether A(p) equals or exceeds 

this critical value. If the large-scale terms push the atmosphere into 

an unstable state, it is the job of the dynamic: control (2.57) to 

determine a mass flux distribution which will adjust the atmosphere 

back at least to (but at the same time as close as possible to) the 

neutral state for each p subject to the constraint that each sub-

ensemble mass flux be non-negative (see Fig. 2.4). This is the dis-

crete analogue of (2.57) which we will discuss in mathematical form 

in the remainder of this section. 

Suppose we have n cloud types (where a 'cloud-type' is the dis-

crete analogue of 'sub-ensemble'). Let m D be the cloud base mass 
13 i X L • . 1 

flux of the i cloud type and b.. be the amount that the ith cloud 

work function exceeds the neutral (or critical) value ( b ^ > 0 ) . If 

cloud type j contributes an amount K.. per unit mass flux to the re-• 3 

duction of b. (where K.^ is the discrete analogue of the kernel 

K(p,p"')), we can write 

(2.58) 



Figure 2.4 Schematic representation of the optimal adjustment method. 
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Equation (2,58) states that an adjustment greater than or equal to b. 

must occur for each i and that each sub-ensemble (cloud type) mass flux 

must be non-negative. 

Each inequality in (2.58) can be converted to an equality by 

introducing a 'surplus variable' x. For inequality i, the surplus 

variable x^ represents the surplus adjustment done to work function i. 

Thus, inequality i takes the form 

(2.5 9) 

The objective is to minimize some measure of the surplus adjustment. 

Assuming that this measure is linear and gross in character we can 

write 

subject to 

and 

(2.60) 

where ci are the weights. In more compact vector notation we can 

write 
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subject to 

subject to 

(2.61) 

Thus we have one minimization objective, n adjustment constraints and 

2n non-negativity constraints. Solution of the problem yields the n 

unknown sub-ensemble mass fluxes, the n unknown surplus adjustments, 

n 
and the value of our objective function, T c.x. , which is a gross 

i=l 1 1 

measure of the surplus adjustment. The optimization problem as for-

mulated is easily solved using the simplex method of linear programming. 

From a computational point of view however this 'overadjustment' for-

mulation is not the most convenient way to go since the simplex proce-

dure requires a basic feasible solution with which to start, A simple 

reinterpretation of the optimization problem allows the formulation of 

the 'underadjustment case' which can be written (cf. Silva Dias and 

Schubert, 1977) 

(2.62) 

In this case, the initial basic feasible solution required by the 

simplex procedure is given by the 'slack variables' x . 

Silva Dias and Schubert (1977) have studied the sensitivity of the 

linear programming problem to the selection of the weighting function 
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c and have determined that the most physically reasonable results are 

obtained when using c ^ b f ^ (i.e. making the weighting -unction inversely 

proportional to the desired adjustment). This is the procedure we 

fol1ow in this study. 

2.3 Representation of Other Convective-Scale Processes and Radiation 

2.3.1 Surface energy exchanges 

As knowledge of the planetary boundary layer has improved, so have 

boundary layer parameterization methods. A large number of these 

methods now exist in the published 1iterature, many of which treat 

boundary layer processes in detail employing sophisticated techniques 

to estimate surface energy interactions. Although some recent modeling 

efforts have begun to make use of some of these approaches (e.g. 

Kurihara and Tuleya, 1974; Rosenthal, 1978), the crude assumptions we 

have made in section 2.2 regarding the behavior of our model 'mixed 

layer' would not seem to justify the immediate use of tiese schemes. 

Consequently., all surface energy exchanges are simply parameterized 

by the bulk aerodynamic method. 

The flux of dry static energy (equivalently sensible heat) from 

the sea surface is given by 

(2.62) 

(2.64) 

(2.65) 

the flux of total water (water vapor) by 

and the surface stress by 
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where there is no distinction between the exchange coefficients for 

heat, moisture, or momentum. We have chosen 

(2.67) 

(2.68) 

and 

(2.69) 

(2.70) 

( 2 . 7 2 ) 

(2.66) 

a value which is most consistent with those estimated from observations 

(see Businge" and Sequin, 1977). 

2.3.2 Horizontal and vertical diffusion processes 

In addition to the parameterized vertical transports of heat, 

moisture and momentum discussed in section 2.2, we also include non-

linear horizontal and vertical eddy diffusion processes. These can be 

written as 

The lateral eddy mixing coefficient is written as the sum of a linear 

and nonlinear term 

( 2 . 7 1 ) 

where the second term comes from the nonlinear viscosity scheme pro-

posed by Smagorinsky (1963). The quantity |0| is the magnitude of the 

total deformation field defined as 
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(2.74) 

(2.75) 

where p is the density and K is the vertical eddy mixing coefficient 
v 

defined as 

(2.76) 

A constant vertical mixing length of 30 m is chosen for which cor-

responds to the 'neutral mixing length' used in Kurihara and Tuleya 

(1974). 

In order to gain some insight into what constitute acceptable 

values of the constant eddy mixing coefficients K^ and K , we 
o v o 

proceed with the following analysis. We start with the horizontal 

diffusion problem by considering a linearized tangential momentum 

equation of the form 

and the characteristic horizontal length scale is given by 

(2.73) 

A value of 0.2 is used for the parameter k . This va'ue has been used 

o 

in previous modeling studies of the tropical cyclone giving maximum 

4 

values of the nonlinear term on the order of 2 x 1 0 m'/s in the eye-

wall of the model storm (Kurihara, 1975; Rosenthal, 1978). 

The turbulent fluxes of momentum (or internal stresses) attribut-

able to convective-scale eddies (other than those due to parameterized 

moist convection) are given by 

and 
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the first order transform of (2.77) can be written as 

(2.77) 

(2.78) 

Integrating (2.79) by parts gives 

(2.79) 

(2.80) 

which can be simplified to 

(2.81) 

The solution to the transformed governing equation is 

(2.82) 

from which we obtain the solution to our original equation (2.77) as 

(2.83) 

In order to see more clearly what effect the choice of K^ has on 
o 

the solution, we evaluate (2.83) for an initial tangential wind of the 

form 

Defining the order m Hankel transform pair as 
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Figure 2.5 The normalized Hankel transform of the in i t ia l wind 
f ield given by (2.84). 
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The Hankel transformed initial condition is 

(2.84) 

(2.85) 

which can also be written (see Erdelyi et al., 1954, Volume 2, pg. 29) 

(2.86) 

This transform is plotted for selected values of r Q (50, 100, and 200 
A 

km) in Fig. 2.5. This figure (which shows v(k,0) normalized by its 

maximum value as a function of k) suggests considerably faster decay 

for the smaller of the three vortices since a much larger portion of 

its amplitude spectrum is concentrated in high wavenumbers. Substi-

tuting (2.86) into (2.83) we obtain the time dependent solution for 

initial condition (2.84) as 

(2.87) 

The solution is plotted as a function of r/r Q for selected values of 

t (where t is expressed in terms of r and IC, ) in Fig. 2.6. 
o n 0 

It is often more useful to study the time dependent nature of 

some property of the solution such as kinetic energy. Defining the 

f°° 2 
total kinetic energy of the system to be KE = v rdr «, we use (2.87) 

o 
to obtain the normalized kinetic energy as a function of time 



r / r 0 

Figure 2.6 Time dependent behavior of the initial wind field given by (2.84). 
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(2.88) 

where (KE)Q is the initial total kinetic energy associated with (2.84) 

This normal*zed kinetic energy is plotted as a function of dimension-

less time in Fig. 2.7. Let us contrast the dissipation of 

kinetic energy with the decay of the maximum tangential wind. The 

radius of the maximum tangential wind can be expressed by 

(2.89) 

Substituting this relation into (2.87) leads to an expression for the 

maximum tangential wind as a function of time 

(2.90) 

which is plotted in Fig. 2.8. Comparison of (2.88) and (2.90) shows 

that the kinetic energy of the system is at all times decaying at a 

faster rate. 

Thus, we consider the time it takes to halve the initial vortex 

kinetic energy as a function of K„ . (The maximum tangential wind for 

this time is given by v m a x = 0.595.) Since previous axisymmetric 

tropical cyclone (cloud cluster) models have used values of « H which 

0 0 C p 

range from 10 m /s (e.g. Ooyama, 1969a) to 10 m /s (e.g. Fingerhut, 

1978), we have constructed Table 2.1 which shows the time (in days) 

it takes to halve the initial total kinetic energy for r Q = 50, 100, and 
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Figure 2.7 Time dependent behavior of the normalized 

total kinetic energy associated with the 

initial wind field given by (2.84). 

V, max 

2KH( 
TQ 

Figure 2.8 Time dependent behavior of the maximum wind 

associated with the vortex initially given 

by (2.84). 
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KH ( M 2
/ s ) 

r Q(km) 

KH ( M 2
/ s ) 

50 100 200 

10 3 5.993 23.971 95.883 

10 4 0.599 2.397 9.588 

10 5 0.060 0.240 0.959 

Table 2.1 The time (in days) required to halve 
the initial total kinetic energy of 
the vortex given by (2.84) for 
r = 50, 100 and 200 km. 
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200 km, and K„ = 10 3, 10 4, and 10 5 m 2/s. Values of the constant 
"o 

4 ? 
horizontal eddy mixing coefficient in excess of 10 m / s seem to give 

unacceptably high decay rates. Consequently, we have chosen K u = 

3 2 0 

5.0x10 m /s for the numerical results presented in this study (cf. 

Rosenthal, 1978). 

Finally, we address the problem of selecting a reasonable value 

of K by considering the linear equation 
v
o 

(2.92] 

the solution of which may be written 

(2.93) 

Since we wish only to investigate the role of internal stresses, we 

apply no stress boundary conditions g = 0 at a = 0,1 to (2.93) which 

yields an expression for the eigenfunctions T
n(tf) 

where (2.94) 

The coefficient A n is chosen to be 

(2.95) 

(2.91) 

where p= constant has been assumed for the purpose of this analysis. 

Assuming a solution of the form v(a,t) = V e Y(o) we obtain 
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in order to guarantee the orthonormality of the eigenfunctions ¥ 

Thus the complete solution can be written 

where 

(2.96) 

(2.97) 

which when integrated by parts gives 

(2.98) 

(2.99) 

(2.100) 

where c-j = 96 and we have chosen - h . Substituting this result 

into (2.96) gives the solution 

As an example, we consider the following initial condition 

where ct^ = 0 and = 1. From (2.97) we have 



Figure 2.9 The vertical structure of the wind field at t=0 and t=24 hours for values 
of the constant vertical eddy mixing coefficient of 1 , 5 and 25 m 2 / s . 
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The solution at t = 0 and t = 1 day is shown for three different values 

2 -3 
of ij (which are interpreted in terms of K assuming p = 0.92 kg m 

o 
and a surface pressure p- of 1000 mb) in Fig. 2.9. The use of K = 

2 0 

25 m /s as In Anthes (1977) appears from this analysis to produce 

an unacceptably large modification of the initial profile after one 

day. Although K -5 is more reasonable, we choose K =1 for the 
v
o

 v
o 

numerical simulations conducted in this study since the vertical 

diffusion is meant to represent turbulent momentum transport attribut-

able to processes other than parameterized convection. In a linear 

sense, we assume this is a small effect. 

2.3.3 Dry convection 

If the potential temperature is ever found to decrease with height, 

we assume that convective-scale dry convection will occur and that a 

dry adiabatic lapse rate will result. This dry adiabatic adjustment 

(or dry convective adjustment) is accomplished with a procedure 

developed by J. W. Kim and A. Arakawa for the UCLA GCM, and is de-

scribed in Appendix C. 

2.3.4 Longwave and shortwave radiative processes 

The ef'ects of longwave and shortwave radiation are included by 

a simple radiative parameterization scheme in which the term Q R 

is determined as the weighted average of a perturbed and unperturbed 

net radiative heating rate. Four radiative heating profiles are con-

tained in a 1ookup table in the model, consisting of a 1ongwave and 

shortwave orofile for both the convectively disturbed and convectively 
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Figure 2.10 The longwave and shortwave radiative heating 
rates for the convectively disturbed and 
convectively suppressed cases (after Cox and 
Griffiths 1979). The shortwave component 
represents an average shortwave heating rate 
for the 12 daylight hours. 

i 
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suppressed cases discussed by Cox and Griffith (1979). These profiles 

are shown in Fig. 2.10. The net radiative heating rates (for both the 

disturbed and suppressed case) are obtained as the sum of their 

respective longwave and shortwave components 

(2.102) 

where the shortwave component is given by 

(2.103) 

and is the shortwave component averaged over the twelve daylight 

hours (see Fig. 2.10). The total radiative heating rate Q D/c is 
K p 

obtained as a weighted average of the two profiles (disturbed and 

suppressed) determined above according to the relation 

(2.104) 

(2.105) 

where RH is an average relative humidity in the upper troposphere. 

Presently, we obtain RH from the upper four layers (r« 200 mb) of the 

model and use values of RH = 0.85 and RH . =0.45. 
max m m 

2.3.5 Summary of the convective-scale source terms and radiation 

Let us now summarize the convective-scale source terms which 

appear in the large-scale governing equations. They consist of the 

The weighting parameter is given by 



many processes which have been described in sections 2.2 and 2.3 and 

can be written as 

(2.106) 

(2.107) 

(2.108) 

(2.109) 

2.4 Large-Scale Condensation 

The convective scale condensation, evaporation and precipitation 

caused by the parameterized cumulus convection discussed in section 

2.2 can occur when the atmosphere is not saturated in a large-scale 

sense. In addition, large-scale condensation, evaporation and precip-

itation can occur when the air becomes saturated and remains saturated 

in a large-scale sense. 

Neglecting for the moment convective-scale contributions to the 

heat and moisture budgets allows the thermodynamic equation (2.6) ard 

water vapor mass continuity equation (2.8) to be written as 

and 

(2.110) 

(2.111) 
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where C and E are respectively the rates of large-scale condensation 

and evaporation per unit mass of dry air. If the air is saturated and 

remains saturated, E vanishes and C is related to the individual time 

change of the saturation mixing ratio such that 

(2.112) 

Thus, if in the course of integration the air becomes super-

saturated on the scale of the grid, large-scale condensation and 

release of latent heat is assumed to occur. The excess water removed 

from a supersaturated layer is allowed to precipitate into the next 

1ower layer and to evaporate completely. This process may bring that 

layer to supersaturation, in which case the excess is removed and 

precipitated to the next lower layer. When the bottom layer of the 

model is reached, an excess is assumed to fall to the earth's surface 

as large-scale precipitation. 

The procedure described above is identical to that developed by 

A. Arakawa and J. W. Kim for the UCLA GCM. However, the computational 

procedure employed in the model is somewhat different and is described 

in Appendix C. 



3.0 THE LATERAL BOUNDARY CONDITION 

Numerical simulations of tropical cyclones are invariably attempted 

using models of 1imited horizontal extent, making the task of formulat-

ing an appropriate set of lateral boundary conditions unavoidable. The 

model used in the present study and discussed in chapter 2 is no excep-

tion. The presence of a lateral boundary to the computational domains 

of these models is an artificial construct mandated only by the limita-

tions of the computer. Thus it is important that one seek a condition 

which minimizes the impact of this artificial boundary on the dynamical 

behavior of the phenomena being simulated inside it. 

In a tropical cyclone, the large amount of latent heat released in 

deep convection continually disrupts any approximate balance of the 

mass and wind fields. The way in which the atmosphere responds to this 

heating (through the process of geostrophic or gradient adjustment) 

provides a basis for attaching great importance to the formulation of 

lateral boundary conditions in tropical cyclone models. Most of the 

available potential energy generated by latent heat release (especially 

on small horizontal spatial scales) is partitioned to gravity-inertia 

wave motion. Examples of this energy partition for axisymmetric flow 

on an f-plane can be found in section 3.3 of this thesis, and in 

Schubert et al. (1980), while examples on the equatorial 3-plane can 

be found in Silva Dias and Schubert (1979). This has led us to the 

view that tropical cyclones may be highly radiating systems. Conse-

quently, if the process of geostrophic or gradient adjustment is to 

be properly represented, it is essential that the lateral boundary con-

dition be able to transmit the gravity-inertia wave energy generated by 

the release of latent heat in the interior of the model.. 
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There are two broad classes of tropical cyclone models: balanced 

models and primitive equation models. In a balanced model (e.g. Ogura, 

1964; Kuo, 1965; Ooyama, 1969a 3 b; Sundqvist, 1970a, b) the flow is 

assumed to be axisymmetric and in gradient wind balance. Since gravity-

inertia waves are then filtered, the transient aspects of the geostroph-

ic adjustment1 process are not simulated. Primitive equation models, 

however, may be axisymmetric (e.g. Yamasaki, 1968a, b; Rosenthal, 1970, 

1971 , 1978; Kurihara, 1975) or asymmetric (e.g. Anthes et al.,1971a, b; 

Anthes, 1972; Harrison, 1 973; Kurihara and Tuleya, 1974; Mather, 1974; 

Madala and Piacsek, 1975; Jones, 1977; Kurihara et al., 1979) and in 

either case the geostrophic adjustment process becomes one of the im-

portant physical processes which must be accurately simulated. Because 

of their filtered nature, the formulation of lateral boundary condi-

tions in balanced models is not so difficult. Discussions of this 

problem can be found in Ooyama (1969a) and Sundqvistt (1970a). The 

problem of formulating lateral boundary conditions for primitive equa-

tion models is not so well understood. We will confine our discussion 

of this problem to the formulation of a lateral boundary condition for 

axisymmetric primitive equation models. 

A survey of the 1iterature on primitive equation tropical cyclone 

models indicates that the lateral boundary conditions on the normal 

wind component which have been used involve either the condition of 

zero divergence (Rosenthal, 1970; Anthes, 1971 , 1977; Anthes et al., 

1971a, b; Jones, 1977) or the condition of zero radial wind (Yamasaki, 

1968a, b; Kurihara and Tuleya, 1974; Kurihara, 1975; Rosenthal, 1978). 

1
We shall henceforth use the term 'geostrophic adjustment in the 

broad sense of adjustment to either geostrophic or gradient balance. 
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Rosenthal (1971) has examined the sensitivity of an axisymmetric primi-

tive equation tropical cyclone model to these two boundary conditions 

as functions of the computational domain size. The criterion used to 

assess the behavior of the boundary conditions was the magnitude of 

the maximum surface wind attained during the course of the numerical 

integration (and to a lesser extent, the time required to reach this 

mature state). Results of the numerical integrations "indicated that 

the maximum surface winds attained in those experiments; incorporating 

the condition of zero divergence were relatively insensitive to the 

size of the computational domain. Surface winds in excess of 40 m/s 

were always achieved. In contrast, when using the condition of zero 

radial wind, the model produced weaker surface winds which were highly 

sensitive to the size of the computational domain such that there was 

a 1inear increase of the maximum surface wind with domain size (~16 

m/s per 1000 km). After extrapolating these results tc domain sizes 

in excess of 2000 km, Rosenthal concludes that by enlarging the com-

putational domain to somewhere between 2000 and 3000 knr, differences 

in the numerical result attributable to differences in boundary condi-

tions can be minimized. We believe that this is not the only viable 

interpretation of these results. Another interpretation is that in a 

gross sense (since the transient behavior of the simulated storm is 

not considered) those experiments incorporating the condition of zero 

radial wind begin to behave more like those incorporating the condi-

tion of zero divergence as the computational domain is increased in 

size. The broader issue of whether either boundary condition behaves 

realistically is not addressed. 
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This, we have chosen to approach the problem of lateral boundary 

conditions from a different, essentially 1inear, point of view, with 

the goal of minimizing the reflection of gravity-inertia waves, and 

consequently the distortion of the geostrophic adjustment process. 

We shalI show that such false reflections can be control 1ed by the use 

of a gravity wave radiation condition, if the condition is applied 

separately to each vertical mode. The application of an interface 

boundary condition to selected vertical modes has been discussed for 

1imited area nested forecast models by Elvius (1 977). 

Since the primitive equation tropical cyclone model discussed in 

chapter 2 is based on the sigma coordinate (as are many others), we 

derive in section 3.1 a linearized system of equations formulated in 

this coordinate. The 1inearized system can be split into two problems: 

the vertical structure problem and the horizontal structure problem. 

In section 3.2 we solve the vertical structure problem obtaining the 

eigenvalues and associated vertical structure functions for both an 

atmosphere characterized by a constant static stability and a mean 

tropical static stability. Using these results we explore in section 

3.3 the energy partition between geostrophic flow and gravity-inertia 

waves for an unbalanced initial condition in the mass field. The 

conclusion that most of the initial available potential energy is 

partitioned to gravity-inertia wave motion motivates a search for a 

radiaticn condition which has low reflectivity (section 3.4). Since 

the boundary condition found in section 3.4 is only an approximate 

condition, its usefulness is explored numerically (section 3.5) by 

comparirg it with several other conditions, including those recently 

proposec for use in convection models by Orlanski (1976), Klemp and 

Wilhelmson (1978), Clark (1979) and Lilly (1980). 
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3.1 Linearization of the Large-Scale Governing Equations 

For the purpose of our analysis i t i s more convenient to consider 

the l inear version of (2.2)-(2.7). Neglecting the convective-scale 

source/sink terms, and large-scale condensation and evaporation terns, 

and l inear iz ing about a basic state which i s at rest, we obtain 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

where v = c /c and the basic state static s tab i l i t y has been defined 
1 TV V 

Following the approach of Robert et a l . (1972), Daley (1979), 

Temperton and Williamson (1979) and Kasahara and Purl (1980) we define 

two new dependent variables Φ and ω by 

The use of (3.5) allows (3.1)-(3.4) to be written 

(3.5a) 

(3.5b) 

(3.6) 

(3.7) 
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(3.8) 

(3.9) 

(3.10) 

(3.11) 

Thus, the governing system of 1inear equations consists of (3.6), (3.7) 

and (3.11) in the unknowns u, v and $ . We will now assume that the a 

dependence of u, v and Φ is separable from the (r,t) dependence, i.e. 

(3.12) 

substitution into (3.6), (3.7) and (3.11) yields 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

where gh is the separation constant. The boundary conditions for 

(3.16) can be obtained from (3.10) and are 

The boundary conditions (2.8) become 

Equations (3.8) and (3.9) can be combined to eliminate ω so so that we 

obtain 
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Equation (3.16) is the vertical structure equation for our problem 

and, along with boundary conditions (3.17), gives rise to a countably 

infinite set of eigenvalues gh , and a corresponding set of vertical 
n 

structure functions (eigenfunctions) ^ ( a ) - Since (3."i6) and (3.17) 

constitute a Sturm-Liouville problem, the vertical structure functions 

y n(a) form a complete and orthogonal set on the interval [0,1]. They 

may also be normal ized so that 

We shall present some solutions of (3.16) and (3.17) in section 3.2. 

The linear system (3-13)—(3.15) constitutes the horizontal struc-

ture problem and is more commonly referred to as the divergent baro-

tropic system of equations, or the shallow water equations. In their 

simplest context (3.13)-(3.15) govern small amplitude perturbations in 

a rotating, homogeneous, incompressible, inviscid and hydrostatic fluid 

with a mean free surface height h. We note that the phase speed of a 

pure gravity wave in such a fluid is given by (gh) 2 For the more 

general stratified problem (3.13)-(3.15) govern the horizontal be-

havior of each of the vertical modes arising from the solution of 

(3.17) 

(3.19) 

(3.20) 

A 

where F n(r,t) is obtained from 

Accordingly any function of (r,σ,t) can be represented by. the series 

(3.18) 



Figure 3.1 (a) Eigenfunctions y (a) for constant s ta t i c s t a b i l i t y ; (b) eigenfunctions 
¥ (σ) for the s tat ic s t ab i l i t y prof i le of Fig. 3.3. 

61 
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(3.16) and (3.17). Consequently, the eigenvalue (ghJ" 2, where h is 
r n 

known as the equivalent depth, is interpreted as the pure gravity wave 

phase velocity of the associated vertical mode ^ ( c O . In section 3.4 

we shall use (3.13)-(3.14) to determine an approximate outgoing wave 

condition and to examine the reflectivity of boundary conditions in 

general. 

3.2 Analysis of the Vertical Structure Problem 

The solution of the vertical structure problem requires the spec-

ification of the basic state static stability. The simplest case that 

can be considered is one in which the static stability is a constant. 

For such a situation the normalized eigenfunctions of (3.16) and (3.17) 

are given by 

(3.21) 

(3.22) 

(3.23) 

We see from this approximation that except for the external mode (n = 0), 

the eigenvalues (gh n)
2 are proportional to 1/n. The first eighteen 

exact and approximate eigenvalues, determined from (3.22) and (3.23) 

respectively, are listed in Table 3.1. These results are based on 

u = 9 0 kPa, a(l) = 0.861 m 3 k g _ 1 , and S h= 162.77 m s" 1. The first five 

where is determined from the eigenvalue relation 

A good approximation to (3.22) is 



Figure 3.2 Vertical profiles of for (a) constant static s tab i l i ty and 
(b) the static stabi l i ty of Fig. 3.3. 
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eigenfunctions determined from (3.21) and (3.22) are shown in Fig. 

3.1a. These eigenfunctions portray the vertical structure of the 

dependent variables u , v and $. The variable <o has a vertical struc-

-1 d¥ 

ture proportional to -X n ^ , which is plotted for the first five 

modes in Fig. 3.2a. 

In the tropical atmosphere the basic state static stability vsries 

considerably. This is illustrated in Fig. 3.3 where the vertical pro-

file of S 2 was calculated from the mean tropical clear area temperature 

profile of Gray et al. (1975). The constant value o" S 2 used in the 

earlier calculations is indicated by the vertical dashed line. The 

vertical structure problem (3.16) and (3.17) can be solved numerically 

for this more realistic S 2 profile. The eigenvalues which are obtcined 

are shown in the last column of Table 3.1, and eigenfunctions Y n ard 

-1 d ¥ n 

-X -g^- are shown in Figs. 3.1b and 3.2b respectively. We see that 

the effect of the variable static stability is primarily to increase 

the propagation speeds of the higher order vertical modes. This is 

probably a consequence of the large values of S 2 in the upper tropo-

sphere. We also note that the vertical structure functions are 

strongly modified in this region of high static stability, such that 

the vertical wavelengths are shortened and the amplitudes are increased. 

3.3 Importance of the Lateral Boundary Condition 

Before considering several lateral boundary conditions in the next 

section, v/e attempt to establish the importance of carefully formulated 

lateral boundary conditions in tropical cyclone models. The argument 

presented in this section is that when latent heat generates available 

potential energy on horizontal scales typical of a tropical cyclone; 
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Vertical 
Mode 

n 

Constant Static Stability Stati c 
Stability 

of 
Fiig. 3.3 

Vertical 
Mode 

n 
Equ. (3.22) 

(exact) 

Equ. (3.23) 
(approximate) 

Stati c 
Stability 

of 
Fiig. 3.3 

0 294.15 278.39 287.55 
1 50.14 51.81 51.61 
2 25.69 25.91 26.81 
3 17.21 17.27 19.40 
4 12.93 12.95 14.81 
5 10.35 10.36 11.80 
6 8.63 8.64 9.77 
7 7.40 7.40 8.39 
8 6.47 6.48 7.42 
9 5.75 5.76 6.64 

10 5.18 5.18 6.02 
11 4.71 4.71 5.49 
12 4.32 4.32 5.04 
13 3.99 3.99 4.65 
14 3.70 3.70 4.31 
15 3.45 3.45 4.02 
16 3.24 3.24 3.76 
17 3.05 3.05 3.53 

Table 3.1. The first eighteen exact and approximate 

eigenvlaues ( g h n )
2 , determined from (3.22) 

and (3.23) for the constant static stability 

case, and numerically for the static stabil-

ity profile of Fig. 3.3. Units are m 
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Figure 3.3 Square root of the basic state static stability 
computed from the mean tropical clear area 
temperature profile of Gray et al. (1975). 
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in low latitudes, only a small fraction of the energy ends up in 

balanced flow. The major portion of this energy is partitioned to out-

ward propagating gravity-inertia waves. This lopsided energy partition 

can be illustrated with a simple example. 

For vertical mode n we can show from (3.14) and (3.15) that the 

(3.25) 

(3.26) 

The solution of (3.26) which remains bounded at the origin and at 

infinity and which possesses continuous $n(r,°°) and vn(r,°°) at r = a is 

where I and are the order m modified Bessel functions. 

potential vorticity is locally invariant. Thus, the 

initial and final potential vorticity fields are related by 

(3.27) 

then (3.24) reduces to 

If we assume that the final tangential flow is geostrophic, that the 

initial vorticity vanishes and that the initial geopotential is given 

by 

(3.24) 
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The sum of the kinetic energy and the available potential energy 

associated with the final geostrophic flow, K^- P c s c=.n be obtained by 

multiplying (3.24) by 8 (rs°°) and integrating over area. The result is 

(3.29) 

and unity represents the fraction of the initial energy parti-

tioned to outward propagating gravity-inertia waves. We see that for 

horizontal scales <^300 km, the majority of the initial energy is 

partitioned to gravity-inertia wave motion. In light of the large 

amounts of latent heat released in tropical storms it would be reason-

able to conclude that the gravity-inertia wave energy leaving the 

vicinity of a tropical cyclone must be substantial, especially for tie 

low order vertical modes. Although the energy partition curves shown 

20°N, for the first five values of (gh p)
2 given in the last column of 

Table 3.1. For a given horizontal scale a, the difference between 

as a function of the dimensional horizontal scale a, at tion 

physical interpretation, we have plotted in Fig. 3.4 the energy parti -
K + P 

However, for convenient dimensionless horizontal scale 

yields a single curve if we plot it as a function of the 

The fraction of the initial energy which ends up in geostrophic flow, 

Substituting (3.25) and (3.27) into (3.28) and normalizing by the 

initial available potential energy P we obtain 
0 
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Figure 3.4 The fraction of the initial energy which is parti-
tioned to geostrophic flow as a function of the 
horizontal scale of the initial geopotential dis-
turbance. The curves have been computed using 
(3.29) with the first five values of (gh )h given 
in the last column of Table 3.1 and with an f 
corresponding to a latitude of 20°N. 
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in Fig. 3.4 depend on the form of the initial condition chosen, these 

curves are typical of other examples we have investigated (Schubert 

et al., 1980). They show the very low efficiency of geostrophic energy 

generation by tropical cyclone scale heating in low latitudes and load 

naturally to the view that, in terms of gravity-inertia wave energy, 

tropical cyclones should be regarded as highly radiating systems. 

There are of course real physical situations in which gravity-

inertia waves might be reflected back toward their source. However, 

the imposition of a lateral boundary to the computational domain of 

a numerical model should not result in the reflection of incident 

waves. Improper reflection of gravity-inertia waves in a model which 

carries water vapor as a dependent variable can become intolerable 

since the vertical motion field associated with these reflected wavos 

(see Figure 3.2b) can interact nonlinearly with the moisture field ;o 

produce an erroneous pattern of latent heat release. Consequently, a 

poorly formulated lateral boundary condition nay indirectly contribute 

to significant alterations of the numerical solution, especially with 

regard to the transient behavior of the simulated disturbance. 

3.4 Analysis of the Horizontal Structure Problem 

3.4.1 An 'exact' outgoing wave condition 

A fairly thorough study of open boundary conditions for dispersive 

waves has been conducted by Bennett (1976). We apply his approach to 

our problem by considering the horizontal structure equations (3.13)-

(3.15) for the vertical mode n. Defining F(r,s) as the Laplace trans-

form of F(r,t) and assuming no initial disturbance for r>^a, we trans-

form (3.13)-(3.15) and eliminate $ (r,s) and v (r,s) to obtain 
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The solution of (3.30) which remains bounded as r-**> is given by 

(3.31) 

It can be shown that the transformed radial wind component u n(r,s) 

also satisfies 

An exact outgoing wave condition can be obtained by inverting (3.32). 

Unfortunately this procedure yields an expression which is quite com-

plicated and of questionable practical value. This is more readily 

illustrated if we utilize the large argument asymptotic form of the 

modified Bessel function K 1 to simplify (3.32) to 

Relationships of this kind require that we store and repeatedly sum 

(with different weights) boundary values of u n and its horizontal 

derivative. The storage requirements alone are effectively equivalent 

to allowing the computational domain to expand in time. Since this is 

what we are attempting to avoid, the idea of using an exact outgoing 

wave condition will be abandoned for practical reasons. 

(3.34) 

which when inverted gives 
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3.4.2 Reflectivity analysis 

We are now faced with the problem of finding an approximate 

boundary condition which will keep the distortion of the adjustment 

process within some tolerable limit. This can be accomplished by 

analytically studying the reflectivities of boundary conditions in 

general. We begin by noting that the system (3.13)-(3.15) has solu-

tions of the form 

(3.35) 

2 2 J' 

where the frequency v n is given by v n = (f +gh nk ) % k is the horizontal 

wavenumber, R is a complex constant, and hJ 1 \'kr) and h j ^ ( k r ) are the 

order m Har.kel functions of the first and second kind. The use of 

asymptotic expansions valid for large kr allows (3.35' to be written 

(3.36) 

The first term in both (3.35) and (3.36) corresponds to an outward 

propagating wave while the second term corresponds to an inward propa-

gating wave. Thus, at large radius a (e.g. the radius of the model 

boundary), the asymptotic form of the outward propagating wave satisfies 

the radiation condition 
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(I) 

If a disturbance in the form of a wave packet centered on wavenumber 

k approaches the boundary, the use of boundary condition I should 

result in low reflectivity as long as k a » l . The primary disadvantage 

of I is that it is difficult to apply in physical space because knowl-

Vp v« ^ 
edge of -ĵ - is required. However, since (gh n)

2 as we might 

approximate I by 

(II) 

which is much easier to apply in physical space because (gh n)
2 is known 

from the solution of the vertical structure problem. This approxima-

tion is equivalent to neglecting the Coriolis parameter and confining 

our study to non-dispersive or pure gravity wave motion. For such a 

physical situation II can be obtained directly from (3.34) by setting 

f = 0. One additional approximation can be made to II, and that is to 

neglect the effects of cylindrical geometry, which gives 

( H I ) 

Let us also consider the two most widely used boundary conditions in 

tropical cyclone models which are the condition of zero divergence, 

(IV) 

(V) 

and the condition of zero radial wind. 
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Figure 3.5 Isolines of |R| as a function of ka and 

for boundary condition II, The ref'ectivity of 

boundary condition I is a function of ka only and 

can be obtained by moving along the 

line in this figure. 
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The reflectivity of each of the conditions I-V can be found by 

substituting (3.35) and solving for |R| . The mathematical expres-

sions are given in Table 3.2. Since conditions IV and V have unit 

reflectivity and the reflectivity of III is larger than II (Schubert 

et al., 1980), we confine the remainder of this discussion to a com-

parison of I and II. As can be seen from Table 3.2 the reflectivity 

of boundary condition I is a function of ka only, while the reflec-

tivity of boundary condition II is a function of both ka and 

In Fig. 3.5 we have drawn isolines of |R| in the 

plane for boundary condition II. From Fig. 3.5 

one can also obtain the reflectivity of I since it is identical to 

the reflectivity of II along the line As long as 

J' v n 11 

( g h n ) 2 is within about 10% of y - and ka >_ 1.5 , the reflectivity 

can be held under 5%. It should be noted, however, that there is 

more or less an optimal domain size beyond which little improvement 

in the reflectivities can be expected. To illustrate this more 

clearly we have plotted the reflectivities of boundary condition II (gh for selected dimensionless wavenumbers ^— k as functions of 

fa 
dimensionless domain size —S-j- in Fig. 3.6. In this diagram we 

(ghn>-* 

see that by choosing the domain size properly, the reflectivity for 

any wavenumber (or family of wavenumbers) can be minimized. As an 

example, in order to minimize the reflectivities for wavenumbers 

( 9 h / 2 • fa 
— 2— k > 10 , the domain size need be no larger than — - 2 - j - * 0.6, 

It is interesting to note that an optimal domain size corresponds 
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Figure 3.6 Reflectivities, of selected dimensionless wave-

for BCII. domain size 

numbers as a function of dimensionless 



Table 3.2 Reflectivities for the various boundary conditions. 
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2irf 
to the approximate wavelength 1 — - of the wavenumber for which 

k ( g h n r
2 

the reflectivities are to be minimized. 

In order to understand.the implications of the reflectivity rela-

tions for a particular model situation it is more convenient to display 

the results in dimensional form. The reflectivities of the eighteen 

vertical modes which have the eigenvalues listed in the last column 

of Table 3.1 are illustrated in Fig. 3.7 for boundary condition II. 

These reflectivities are calculated for a domain size of 960 km, and 

for an f corresponding to a latitude of 20°N. We see that, for a 

given wavenumber k , a larger fraction of the incident wave is reflected 

as the vertical mode is increased. This result is due to the fact that 

the higher order modes propagate at a slower rate and hence have longer 

periods. Thus, the Coriolis force plays a larger role ir the dynamics 

of these waves, but is neglected in the boundary condition since v n / k 

has been approximated by its pure gravity wave value (ghif )
2 . Accord-

ingly, boundary condition II is mode dependent, while boundary condi-

tion I is mode independent, its reflection curve being indistinguish-

able from the n = 0 curve in Fig. 3.7. Even though boundary condition 

II does have higher reflectivities than I, for low order vertical 

modes and horizontal wavelengths smaller than the size of the computa-

tional domain, the approximation made in boundary condition II does 

not introduce serious reflection problems. 

3.5 Numerical Examples 

3.5.1 Single vertical mode 

In this subsection we shall compare the results of numerical 

integrations of (3.13)-(3.15) using boundary conditions :i, IV and V. 



Figure 3.7 The reflectivities of boundary condition II for the eighteen vertical 
modes which hava the eigenvalues listed in the last column of Table 3 1 
These reflectivities have been calculated for a domain size of 960 km' 
and for an f corresponding to a latitude of 20°N. The reflectivity of 
boundary condition I is essentially the same as the n = 0 curve 
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In addition we shall show results obtained using the numerical extrap-

olation technique of Orlanski (1976). In Orlanski's method the con-

dition 

is used to predict u at the model boundary after 

(Via) 

(VIb) 

has been used to diagnose c at the previous time step just inside the 

model boundary. The estimate of c is not allowed to become negative 

nor to exceed the radial grid interval divided by the time step. For 

further details the reader is referred to Orlanski's (1976) paper. 

In order to conduct the following single mode tests we have made 

use of a numerical model for which the horizontal space differencing 

method corresponds to scheme B (staggered grid) of Arakawa and Lamb 

(1977). (The finite difference analogues are given in Appendix D.) 

The time differencing is accomplished with a leap frog scheme coupled 

with an Asselin (1972) time filter (see Appendix A.2, Time differencing), 

The model consists of; 43 grid points spaced 0.0125 dimensionless uait:; 

apart (i.e. A r ^ 0.0125 (gh n)Vf). 

In the experiments illustrated here, the fluid is initially at 

rest but has a free surface perturbation 

(3.37) 
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where r Q is a measure of the perturbation half width which has been 

specified to be r o = 0.1 (gh) 2/f- This initial value problem was first 

studied by Obukhov (1949). For the linear problem, the final geo-

strophically adjusted state can be obtained analytically by solving 

the potential vorticity equation (Schubert et al., 1980, section 6), 

providing an independent check on the performance of the model. 

The results of five experiments will now be shown., the first being 

the control, or 'infinite domain', experiment and the remaining four 

using boundary conditions II, IV, V and VI. In the 'infinite domain' 

experiment the computational domain was expanded to eliminate all pos-

sible boundary effects on the solution in the interior 43 grid points 

of the model. The results of the five numerical tests are shown in 

Figs. 3.8 and 3.9. Fig. 3.8 is common to all those given in Fig. 3.9, 

and shows the early propagation of the wave which is excited in the 

u field (the divergent component of the wind). Up to time f t = 0 . 2 5 , 

the numerical solutions are essentially the same for all five experi-

ments. After this time, however, the solutions diverge due to the 

differences in the lateral boundary conditions, as can be seen in 

Fig. 3.9. Fig. 3.9a shows the results of the control experiment and 

can be regarded as the ideal result since there are no boundary effects. 

At the final time level shown (ft = 0.85), the computational domain is 

fr 
essentially in geostrophic balance. In the interior — L L - r < 0.5 , 

(gh)^ ~ 

the solution is well within 1% of the analytically calculated final 

adjusted state. The remaining figures show the numerical solutions 

for those experiments incorporating boundary condition II (Fig. 3.9b), 

boundary condition VI (Fig. 3.9c), boundary condition IV (Fig. 3.9d) 

and boundary condition V (Fig. 3.9e). Clearly, boundary conditions 
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Figure 3.8 The ^ field at ft = 0.05 and 0.25 for all single 

vertical mode initial value experiments. See text 

for further discussion. 

Figure 3.9 The ^ field at ft = 0.45, 0,65 and 0.85 for single 

vertical mode initial value experiments employing 

(a)
 1

 infinite domain'. 
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(gh)''2 ' (gh)''2 

(d) (e) 

Figure 3.9 The field at ft = 0.45, 0.65 and 0.85 for single 

vertical mode initial value experiments employing 

(b) boundary condition II, (c) boundary condition VI, 

(d) boundary condition IV and (e) boundary condition V. 

i 
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II and VI give results closest to the control, with boundary condition 

II producing the least reflection. 

3.5.2 Fully stratified case 

The results of section 3.5.1 are now extended to the more general 

case of a fully stratified model atmosphere. In this section we com-

pare the behavior of boundary conditions II, IV, V and VI in the 

stratified numerical model and consider one additional boundary cordi-

tion for which the relation 

(VII) 

is applied at the lateral boundary grid points where the phase velocity 

c is a constant chosen to be representative of the first internal mode 

of the model (Klemp and Wilhelmson, 1978). 

The numerical experiments are conducted with a dry, adiabatic, 

inviscid version of the tropical cyclone model described in section 

2.1 (where the finite difference equations can be found in Appendix A). 

The horizontal and vertical resolution (and domain) is the same as 

described in section 2.1. 

Boundary conditions IV, V, VI and VII are all applied level by 

level. Boundary condition II, however, is applied to each vertical 

mode. Thus, in order to apply boundary condition II it is necessary 

to project the boundary values of the dependent variables onto the 

vertical structure functions and thus obtain the amplitude of each 

vertical mode. In practice, we obtain these vertical structure func-

tions via a method which will more accurately represeit the effects of 

the vertical differencing scheme we have employed. This approach can 

be summarized as follows. Noting that boundary condition II is 
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 3.10 The vertical motion field co at t=6 hrs for the fully 
stratified initial value experiments employing (a) 
'infinite domain', (b) boundary condition II, (c) 
boundary condition VI, (d) boundary condition VII, 
(e) boundary condition V and (f) boundary condition IV. 
The contour interval is 2.5 mb/day with dashed lines 
indicating sinking motion. 
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(3.38) 

(3.39) 

(3.40) 

(3.41 ) 

In practice we follow the above procedure with the governing equations 

in differential-difference form (radius and time being continuous, 

sigma discrete). Then the above integrals become sums; and we can 

regard the resulting problem as an algebraic eigenvalue problem, with 

Y as the eigenvalue. This procedure is summarized for our axisym-

metric model in Appendix E. For a vertically discrete' model atmosphere 

with N velocity levels (3.39)-(3.41) yields a system cf either 2N or 

2 N + 1 vertically discrete equations depending on whether the tempera-

ture levels are staggered. For Lorenz (1960) type vertical differ-

encing schemes (non-staggered temperature as in the present study) 

there are 2N+1 vertically discrete equations. This allows the mass 

field one additional degree of freedom which is not under the control 

of the geostrophic adjustment process. Although the results presented 

and obtain 

asymptotically valid as and that in this case f can be elimi-

nated, we can linearize (2.2)-(2.7), assume a solution of the form 
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(a) 

(b) 

(c) 

Figure 3.11 The reflected vertical motion field at t=6 hrs for 
the fully stratified initial value experiments 
employing (a) boundary condition VII, (b) boundary 
condition V and (c) boundary condition IV. The 
contour interval is 2.5 mb/day with dashed lines 
indicating sinking motion. 
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here are from a model with Lorenz type vertical differencing, the 

extra degree of freedom in the mass field does not seen to be any 

problem. The set of eigenvectors obtained from the discrete versions 

of (3.39)-(3.41) is not orthogonal, but this poses no difficulty with 

respect to the projection process since it is easy to calculate from 

the transpose of the matrix a set of eigenvectors whici are orthogonal 

to the original set (e.g. Twomey, 1977, Chapter 4). 

For a numerical experiment we again consider an initial value 

problem in which a Gaussian perturbation is introduced in the π or 

surface pressure field. Thus, the initial π field is of the form 

(3.42) 

where r Q = 150 km, A = 1 mb and 7 is a specified constant. The initial 

temperature field is independent of radius along constant a surfaces 

and the initial motion field is identically zero. 

A control experiment is first conducted for which the lateral 

boundary is moved to 3840 km in order to exclude boundary effects on 

the numerical solution in the interior 960 km. The vertical motion 

field at t = 6 hrs is displayed for all the experiments in Fig. 3.10. 

Fig. 3.10a, which corresponds to the control or infinite domain exper-

iment, is the desired result, and indicates that only relatively small 

amplitude (high vertical wave number) motions remain in the computa-

tional domain at this time. Boundary conditions II and VI (Figs. 

3.10b and 3.10c) appear to give results closest to the control experi-

ments with boundary conditions IV and V (Figs. 3.10e and 3.1Od) 

deviating significantly from the control. Fig. 3.11 illustrates the 

reflected vertical motion field for boundary condition:; VII, V and IV 
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b c n 

RADIUS (km) 
BC 3ZT 

RADIUS (km) 

Figure 3.12 The reflected vertical motion field at t=6 hrs for 
the fully stratified initial value experiments 
employing (a) boundary condition II and (b) boundary 
condition VI. The contour interval is 0.25 mb/day 
with dashed lines indicating sinking motion. 
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where the contour intervals are 2.5 mb/day. Since tne reflections for 

boundary conditions II and VI are much smaller, they are given sep-

arately in Fig. 3.12 where the contour interval is recuced by a factor 

of ten to 0.25 mb/day. For the cases of zero radial wind (Fig. 3.11b) 

and zero divergence (Fig. 3.11c) we see that the external mode and 

first internal mode have reached the boundary and have been reflected 1. 

Boundary condition VII gives much better results than either of these 

since the amplitude of the external mode is significantly reduced, and 

very little of the first internal mode is reflected. These results 

should be expected since the constant phase speed has been chosen to 

be representative of the first internal mode. The theoretical reflec-

tivity for boundary condition VII can be calculated ^or each vertical 

mode and reveals that the choice of a single phase speed results in 

large reflectivities for all vertical modes except for those modes 

which propagate at a rate which is close to the chosen c. This result 

appears to be independent of the choice of c, suggesting a fundamental 

weakness in choosing a constant phase speed to represent all waves. 

The reflected vertical motion fields shown in Fig. 3.12 indicate 

that boundary condition VI gives stronger reflection than does boundary 

condition II. In addition, a considerable amount of computational 

noise is introduced into the reflected wave by boundary condition VI. 

This is more easily seen in Fig. 3.13 for which the reflected vertical 

motion field at t = 6 hrs along the a = 0.778 surface has been plotted 

for both boundary conditions II and VI. An interesting and perhaps 

serious difference is illustrated in Fig. 3.14, which shows the domain 

1 1 n fact, the external mode has been reflected three times, while 
the first internal mode has experienced only one reflection. 



R A D I U S ( k m ) 

Figure 3.13 The reflected vertical motion field at t=6 hrs along the a = 0.778 
surface for fully stratified initial value experiments employing 
boundary condition II and VI. 
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averaged surface pressure as a function of time. We see that the use 

of boundary condition VI results in a fictitious 'mass sink 1 for the 

computational domain, a mass trend which could adversely impact long 

term numerical integrations. 

3.6 Summary of the Lateral Boundary Condition Analysis 

In summary then, we believe that our analysis his demonstrated the 

importance of properly formulating the lateral boundary condition in 

tropical cyclone models, such that it does not reflect outward propa-

gating gravity-inertia waves. We have shown that it is possible to 

derive approximate outgoing wave conditions (boundary conditions I--III) 

for the fully stratified axisymmetric case. We have examined theoret-

ically the reflectivities of these three approximate conditions as 

well as two other lateral boundary conditions in common use, the con-

ditions of zero divergence and zero radial wind (boundary conditions 

IV and V), The results of this analysis show that boundary condition 

I has the lowest reflectivity, although boundary condition II, which 

is much easier to implement, is nearly as good for the lower order 

vertical nodes. It is also clear from our analysis that the condition 

of zero divergence is not in the true sense an 'open' lateral boundary 

condition since it results in unit reflection of gravity-inertia waves. 

In this regard, it is as poor a boundary condition as the condition 

of zero radial wind, which also gives unit reflection. 

The behavior of two other lateral boundary conditions has been 

examined numerically. These are the method proposed by Orlanski (1976) 

(boundary condition VI) and the method proposed by Klemp and Wilhelmson 

(1978) (boundary condition VII). The basic problem with the latter 

approach in tropical cylcone models is the choice of a single phase 
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Figure 3.14 The domain averaged surface pressure field as a func-
tion of time for the fully stratified initial value 
experiments employing the infinite domain, boundary 
condition II and boundary condition VI. 
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speed to represent all waves. Only those waves moving at or very near 

this phase speed will be treated properly, and since there is such a 

wide range of propagation speeds in a stratified model, it is difficult 

to 'tune' the choice of this constant phase velocity. However, in the 

situation where an external mode does not cccur, or where the amplitude 

spectrum of the vertical modes in the model has a narrow distribution, 

boundary condition VII may give fairly good results. 

Although there is some reflection (5-15%) associated with boundary 

condition VI, it produces results which appear to closely approximate 

those of the control experiment. We believe, however, that there are 

several difficulties associated with boundary condition VI. Since 

this method is applied level by level it may have difficulty when two 

or more vertical modes (moving at different phase velocities) reach 

the boundary simultaneously. This vertically independent specification 

of the lateral boundary condition in a hydrostatic model is questionable 

from a theoretical viewpoint since the results of sections 3.2 and 3.4 

would suggest that the boundary condition should be applied to each 

vertical mode. For the examples we have examined, the numerical 

estimates of the phase velocity c tend to vary considerably, which 

introduces noise into the computational domain. In addition we have 

experienced fictitious mass trends when using boundary condition VI. 

Consequently, we have chosen to use lateral boundary condition II 

in the axisymmetric tropical cyclone model discussed in chapter 2. 

Although this boundary condition has been shown to give reasonably 

good results in the fully stratified case, it is by no means perfect. 

It includes both the asymptotic approximation for Hankel functions 

and the pure gravity wave approximation for the gravity-inertia wave 
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frequency. Better results could undoubtedly be obtained by using 

boundary condition I, but this involves a spectral representation in 

the horizontal as well as the vertical. Although present tropical 

cyclone models are all based on grid point methods, it would appear 

that models with spectral representations in both the horizontal and 

vertical would have distinct advantages. 



Differentiating (4.2) with respect to sigma and using The hydrostatic 

equation, we obtain the thermal wind relation in the σ-coordinate 
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4.0 SPECIFICATION OF INITIAL CONDITIONS 

4.1 Initialization Procedure 

To begin integration of the model, initial conditions on the 

prognostic variables π, u, v , T and q must be specified. We shall 

assume that initially there is no transverse circulation, i.e., u = 0 

everywhere, that the π, v and φ fields are in gradient wind balance. 

Since the π, v, T and φ fields are initially related by hydrostatic 

and gradient wind balance, specification of the initital v field allows 

computation of the initial π and T fields. Applying gradient wind 

balance at the sea surface we obtain 

(4.1) 

where disappears since φ is zero in the model everywhere along the' 

σ = 1 surface. Knowing VS and TS everywhere, (4.1) allows computation 

of pS and hence π, provided an outer boundary condition on pS has 

been specified. 

The gradient wind equation at an interior point takes the form 

(4.2) 
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200 400 600 800 
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Figure 4.1 Horizontal structure of the initial 
tangential wind. 

INITIAL T A N G E N T I A L 
WIND 

Figure 4.2 Vertical structure of the initial 
tangential wind. 
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exact form of the initial tangential wind distribution is discussed in 

the next section, as is the initial condition on water vapor. 

4.2 Initial Conditions on Wind, Temperature and Moisture 

The initialization procedure described in section 4.1 requires the 

specification of an initial tangential wind as well as an initial outer 

boundary temperature profile and surface pressure p S . The initial 

tangential wind is specified to be the product of a horizontal struc-

ture term and a vertical structure term 

(4.4) 

where v is the maximum amplitude. The horizontal structure is identi-

cal to that used by Ooyama (1969a), and is shown in Fig. 4.1 for 

? = 240 km. The vertical structure is shown in Fig. 4.2 for a = 0.861. 

Using a value of 7 m/s for v gives the initial tangential wind fie"d 

shown in Fig. 4.3. This initial condition on wind is used for all of 

the numerical integrations conducted in this study. 

The initial temperature profile at the model boundary (which is 

also used for all of the numerical integrations presanted) corresponds 

to the mean tropical clear profile of Gray et al. (1 975) (see Fig. 

4.4). Using this temperature profile, and a value of 1008.7 mb for pS 

at the model boundary, gives the initial temperature deviation 

field shown in Fig. 4.5, and the initial surface pressure distribution 

plotted in Fig. 4.6. 

Two different initial moisture fields are used in this study, the 

first of which specifies the water vapor mixing ratio to be independent 

of radius, with the vertical dependence corresponding to the mean 

tropical 'cluster environment' profile of Gray et al. (1975). This 
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Figure 4.3 The initial tangential wind field. The contour 
interval is 1 m/s (the 5 m/s isoline is labelled 
for reference). 
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Figure 4.4 The initial outer boundary temperature profile 
(after Gray et al., 1975). 
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Figure 4.5 The initial temperature deviation field. The 
contour interval is 0.1°C (the 0.5°C isoline is 
labelled for reference). 

f| (mb) ioo7. 

200 400 600 
RADIUS (Km) 

800 

Figure 4.6 The initial surface pressure distribution. 
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Figure 4.7 The initial relative humidity field for the moisture 
field which is a function of σ only, and corresponds 
to the mean tropical 'cluster environment' profile 
of Gray et al. (1975). The contour interval is 10%. 

Figure 4.8 The initial relative humidity field for the moisture 
distribution which is a function of both r and σ. 
The relative humidities in the interior correspond 
more closely to the mean tropical 'cluster region' 
humidities of Gray et al. (1975). The contour-
interval is 10%. 
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leads to the initial relative humidity field shown in Fig. 4.7. The 

second initial moisture distribution is specified to be both a function 

of r and of σ such that the initial relative humidity is more realis-

tic. At the outer boundary, the vertical distribution of relative 

humidity corresponds to the mean tropical 'clear region' relative 

humidity profile given by Gray et al. (1975) while the interior regions 

correspond more closely to the mean tropical 'cluster region' relative 

humidities (see Fig. 4.8). 

4.3 Selection of the Critical Cloud Work Function 

The computational procedure for determining the cloud base mass 

flux distribution in the Arakawa-Schubert cumulus parameterization 

theory which is outlined in section 2.2.3 (the optimal adjustment 

method) involves an adjustment process. For computational simplicity, 

this adjustment to the time dependent cloud work function is formu-

lated with respect to a 'critical cloud work function' A c ( p ) such 

that the cumulus ensemble is always attempting to insure that 

A(p,t) < A c ( p ) . This approach may not be so unreasonable since Lord 

(1978) has obtained similar (non-zero) values of the cloud work func-

tion (A(P D)) for a variety of synoptic conditions. In any event, we 

believe that the results should not be highly sensitive to the critical 

cloud work function since, once A(p) exceeds A c ( p ) , the cumulus 

ensemble in effect responds to JL S ' T h e r e f o r e , a careful selec-

tion of A (p) (so as not to substantially exceed the cloud work func-

tion of the initial condition) should minimize the impact of using a 

critical cloud work function. 

The cloud work function was calculated for the initial distribu-

tion of temperature and moisture at the boundary of the model. The 
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Figure 4.9 The critical cloud work function A (p). 

For a constant surface pressure of c1030 mb, 
this can be interpreted in terms of datrain-
ment pressure p Q as labelled on the right hand 
side of the diagram. 
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critical cloud work function A (p) was then determined such that 

A c ( p ) > A(p) for all p at the model boundary (see Fig. 4.9). This 

choice of A c ( p ) proves to be sufficiently large so that; convection 

does not spontaneously begin anywhere in the model during the initial 

few time steps. 



5.0 EXAMPLES OF THE SENSITIVITY OF MODEL STORM DEVELOPMENT TO THE 

INITIAL CONDITION, THE LATENT HEAT RELEASE MECHAMISM, AND THE 

LATERAL BOUNDARY CONDITION 

In the next two chapters we will discuss some of the numerical 

results we have obtained using the tropical cyclone model described 

in chapter 2. Eleven different experiments designed to test the 

sensitivity of the model are examined. These experiments are listed 

in the cross reference Table 5.1. In this chapter, we consider the 

sensitivity of model storm development to the initial condition on 

the moisture field (IC1 and IC2), to the explicit release of latent 

heat, and to three of the lateral boundary conditions discussed in 

chapter 3 (BCII, BCIV, and BCV). The remaining numerical experiments, 

which deal with the sensitivity of tropical cyclone development to 

the incorporation of longwave radiation and cumulus momentum transport, 

are considered in chapter 6. All numerical experiments are conducted 

at a latitude of 20°N using a sea surface temperature of 301°K (27.85°C). 

5.1 Sensitivity to the Initial Distribution of Moisture 

The effect of the initial distribution of water vapor on the 

numerically simulated development of a tropical cyclone was first 

addressed by Rosenthal (1970). In his tropical cyclone model, as in 

ours, the initial condition on wind is one of gradient wind balance, 

and no initial radial circulation. Consequently, an organizational 

period is required for such a circulation to develop. Rosenthal's 

numerical results indicated that a marked decrease in this organiza-

tional period could be achieved by increasing the initial relative 

humidity. We also have examined the sensitivity of our model storm 

development to the initial moisture distribution and have obtained 

qualitatively similar results which are discussed below. 
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Table 5.1 Cross reference table for the numerical experiments presented in chapters 5 and 6. 

o 



1 0 8 

TIME (hours) 

Figure 5.1 The. time evolution of the maximum low level 
( z ^ 225 m) tangential wind and central sur-
face pressure for experiments AB'i and AB4. 
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As was shown in chapter 4, two initial conditions on the moisture 

field were considered in this study. The first, which we shall refer 

to as IC1, specifies the initial water vapor mixing ratio q to be a 

function of a only, while the second (IC2) specifies the initial water 

vapor mixing ratio to be a function of both r and σ. Two numerical 

integrations were conducted using the Arakawa-Schubert cumulus param-

eterization and the two initial moisture distributions. Experiment 

AB1 uses the initial water vapor distribution given by IC1, while 

experiment A34 uses the initial water vapor distribution given by 

IC2. The development of the model storms are summarized in Fig. 5.1 

which shows the time evolution of the maximum low level (z ~ 225 m) 

tangential wind and central surface pressure. A significant difference 

in the development times of the model storms is seen such that the use 

of IC1 results in considerably slower development. In terms of the 

time required to achieve hurricane force winds (33 m s~'), experiment 

AB4 (IC2) takes 76 hours while experiment AB1 (IC1) requires an addi-

tional 80 hours. 

The way in which each of the model storms develop is also strik-

ingly different. Figs. 5.2 and 5.3 show the time behavior of the 

radius of maximum wind and the interior and exterior extent of the 

gale (22 m s"^) and hurricane (33 m force winds for experiments 

AB1 and AB4 respectively. In experiment AB4, a well defined radius 

of maximum wind moves slowly inward during the developing stages of 

the vortex tc a radius of about 50 km once the storm is fully mature. 

On the other hand, experiment AB1 establishes a very broad tangential 

circulation with a large radius of maximum wind shortly into the 
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Figure 5.2 The time evolution of the radius of maximum 
winds (heavy solid line), and the horizontal 
extent of the gale (light dashed line) and 
hurricane (light solid line) force winds for 
experiment AB1. 
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Figure 5.3 Same as Figure 5.2 but for experiment AB4. 
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numerical integration (36-48 hrs). This broad circulation pattern 

then moves very slowly inward over a period of about 6 days until a 

vortex which is similar in-scale and intensity to AB4 is attained. 

The unusual nature of the development of AB1 appears to be related 

to the horizontal distribution of the parameterized convection which 

in the early part of the numerical integration differs quite noticeably 

from experiment AB4. The time evolution of the cloud base mass flux 

distribution (Figs. 5.4 and 5.5) shows a weak uniform horizontal dis-

tribution of cumulus convection for AB1, while AB4 exhibits stronger 

cloud base mass fluxes which are confined to a narrower region inside 

250 km. Thus, AB1 does not appear to have a preferred region for deep 

cumulus convection as does AB4. We believe that this difference can 

easily be explained to be a consequence of the initial water vapor 

distribution and the initial condition of gradient wind balance. 

The cumulus ensemble predicted by the dynamic control is in 

response to a 'large-scale' forcing (which includes surface eddy 

fluxes). Because of the initial condition of gradient wind balance, 

the large-scale forcing of cumulus convection initially consists of 

surface eddy fluxes of heat and moisture coupled with weak low level 

convergence. Under such circumstances, deep cumulus convection can 

only be expected to take place if the large-scale environment is 

relatively moist. We note, however, that for the initial moisture 

distribution IC1, the interior regions of the initial disturbance are 

less moist in a relative sense than are the outer regions, and are 

consequently less favorable to deep convection. This is attributable 

to the warm core nature of the initial vortex. 
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Figure 5.4 Cloud base mass flux distribution for experiment 
AB1. The intensity of the shading at any level 
p is proportional to the cloud base mass flux 
of the sub-ensemble detraining at that level. 
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Figure 5.5 
Same as Figure 5.4 but for experiment AB4. 
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Fig. 5.6 shows the initial vertical profiles of moist static 

energy h and saturated moist static energy h* at 30 km and 900 km for 

both IC1 and IC2. It is clear that for IC1 the 900 km profile is more 

unstable to moist convection than is the profile at 30 km. Thus, in 

the absence of an organized large-scale circulation, it should not be 

surprising that the cumulus convection predicted by the Arakawa-Schubert 

scheme is so disorganized for experiment AB1. 

The use of the more realistic initial moisture distribution IC2 

provides a more favorable environment for deep cumulus convection in 

the interior regions (see Fig. 5.5). We wish to emphasize, however, 

that the increase in the water vapor mixing ratio in this region is 

quite modest, with the largest increase less than 0.9 gm/kg (see Fig. 

5.7). The most important aspect of IC2 appears to be the very dry 

middle and upper level moisture distribution at large radius. This 

tends to suppress or delay the onset of deep convection in the outer 

regions until a large-scale radial circulation can be established. A 

period of slow intensification occurs for about 60 hrs followed by 

rapid deepening. The rate at which the model vortex deepens is similar 

to results obtained with other axisymmetric models (e.g. Kurihara, 1975) 

although the mature steady state storm which is produced by 96 hours is 

somewhat deeper. 

For purposes of comparison, we show the tangential wind, tempera-

ture perturbation, relative humidity, vertical motion and cloud base 

mass flux fields at 120 hours in Fig. 5.8 and 5.9 for experiments AB1 

and AB4 respectively. Fig. 5.8 shows a very broad and weakly organized 

tangential circulation centered at large radius with a maximum in the 



kJ /kg kJ /kg 

Figure 5.6 The initial profiles of moist static energy h and saturated moist 
static energy h* at 30 km and 900 km for initial moisture distribu-
tions ICI and IC2. 



Figure 5.7. (a) The initial relative humidities at 150 and 900 km for IC1 (light solid), 
IC2 (dark solid), and the Gray et al., (1975) mean tropical 'clear' and 

cluster observations 

(b) The deviation of the IC2 water vapor mixing ratio profile from the 
IC1 profile at 150 km (solid) and 900 km. 
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Figure 5 ,8 The tangential wind (5 m/s), relative humidity 
(10%), temperature deviation ( 1 C ) , vertical 
motion (25 mb/hr), and cloud base mass flux 
distribution fields at 120 hours for experiment 
AB1. The quantities in parentheses denote the 
respective contour interval. 
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Figure 5.9 Same as Figure 5.8 but for experiment AB4. 
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vertical motion field located at approximately 220 km, The cloud base 

mass flux distribution continues to show a fairly disorganized pattern 

of convection as in the early stages of the numerical integration (Fig. 

5,4). In sharp contrast Fig. 5.9 shows a well organized upper level 

warm core tangential circulation with maximum winds in excess of 70 m/s 

at 80 km just above the mixed layer. The vertical motion field peaks 

at -250 mb/hr just inside this maximum in the tangential circulation. 

Also note the highly organized bimodal character of the cloud base 

mass flux distribution inside 300 km. The absence of parameterized 

convection inside 60 km is due to the transition from parameterized 

heat release to resolvable heat release in the eyewall region at this 

stage of development. 

5.2 Numerical Simulations With the Explicit Release of Latent Heat 

The earliest attempts to numerically simulate the life cycle of 

the tropical cyclone included only the explicit release of latent heat 

(e.g. Kasahara, 1961, 1962; Syono, 1962). These numerical integrations 

were carried out to only a few hours during which small-scale (grid-

scale) features in the vertical motion field grew rapidly to the point 

where they appeared to dominate the large-scale fields. Linear sta-

bility analyses of the growth of small amplitude disturbances in a 

conditionally unstable environment had previously predicted the smallest 

scale (or cloud scale) motions to have the largest growth rates (Haque, 

1952; Syono, 1953; Lilly, 1960). Consequently, the above numerical 

solutions were interpreted as a confirmation of the linear studies. 

This apparent failure to simulate the growth of a cyclone-scale circu-

lation by explicitly resolving the convective release of latent heat 
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Figure 5.10 Same as Figure 5.1 but for experiments 

AA9 and AA4. 
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led to the development of cumulus parameterization techniques, which 

although crude, were nevertheless employed with great success. Recently 

however, investigations -by Yamasaki (1977) and Rosenthal (1978) have 

raised questions regarding the need and desirability to parameterize 

cumulus convection in tropical cyclone models. 

Yamasaki (1977) has used a non-hydrostatic axisymmetric model in 

which cumulus convection is explicitly resolved on a telescoping 

horizontal grid (400 m interior resolution) to produce a tropical 

cyclone like circulation. But also interesting is the study conducted 

by Rosenthal (1978) in which he successfully simulates the development 

of a tropical cyclone using a hydrostatic axisymmetric model in which 

latent heat release occurs totally in 'convective elements' that are 

explicitly resolved on a 20 km grid. What makes this work so remark-

able is that it essentially follows the same approach attempted with-

out success by Kasahara (1961, 1962) and Syono (1962), which leads to 

the conclusion that these early failures were most 1ikely attributable 

to deficient model design. 

The model described by Rosenthal (1978) carries liquid water as 

a dependent variable, and consequently employs a more sophisticated 

resolvable heat release process. Thus, in order to determine whether 

his numerical results might be dependent on this process, we proceeded 

to conduct several numerical experiments in which parameterized con-

vection was excluded, leaving the treatment of the release of latent 

heat to the large-scale condensation process. The results of two of 

these numerical integrations are shown in Figs. 5.10 and 5.11. Experi-

ment AA9 uses the initial moisture distribution given by IC1 while 
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Figure 5.11 Same as Figure 5.2 but for experiment AA4. 



124 

experiment AA4 uses the initial moisture distribution given by IC2. 

In both cases we see very early, rapid and deep development of a 

hurricane-1ike circulation. In contrast to the parameterized heat 

release counterparts AB1 and AB4, only a weak sensitivity to the 

initial moisture distribution can be seen. Hurricane force winds are 

achieved only about 6 hours sooner for experiment AA4, and in both 

cases these winds occur within two days of the initial condition. 

The gross structure of experiment AA4 is depicted in Fig. 5.11 

(experiment AA9 is similar) which shows a very rapid collapse 

of the radius of maximum winds to radii of 7.5-37.5 km followed by 

the onset of gale and hurricane force winds. 

The horizontal extent of the gale and hurricane force winds is 

fairly confined until hour 120 at which point the gale force winds 

jump out to a radius of 450 km. A similar jump in the exterior hur-

ricane force winds occurs at about 170 hours. The large horizontal 

extent of the gale and hurricane force winds may be a consequence of 

both the assumption of axisymmetry, and an inadequate frictional 

coupling between the mixed layer and the region above. We do not 

believe it to be the result of the particular method of heat release. 

Since the motions are assumed to be axisymmetric, air particles spiral 

directly toward the center of the vortex from larger radius, all owing 

surface friction little time to act as a sink for angular momentum. 

If the frictional coupling between the mixed layer and the region 

above is too weak,the gale and hurricane force circulations which are 

established tend to be quite broad in horizontal extent. The expan-

sion of the tangential cirulation is most pronounced in the case 
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Figure 5.12 Same as Figure 5.1 but for experiments 

AA9 and AB1. 
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Figure 5.13 Same as Figure 5.1 but for experiments 
AA4 and AB4. 
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of the resolvable heat release experiments due to the nature of the 

development of the vortex, which is rapid and initially confined to a 

very small region in the interior. As time goes on, however, the 

horizontal scale and intensity of the radial circulation grows, inten-

sifying the tangential circulation which ultimately gives the appear-

ance of a sudden jump in the horizontal extent of the gale and hur-

ricane force winds. Although such a sudden jump is not as obvious in 

the cases of parameterized heat release AB1 and AB4, we note that the 

scale of all these vortices is quite similar once they reach a mature 

stage. The incorporation of radiative processes and cumulus momentum 

transport (which provides a stronger frictional coupling between the 

mixed layer and the region above) can help to reduce the size of the 

tangential circulation as we shall see later. 

In Figs. 5.12 and 5.13 we compare the resolvable and parameterized 

heat release experiments for each of the initial moisture distributions. 

Shown is the time evolution of the maximum low level tangential wind 

and central surface pressure. Although the intensification rates are 

similar for all model storms, the time required to reach this inten-

sifying staqe and the strength and structure of the mature storm differ 

significantly between the parameterized heat release experiments and 

the explicit heat release experiments (see Fig. 5.14). 

It would be incorrect to attempt to draw general conclusions 

regarding tie issue of the need to parameterize cumulus convection in 

a model such as ours. There are substantial differences, however, 

between the parameterized and explicit heat release experiments we 

have conducted. Perhaps the most significant conclusion that can be 

drawn from our simulations with the explicit release of latent heat 
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Figure 5.14 The tangential wind (5 m/s), relative humidity 
(10%), temperature perturbation (1 0:) and 
vertical motion (25 mb/hr) fields at 120 hours 
for experiment AA4. The quantities in paren-
theses denote the respective contour- interval. 



Figure 5.15 The vertical motion field at 2- hours for experiment 
AA4. The contour interval is 2.5 mb/hr with sinking 
motion denoted by dashed contours. 
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is that the results first presented by Rosenthal (1978) do not seem to 

be dependent upon the technique employed to represent the process of 

latent heat release. By using a fairly crude large-scale condensation 

process we have been able to simulate the development of a cyclone-

scale circulation. Although small scale features are produced at the 

onset of large-scale condensation (see Fig. 5.15), nonlinear effects 

appear to be quite capable of controlling their growth. We note that 

the nonlinear horizontal diffusion process is not necessary in order 

to effect such control since we have also been able to simulate the 

growth of a hurricane circulation using only a linear horizontal 

diffusion coefficient of 10 3 m 2 / s . 

5.3 Sensitivity of Model Storm Development to the Lateral Boundary 

Condition 

In this section we will show the sensitivity of model storm devel-

opment to the particular form of the lateral boundary condition. Rosen-

thal (1971) has numerically examined the sensitivity of an axisymmetric 

tropical cyclone model to two lateral boundary conditions as functions 

of computational domain size. These were the conditions of zero diver-

gence (BCIV) and zero radial wind (BCV). In chapter 3, the problem 

of the proper formulation of the lateral boundary cordition is ap-

proached from a 1inear point of view with the goal of minimizing the 

reflection of gravity-inertia waves. A reflectivity analysis shows 

that both BCIV and BCV are unit reflectors of gravity-inertia waves, 

which leads to the derivation of an approximate cylindrical pure gravi-

ty wave radiation condition for a stratified atmosphere (BCIII). 

Each of the above boundary conditions is of course deficient in 

some regard, but BCV can be expected to have the largest impact upon 



131 

the numerical solution since it mechanically closes the system and 

consequently restricts the radial circulation to the size of the com-

putational domain. The condition of zero divergence (BCIV) represents 

an improvement since it allows mass to flow through the lateral bound-

ary of the computational domain. By comparing the numerical results 

obtained using BCIV and BCV for a computational domain comparable in 

size to that used in the present study, Rosenthal (1971) found signi-

ficant differences in the development times and final intensities of 

the model vortices. The mechanically closed system produced a weaker 

vortex that took longer to develop than the vortex simulated with the 

conditior of zero divergence at the lateral boundary. 

Although BCIV does not suffer from the obvious deficiency asso-

ciated with BCV, it nevertheless is a perfect reflector of any gravity-

inertia wave activity generated in the interior of the computational 

domain. In chapter 3, the argument is made that such improper reflec-

tion of outward propagating gravity-inertia waves can result in a 

false inoculation of latent heat release through nonlinear interactions 

between vertical motion fields associated with the reflected waves, 

and the moisture field. For example, if a convergence field (asso-

ciated with a reflected gravity-inertia wave) acts for a long enough 

period or a region whose temperature and moisture structure is favor-

able for convection, a net release of latent heat will likely occur in 

the column. In the real atmosphere, this period of time is probably 

on the order of one to several hours, but in a numerical model which 

incorporates a cumulus parameterization such a period may be on the 

order of minutes, Thus, in order to avoid this potential problem, 

BCil is proposed for use in our tropical cyclone model. 
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Figure 5.16 Same as Figure 5.1 but for experiment 
AA4, AA5 and AA6. 
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Numerical solutions are now presented using the three boundary 

conditions BCII, BCIV and BCV for experiments incorporating parameter-

ized convection (AB4, AB5 S AB5) and those in which convection is ex-

plicitly resolved (AA4, AA5, AA6). Figs. 5.16 and 5.17 show the time 

evolution of the maximum low level tangential wind and central surface 

pressure for the sets of experiments making use of explicit latent heat 

release and parameterized heat release, respectively. In each case, 

the use of BCV (zero radial wind) results in slower development and a 

weaker mature storm as was suggested by Rosenthal (1971). For the 

explicit latent heat release experiments, note that intensification of 

the mode" vortices begins at essentially the same time, regardless of 

the boundary condition. Experiment AA6 (BCV) develops more slowly, 

however, and even at the deepest stage is considerably weaker than 

either AA4 or AA5. The difference in the ultimate intensities is not 

as great when the convection is parameterized, but in this case more 

than six days is required for AB6 to reach an intensifying stage. 

Significant differences in the development of the model storm when 

using BCII and BCIV appear only when cumulus convection is parameter-

ized. In those experiments using only explicit heat release, the 

development of the model storms is almost identical for the first 

three days of the numerical integrations (AA4 vs AA5). Thereafter, the 

solutions diverge with AA4 producing a deeper, slowly varying mature 

storm. When the cumulus convection is parameterized the use of BCIV 

results in a storm which takes a longer period of time to develop, 

although the ultimate intensity is similar to the vortex simulated with 

BCII (AB'- vs AB5). 
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Figure 5.17 Same as Figure 5.1 but for experiments 
AB4, AB5 and AB6. 
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Figure 5.18 Time evolution of the domain averaged surface 
pressure for experiments AA4, AA5 and AA6. 



136 

Figures 5.18 and 5.19 summarize the behavior of the domain aver-

aged surface pressure in time. For the experiments using BCV (AA6, 

AB6), the domain averaged surface pressure is invariant as one would 

expect. This quantity does change, however, for boundary conditions 

BCII (AA4, AB4) and BCIV (AA5, AB5). In both the case of parameter-

ized convection and the case where convection is explicitly resolved, 

there is a tendency for the domain averaged surface pressure to be 

lower when using BCII. This is generally true at all times when con-

sidering the experiments using explicit heat release, and during the 

early and late stages of the simulations with parameterized convection. 

During the early stages of the numerical integrations, a significant 

fraction of the difference in the domain averaged surface pressure is 

likely to be directly attributable to gravity-inertia waves which are 

transmitted by BCII but are reflected by BCIV. 

In conclusion, we note that the general character of the numeri-

cal integrations does appear to depend on the particular form of the 

lateral boundary condition. The condition of zero radial wind (BCV) 

clearly contributes to significant departures in the numerical solu-

tions obtained when using BCII and BCIV. The acceptability of such a 

lateral boundary condition is highly questionable since it artificially 

restricts the horizontal extent of the radial circulation, which has an 

obvious impact on the numerical solution. The adequacy of the condi-

tion of zero divergence is much more difficult to determine. During 

the developing stages of those experiments in which convection is ex-

pl icitly resolved on the scale of the grid, little difference is seen 

between the simulations using BCII and BCIV (AA4, AA5). There are, 

however, substantial differences in the solutions when cumulus 
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Figure 5.19 Same as Figure 5.18 but for experiments AB4, 
AB5 and AB6. 
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convection is parameterized (AB4, AB5). Since the 1inear analysis 

of chapter 3 shows that gravity-inertia waves are reflected from the 

boundary of the computational domain when using BCIV, one might specu-

late that in the early stages of the numerical integrations these dif-

ferences are produced by an interaction between reflected gravity-

inertia waves and the cumulus parameterization resulting in a net 

release of latent heat away from the interior. Such an event would be 

unlikely to occur in the case where convection is explicitly resolved 

since the atmosphere would have to be very near saturation, which it 

generally is not. 

One additional distinction in the integrations which use BCII and 

BCIV is the steady state nature of the storms simulated with BCII. 

This is probably attributable to some nonlinear aspect of the boundary 

condition which is beyond the scope of the analysis presented in 

chapter 3. 



6.0 EXAMPLES OF THE ROLES OF RADIATION AND CUMULUS MOMENTUM TRANSPORT 

In this chapter we consider the effect of a simple radiation 

parameterization and the effect of 'cumulus friction' on the develop-

ment of a model storm.. These numerical examples make use of the initial 

moisture distribution given by IC2 and the lateral boundary condition 

proposed in chapter 3 (BCII). Thus they can be compared directly to 

experiment AB4 which incorporated the parameterized transports of heat 

and moisture only (see Table 5.1). 

6.1 Incorporation of Radiation 

The role of radiative processes in large-scale tropical weather 

systems is not yet well understood. Albrecht and Cox (1975) have sug-

gested that infrared (or longwave) cooling may be a significant com-

ponent of the total diabatic source occurring in a tropical wave. More 

recent diagnostic studies of convection using both spectral and bulk 

representations of the cloud field have indicated a marked sensitivity 

to the choice of a radiative heating (e.g. Yanai et al ., 1976; 

Stephens and Wilson, 1980). The fact that the longwave radiative 

cooling is primarily modulated by upper level cloud has led Gray and 

Jacobson (1977) to propose that horizontal gradients in the longwave 

radiative cooling are fundamental to the maintenance of tropical 

disturbances. 

The role of longwave radiation in the development of a tropical 

cyclone was first addressed by Sundqvist (1970b), who included this 

process in a ten level axisymmetric balanced model. A net radiative 

cooling profile was applied only to those regions in which condensation 

was not taking place. His results showed a noticeable increase in the 

rate of intensification despite the small magnitude of the radiative 

139 
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Figure 6.1 The net radiative heating rate used in experiment 

AD1 and AF1. 
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Figure 6.2 The time evolution of the maximum low 
level (z ̂  225 m) wind and central sur-
face pressure for experiments AB4 and AD1 
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Figure 6.3 The time evolution of the radius of maximum wind 
(heavy solid line) and the horizontal extent of 
the gale (light dashed line) and hurricane (light 
solid line) force winds for experiment AD1. 
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cooling (maximum values of -2°C/day at 300 mb). Interestingly, the 

peak intensity of the storm showed no sensitivity to the incorporation 

of radiation. 

In order to determine what, if any, effect net radiational cooling 

would have on our model storm development, a numerical experiment (AD1) 

was conducted which incorporated the simple radiation parameterization 

described in section 2.3.4. We note that the diurnal variation in the 

shortwave radiative heating was not included, and only the daily 

averaged net radiative heating rate was considered (see Fig. 6.1). A 

comparison of the time evolution of the maximum low level ( z ^ 2 2 5 m) 

tangential wind and central surface pressure for experiments AB4 and 

AD1 is shown in Fig. 6.2. This diagram clearly indicates that the 

incorporation of radiation results in significantly earlier intensifi-

cation as well as a deeper more intense mature storm. The rate at 

which the model storm deepens, however, appears to be insensitive to 

the inclusion of the radiation parameterization. 

Fig. 6.3, which depicts the gross horizontal structure of the 

simulated disturbance suggests a tighter more organized circulation 

cnan the ore obtained in experiment AB4 (see Fig. 5.3). Comparison of 

the tangential wind field at 120 hours for AB4 (Fig. 5.9) and AD1 

vFig. 6.4) confirms that experiment AD1 exhibits a more intense tangen-

tial circulation confined to a smaller radius. The tangential circula-

tion in the outer regions appears to be more organized as well with 

large values of v restricted to a smaller interior region. Noticeable 

differences in the organization of the vertical motion field are also 

seen. These results appear to suggest that radiative processes may 

play a role in determining the horizontal scale of a tropical distur-

bance. 
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Figure 6.4 The tangential wind (5 m/s), relative humidity 
(10%), temperature deviation (1°C), vertical 
motion (25 mb/hr) and cloud base mass flux 
distribution fields at 120 hours for experiment 
AD1. The quantities in parentheses denote the 
respective contour interval. 
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Figure 6.5 Cloud base mass flux distribution for experiment AD1 
The intensity of the shading at any level p is pro-
portional to the cloud base mass flux of the sub-
ensemble detraining at that level. 



The relative humidity field at 120 hrs is much more reasonable in 

experiment AD1, showing a pronounced drying in middle levels at the 

larger radii (cf. Frank, 1977). This is most likely c consequence of 

the strongly bimodal character of the parameterized corvection which 

is occurring in the same region. Fig. 6.5 shows the early time evolu-

tion of the cloud base mass flux distribution field for experiment AD1. 

The incorporation of a radiative cooling appears to contribute to 

earlier development of strong deep convection in the interior (cf. 

Fig. 5.5). This pronounced difference in the convective activity is 

more clearly seen in Figs. 6.6-6.9 which among other things show the 

convective-scale flux of total water ( L F „ , J and the convective scale 

heating rate (g — F g ^ + LR) for experiments AB4 and AD1 at twelve 

and twenty-four hours. Note the large horizontal gradients which 

develop in these convective scale properties by twenty-four hours. 

A more rapid development of the transverse circulation accompanies the 

accelerated growth of deep cumulus convection as can be seen from the 

omega fields presented in Figs. 6.6-6.9. At twelve hours experiment 

AD1 exhibits a vertical motion field (150-200 km) which is twice as 

large as the one produced in AB4. By twenty-four hours this difference 

is even more extreme. The intensity of both low and middle inflow is 

enhanced when radiation is included which accounts for the discrepancy 

in the vertical position of the maximum in the omega field. 

The numerical results presented here suggest that radiative 

cooling does play a significant role in the development, of a tropical 

disturbance. Even though the magnitude of this cooling is small when 

compared to the diabatic heating rates associated with organized 
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Figure 6.6 The tangential wind (1 m/s), relative humidity (10%), 
vertical motion (2.5 mb/hr), convective-scale flux 
of total water (50 w / m 2 ) and convective-scale heating 
rate (0.25°C/hr) fields for experiment AB4 at 12 hours. 
The quantities in parentheses denote the respective 
contour intervals. 
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Figure 6.7 Same as Figure 6.6 but at 24 hours. 
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Figure 6.9 Same as Figure 6.6 but for experiment AD1 at 

24 hours. 
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cumulus convection, the horizontal gradients appear to play a role in 

the organization of the radial circulation, contributing to a deter-

mination of both horizontal scale and intensity. We also note a 

pronounced response of cumulus convection to the incorporation of a 

radiational cooling as has been suggested by the diagnostic studies 

of Yanai et al. (1976) and Stephens and Wilson (1980). This is most 

clearly seen in Fig. 6.4 which shows a strongly bimodal distribution 

of convection in the outer regions (cf. Fig. 5.9). Consequently, we 

are led to conclude that radiative processes should not be neglected in 

numerical investigations of the development of tropical disturbances. 

6.2 Incorporation of Cumulus Momentum Transport 

The modification of the large-scale momentum fields by parameter-

ized cumulus convection has generally been ignored in numerical model-

ing efforts even though many observational and theoretical studies 

have indicated that convective-scale contributions to the large-scale 

dynamic budgets can be significant (e.g. Gray, 1967; Houze, 1973; Reed 

and Johnson, 1974; Stevens et al., 1977; Schneider and Lindzen, 1977; 

Stevens and Lindzen, 1978; Shapiro, 1978; Stevens, 1979; Silva Dias, 

1979). Since this process appears to be fundamental to large-scale 

tropical circulations, we have included a convective-scale momentum 

transport which essentially involves a redistribution of horizontal 

momentum by the cumulus ensemble predicted by the Arakawa-Schubert 

cumulus parameterization. This down gradient approach is frequently 

referred to as 'cumulus friction' (e.g. Stevens et al., 1977). 

Recently, Gray (1979) and McBride (1979) have suggested that 

cumulus induced momentum accelerations may be important to the genesis 

of tropical storms by accelerating the tangential wind in the upper 
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Figure 6.10 (a) Vertical profiles of tangential wind at 4 degrees 
radius for a developing and nondeveloping Pacific 
cloud cluster (Zehr, 1976). 

(b) Cumulus induced decelerations of tangential wind 
profiles given in Figure 6.10a (see text). 
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and lower troposphere. Although a convective-scale momentum source is 

invoked to produce such accelerations, we shall show that a simple re-

distribution of horizontal momentum by the cumulus ensemble can be 

expected to produce similar accelerations of the tangential wind. The 

vertical profiles of the tangential wind for developing and nondevelop-

ing cloud clusters are quite different with the developing systems 

generally exhibiting more vertical shear (Zehr, 1976; McBride, 1979). 

Fig. 6.10a gives an example of the vertical profiles of tangential 

wind at 4 decrees radius for a developing and nondeveloping Pacific 

cloud cluster (Zehr, 1976). In order to determine in an approximate 

sense what effect cumulus friction would have on these profiles, sub-

ensemble budgets of v momentum were calculated for each profile using 

the mean Marshall Islands thermodynamic structure to estimate the 

entrainment rate for each sub-ensemble (Yanai et al.» 1973, 1976). 

Using the diagnostically obtained cloud base mass flux distribution 

of Yanai et al. (1976) an acceleration of the tangential wind profiles 

by cumulus convection was obtained. These are illustrated in Fig. 

6.10b. Upper and lower tropospheric accelerations are seen in both 

cases but with much larger magnitudes for the developing cluster wind 

profile suggesting that cumulus friction may be a process which helps 

to differentiate between developing and nondeveloping vortices. 

The vertical redistribution of horizontal momentum by cumulus 

clouds may bs more important to the dynamics of an evolving tropical 

disturbance than one might expect. In section 3.3 it was demonstrated 

that heating the atmosphere on horizontal scales typical of a tropical 

cloud cluster is an inefficient means of generating balanced 
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a ( k m ) 

Figure 6.11 The fraction of the initial energy which is 
partitioned to geostrophic flow as a function 
of the horizontal scale of an initial tangen-
tial wind disturbance. The curves have been 
computed using (6.3) for the first five values 
of (gh n)

 2 given in the last column of Table 3.1 
and with an f corresponding to a latitude of 
20°N. 
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for which the initial relative vorticity was assumed to vanish. A 

second interpretation of this initial condition on the potential 

vorticity is that there is no initial geopotential perturbation and 

the initial tangential wind is given by 

(6.2) 

(6.3) 

This energy partition is plotted in Fig. 6.11 as a function of dimen-

sional horizontal scale a , at 20°N, for the first five values of 

(geostrophic) flow. On the other hand, it can be shown that forcing 

the rotational part of the wind field (tangential component in this 

study) on similar horizontal scales can be a very efficient means of 

generating balanced flow (cf. Schubert et al., 1980; Silva Dias and 

Schubert, 1979). 

In the example discussed in chapter 3 we considered an initial 

potential vorticity of the form 

(6.1) 

In order tc compute the energetics of such an initial condition it is 

necessary to assume that const. = 0 , i.e. a discontinuous initial tan-

tential wind. The energy partition — &— - is then obtained in a 
K o 

similar fashion to the case discussed in section 3.3, and is given by 
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Figure 6.12 Same as Figure 6.2 but for experiments 
AB4 and AE1. 
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Figure 6.13 Same as Figure 6.3 but for experiment AE1. 
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(gh ) 2 given in the last column of Table 3.1. As in Fig. 3.4, for a 

K « * Pco 
given horizontal scale a , the difference between ^ and unity 

o 

represents the fraction of the initial energy partitioned to outward 

propagating gravity-inertia waves. In sharp contrast to Fig. 3.4 

however, we see that for horizontal scales typical of a tropical cloud 

cluster (e.g. £ 300 km), the majority of the initial energy is parti-

tioned to balanced flow. Thus, we conclude that the mass field will 

tend to adjust to changes in the tangential momentum field produced 

by cumulus convection. Even though convective-scale accelerations of 

the wind field are likely to be small (see Fig. 5.10b), Fig. 6.11 

suggests that they are a highly efficient means of generating balanced 

flow. It is worthwhile to note that although modifications of the 

divergent part of the wind field (the radial component in our case) 

are of little dynamic importance in the linear initial value problem 

discussed above (since this type of perturbation has zero potential 

vorticity and is projected entirely onto gravitational modes), such 

modifications can be of importance in a nonlinear way as we shall see. 

Shown in Fig. 6.12 is a comparison of the time evolution of the 

maximum low level (z ^ 225 m) tangential wind and central surface 

pressure for experiments AB4 and AE1. The incorporation of cumulus 

momentum transport in experiment AE1 appears to have a pronounced 

negative impact on the development of the model storm. Similar results 

have been obtained by Bliss (1980) who simulated tropical cyclone 

genesis using the Ooyama (1969a, b) fluid system on an equatorial 

β-plane. Simulations which included a crude cumulus momentum transport 

showed a reduction in genesis and development. 
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Figure 6.14 Same as Figure 6.4 but for experiment AEl. 



Figure 6.15 Same as Figure 6.5 but for experiment AE1. 
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The time evolution of the gross horizontal structure of the model 

storm is shewn in Fig. 6.13. From Figs. 6.12 and 6.13 it can be seen 

that the model vortex goes through a period of four days with little 

intensification during which the tangential circulation in the exterior 

region spins up to give a broad horizontal circulation without a well 

defined radius of maximum winds. This period is followed by rapid 

intensification which is similar to that obtained in AB4. The horizon-

tal scale and intensity of the mature storm (before 200 hrs) is quite 

similar in scale and intensity to AB4 as well (see Fig. 6.13). 

The delay in the development of model storm AE1 does not appear 

to be related to the horizontal distribution of the parameterized con-

vection. The development of the cloud base mass flux distribution 

field (see Fig. 6.15) in experiment AE1 is similar to AB4 (see Fig. 

5.5) although the magnitude is somewhat smaller. This difference in 

the magnitude of the convective activity is most clearly seen by com-

paring Figs. 6.16 and 6.17 with Figs. 6.6-6.9. Both the convective-

scale transports of total water and the convective-scale heating 

rates for AE1 are smaller than those in AB4 and considerably smaller 

than those produced in AD1. Also note the weak, poorly organized 

character of the vertical motion field in the early stages. This in-

dicates a very slow development of the large-scale transverse circula-

tion which we believe can be explained to be a consequence of the 

vertical redistribution of horizontal momentum. 

Plotted in Fig. 6.18 are vertical profiles of the convective-

scale heating rate, and the convective-scale acceleration of the tan-

gential and radial wind at r - 240.0 km and t = 30 hours (Note that 

these are fairly typical of the region 100-300 km). The accelerations 
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Figure 6.18 Vertical profiles of the convective-scale heating rate, and 
the convective-scale accelerations of the tangential and 
radial wind components at a radius of 240 km at 30 hours 
into the numerical integration. 
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of the tangential wind component produced by the model are very similar 

in both vertical structure and magnitude to the diagnostically deter-

mined accelerations of Fig. 6.10b. What is of most significance, how-

ever, is the acceleration of the radial component of the wind, which 

shows a strong positive acceleration in the mixed layer and a strong 

negative acceleration in the upper levels. Thus, the rearrangement of 

the radial component of momentum by cumulus clouds tends to retard the 

development of a transverse circulation by slowing both low level in-

flow and upper level outflow. In this case (AE1) a significant reduc-

tion in the horizontal convergence of water vapor accompanies the slow-

down in the low level circulation which has the effect of suppressing 

the cumulus activity in the interior during the early stages of 

development. 

One additional numerical experiment was conducted to address the 

role of cumulus friction in which the convective-scale rearrangement 

of radial momentum was neglected (no figures are shown). In this case, 

there is a slight acceleration of model storm development (2-4 hours) 

with respect to experiment AB4. The mature storm which is produced 

is also deeper. This result appears to confirm that it is the vertical 

redistribution of the radial component of momentum which retards the 

development of the model storm in experiment AE1. 

It is clear from these results that the incorporation of convec-

tive-scale transports of horizontal momentum can contribute to signifi-

cant alterations of the numerical solution. However, we are not yet 

prepared to conclude that these convective-scale effects will always 

act one way, i.e. to either accelerate or retard tropical cyclone 

development. Since the convective-scale accelerations of the 
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Figure 6.19 Same as Figure 6.2 but for experiments 
AB4 and AF1. 
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Figure 6.20 Same as Figure 6.3 but for experiment AF1. 



168 

large-scale wind are so closely dependent upon the vertical structure 

of the large-scale wind, and to the intensity of cumulus activity, ad-

ditional sensitivity studies to the initial condition should be con-

ducted. The sensitivity of the above results to the particular form 

of the cloud model should also be addressed (such as the incorporation 

of moist downdrafts). Finally, it is entirely possible that convective-

scale redistribution of horizontal momentum may play an important role 

in the asymmetric structure of a tropical storm. This question goes 

beyond the present scope of this study, but should be addressed in 

future asymmetric modeling efforts. 

6.3 Incorporation of Both Radiation and Cumulus Momentum Transport 

As a final experiment (AF1) we examine the sensitivity of model 

storm development to the incorporation of both the radiation parameter-

ization used in experiment AD1 and the convective-scale transport of 

horizontal momentum which was considered in experiment: AE1. The results 

of this numerical experiment are summarized in Figs. 6.19-6.24. 

In experiment AD1 we saw that the incorporation of radiation ac-

celerated storm development while experiment AE1 indicated that cumulus 

transport of momentum retarded development. Thus, it should not be too 

surprising to see that the development of the model storm including 

both processes is similar to the development of the model storm which 

includes neither process. The time evolution of the maximum low level 

( z ^ 225 m) tangential wind and central surface pressure for experiments 

AF1 and AB4 are compared in Fig. 6.19. The time required to reach the 

intensification stage is almost identical for each of these simula-

tions, and the final steady state mature storm is also very similar in 

intensity as determined by central surface pressure. The structure of 
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Figure 6.22 Same as Figure 6.5 but for experiment AF1. 
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the mature storm is quite different, however, as can be seen in Figs. 

6.20 and 6.21. The tangential circulation appears to be much more ac-

ceptable with regard to the overall organization producing gale and 

hurricane force winds which are restricted to more reasonable radii. 

The vertical motion field which is obtained in experiment AF1 appears 

to be better organized especially in the eyewall region (cf. Figs. 5.9 

and 6.4). The relative humidity distribution is also much more 

reasonable than the one produced in experiment AB4. 

The early time evolution of the cloud base mass flux distribution 

is most like experiment AD1, although not as large in magnitude (see 

Figs. 6.21 and 6.5). We note that the convective-scale flux of total 

water most resembles experiment AB4 while the convective-scale heating 

rate is most like experiment AD1 (Figs. 6.23 and 6.24). The develop-

ment of the vertical motion field and tangential circulation is 

obviously more rapid than in experiment AB4 but still somewhat slower 

than AD1. 

These results show that the incorporation of both radiation and 

cumulus momentum transport leads to reasonable development of a tropi-

cal disturbance. The very early development of the transverse circula-

tion is apparently accelerated although the time required to reach a 

mature stage is somewhat longer. The most significant aspect of the 

incorporation of both these processes is the marked improvement in 

the structure of the mature storm. 
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Figure 6.23 Same as Figure 6.6 but for experiment AF1. 
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Figure 6.24 Same as Figure 6.6 but for experiment AF1 
at 24 hours. 



7.0 SUMMARY AND CONCLUSIONS 

We have developed an eighteen 1evel,axisymmetric primitive equa-

tion tropical cyclone model which uses the Arakawa-Schubert spectral 

cumulus parameterization and have successfully simulated the develop-

ment of a weak tropical disturbance into a mature hurricane. The 

quasi-equilibrium hypothesis, which involves the solution of an inte-

gral equation for the cloud base mass flux distribution function, has 

been formulated as an optimization problem (the optimal adjustment 

method). The cloud base mass fluxes which are produced using this 

formulation are quite reasonable bearing great resemblance to the 

mass flux distributions obtained in diagnostic budget studies (e.g. 

Yanai et al., 1976). 

Rosenthal (1978) has shown that the development of a reasonable 

hurricane circulation can be achieved without the use of a cumulus pa-

rameterization in models with horizontal grid resolutions of a few tens 

of kilometers. Despite the crude nature of the large-scale condensation 

process employed in our model, we too have been able to simulate the 

development of a hurricane with only the explicit release of latent 

heat. These results appear to verify the conclusion that the early 

attempts to simulate tropical cyclones along these lines were flawed 

(e.g. KaSahara, 1961 , 1962; Syono, 1962). The initial growth of small-

scale features is apparently controlled by nonlinear effects which were 

probably not well represented in these early models. Although we have 

been successful in simulating hurricane development with explicit latent 

heat release, the differences in the development, intensity and struc-

ture of the model storms simulated with parameterized convection are 

significant. It is difficult to draw a general conclusion regarding the 
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desirability of explicitly resolving cumulus convection, but in our 

opinion such an approach would probably most appropriately be employed 

in a non-hydrostatic model with a much finer grid resolution (on the 

order of several hundred meters). 

The linear analysis of chapter 3 demonstrates that most of the 

available potential energy generated by latent heat release, on hori-

zontal scales typical of a tropical cloud cluster, is partitioned to 

gravity inertia wave motion rather than to the balanced flow. In this 

way most of the generated energy is radiated away to the far field 

emphasizing the need for the lateral boundary condition in a primitive 

equation model to be able to transmit gravity-inertia waves. Since 

most boundary conditions are deficient in this regard, an approximate 

cylindrical pure gravity wave radiation condition has been derived for 

use in axisymmetric primitive equation models. Simple diagnostic 

numerical integrations show that for the first few vertical modes, 

gravity inertia waves are, for all practical purposes, transmitted by 

this boundary condition. Several numerical experiments with the 

tropical cyclone model have also been conducted to illustrate the 

sensitivity of the solution to the exact form of the lateral boundary 

condition. Noticeably earlier development of the model storm occurs 

with the radiation condition when cumulus convection is parameterized 

as compared to the two most common boundary conditions in present use, 

the conditions of zero divergence and zero radial wind. 

The Arakawa-Schubert cumulus parameterization demonstrates a 

strong sensitivity to the initial moisture distribution in the absence 

of an initial transverse circulation. In an experiment with a moisture 

distribution which is independent of radius, development of the model 
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vortex is extremely slow and highly unusual. The incorporation of a 

horizontal gradient in the initial moisture distribution results in 

more rapid and more reasonable growth of the initial circulation. 

The sensitivity of model storm development to the processes of 

radiation and cumulus momentum transport has been examined. A simple 

net radiational cooling parameterization was included in the model 

which produced earlier intensification and a deeper mature storm. Ad-

ditionally, a marked decrease in the horizontal scale of the simulated 

hurricane was observed suggesting that radiative processes may play an 

important role in determining the scale of tropical disturbances. 

The incorporation of cumulus transports of horizontal momentum had 

a strong negative effect on the development of our model vortex. 

Strong accelerations of the upper and lower level radial wind field 

tended to slow the development of the transverse circulation which in 

turn slowed the development of the model storm. The accelerations of 

the low 1evel inflow appear to reduce the low 1evel convergence of 

water vapor which has a significant impact on the development of 

cumulus convection in the interior. Although the results of this 

experiment indicate that cumulus momentum transport does not enhance 

tropical cylcone development, further study is required. The sensi-

tivity of this process to the initial condition as well as the sensi-

tivity to the particular form of the cloud model employed in the 

cumulus parameterization should be explored. 

The most interesting numerical experiment conducted is the final 

one which includes both radiation and the convective-scale transport 

of horizontal momentum. In a gross sense, the development of this 

model storm is remarkably similar to the development cf a model storm 
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which incorporates neither the process of radiation nor cumulus momen-

tum transport. One very important distinction, however, is the much 

more reasonable structure of the mature storm indicating that these 

processes may be fairly important to the organization and scale of 

tropical cyclones. 

There are, of course, several shortcomings of the present model 

which became evident during the experimental part of this study. In 

all cases extremely deep storms are produced by the model, much deeper 

than are generally observed in nature. Previous experience has in-

dicated that the final intensity of the model storm is somewhat sen-

sitive to fractional effects (in particular the choice of a vertical 

mixing length for the nonlinear vertical diffusion process). We have 

treated the surface energy exchanges perhaps too simply, choosing a 

constant value of the drag coefficient cD which is likely too low for 

the mature stage of the simulated storm. A more sophisticated treat-

ment of the eddy surface fluxes of heat, moisture and momentum should 

be included in future versions of the model. This is likely to improve 

the results so that the intensity and structure of the mature model 

storm will bear more resemblance to those observed in nature (cf. 

Frank, 1977). 

The treatment of the mixed layer is also a fairly weak aspect of 

the present model. Since a mixed layer of variable depth is not in-

cluded, we find it necessary to allow cumulus convection to interact 

directly with the heat, moisture and momentum budgets of our constant 

depth 'mixed layer 1. This formulation, coupled with the simple cloud 

model used in the cumulus parameterization, results in direct heating 
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of the mixed layer by parameterized cumulus convection. The magnitude 

of this heating can probably be reduced by a more careful selection 

of the jump in dry static energy across the top of the mixed layer, 

but this will not completely eliminate the questionable heating in the 

mixed 1ayer. We feel there are two ways to improve this aspect of the 

tropical cylone model, the first of which involves a generalization 

of the cloud model in the cumulus parameterization so as to include 

moist downdrafts (e.g. Johnson, 1976). Such a modification might help 

to correct the low level heating produced by the convection as well as 

give different and perhaps improved results with regard to cumulus 

transports of horizontal momentum. Secondly, a mixed layer of variable 

depth should eventually be incorporated into the model. In the present 

sigma coordinate model, the introduction of such a mixed layer has cer-

tain computational disadvantages since the top of the mixed layer is 

not necessarily a coordinate surface. However, it is possible to 

design a generalized sigma coordinate system in which both the ground 

and the top of the mixed layer are coordinate surfaces. 

Finally, a liquid water budget equation and a rail water budget 

equation should probably be included in the system of governing equa-

tions (cf. Rosenthal, 1978). Since the present model does not allow 

storage of 1iquid water, the large-scale condensation process is 

required to remove excess condensate immediately. This approach, 

although probably adequate for a general circulation model, is not 

realistic for the type of phenomena we are attempting to simulate. 

We believe that the incorporation of 1iquid water will help to improve 

the structure of the inner core of the simulated disturbance (see 

Shea and Gray, 1973; Gray and Shea, 1973). 
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APPENDIX A 

Finite Differencing of the Large-Scale Governing Equations 

A.l Space Differencing 

For a more complete discussion of the derivations of the finite 

d i f f e r e n t equations the reader is referred to Hack and Schubert (1976). 

In the vertical we denote by integer k (1,2,3...K) those levels 

at which the prognostic variables u, v, T, and q are carried (see Fig. 

A.l), and by the half integers (1/2, 3/2,...K+l/2) those levels where 

o is carried. The integer level k is representative of a layer of 

thickness 

For the horizontal we will use a distribution of variables as 

shown in Fig. A.2. The variables u and v are carried at the half 

integer locations in the horizontal domain while π, T and q are carried 

at the integer locations. Horizontal momentum fluxes are also defined 

at the half integer positions. Thus we are led to Fig. A.3 as a 3-

dimensional conceptualization of our finite difference mesh. 

We will now write the discrete analogues of (2.16)-(2.25). They 

appear in differential-difference form, leaving the time differencing 

to a discussion at the end of this appendix. 
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(A.l) 

(A.2) 

so that 

We define 
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Figure A.l Vertical finite differencing scheme. 

Figure A.2 Horizontal finite differencing scheme. 
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The mass continuity equation takes the forms 

and where 

and by 

where 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.9)' 

(A.10) 

(A.11) 

where we have defined 

The hydrostatic equation is given by 
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i 

Figure A.3 Three dimensional conceptualization of 
vertical and horizontal finite differencing 
scheme. 
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The equation of state is 

(A.12) 

(A.13) 

and 

(A.14) 

(A.15) 

(A.16) 

(A.17) 

where 

The radial and tangential momentum equations are given respectively by 
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(A.18) 

(A.19) 

And finally, the continuity equation for water vapor may be 

written 

(A.20) 

(A.22) 

A.2 Time Differencing 

The time differencing for the governing equations is accomplished 

with a leapfrog scheme coupled with an Asselin (1972) time filter. We 

illustrate the time differencing procedure by applying it to the 

equation 

(A.21) 

The thermodynamic equation is written in its final form as 
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The leapfrog scheme can be written 

(A.23) 

where the superscripts denote discrete time levels. The Asselin time 

filter is applied in order to avoid separation of the odd and even 

time steps (sometimes referred to as time splitting) and can be 

written 

(A.24) 

where a is the filter parameter. 

In order to begin the time stepping procedure, information is 

needed at two time levels since the leapfrog scheme is a two level 

scheme. Consequently, a simulated backward time difference (Matsuno, 

1966) is used for the first time step such that 

(A.25a) 

(A.25b) 

where the * denotes a tentative value. The time stepping procedure 

then proceeds as shown in table A.1. We note that all diffusion 

(decay) terms are evaluated using a forward time difference, i.e. 

(A.26) 

The time differencing scheme must maintain the CFL (Courant, 

Friedrichs, _ewy, 1928) linear stability criterion which can be stated 

as 

(A.27) 
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Table 4.1. Time stepping procedure 
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^ For phase speeds typical of the external mode the contribution 
of the Coriolis parameter f, to the frequency v is negligable. 

This should only be regarded as an estimate of the maximum time 

increment since the dispersion relation is distorted by the finite 

difference grid, especially for short (2Ar) waves (see Arakawa and 

Lamb, 1976; Fig. 5). Numerical tests have indicated that for a 15 km 

grid, a second time step remains computationally stable. 

(A.29) 

The results of section 3.2 show that the fastest moving wave in the 

numerical model is associated with the external mode which has a 

J- -5 -1 
phase speed (gh) 2 = 288 m/s. Choosing A r = 15000 m and f = 5 x 1 0 s 

we obtain the result^ 

(A.28) 

where v is the frequency, and At is the time step used in the time 

differencing procedure described above. An estimate of the maximum 

time step can be made by considering the dispersion relation for the 

shortest wave that can be represented in the model (2Ar) which moves 

with a phase speed (gh) 2. We have 
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(B.3) 

(B.3) 

(B.4) 

(B.5) 

In a similar manner the discrete form of (2.47) can be written 

which by (B.l) becomes 

The corresponding finite difference equation is 

and the subscript n identifies a specific cloud type, the discrete 

analogue of a sub-ensemble (cloud type n implies detrainment at level 

n). Note that the horizontal index is neglected in the formulation of 

this finite difference set of equations. 

Using (2.45) we can see that (2.46) may also be written 

(B.l) 

(B.2) 

where 

APPENDIX B 

Vertical Differencing of Parameterized Convection 

In this appendix, we present the vertically discrete forms of the 

equations presented in sections 2.2.2 and 2.2.3. We begin with the 

finite difference analogue of (2.45) for which we have chosen the form 



! 
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The discrete form of the saturation relation (2.48) is simply given by 

(B.6) 

In order to determine the above budget quantities, the fractional 

entrainment rate X must be known. Let us restate (2.49) as 

(B.7) 

(B.8) 

(B.9) 

where 

and 

The entrainment rate X„ is a root of the discrete form of (B.7) and can 
n v ' 

be determined iteratively by defining the function 

(B.10) 

Although Newton's method can be used in the solution of (B.7), the com-

plicated form of the derivative of G n makes this approach more costly 

from a computational point of view than other methods. Consequently, 

the variable scant method is used to solve for the fractional entrain-

ment rate X n . This procedure, which requires two initial guesses, 

can be written as 

(B.l!) 

where the superscripts denote iteration level. Convergence to 

G n •< 1.0 J/kg can be expected in 4 or 5 iterations. 

Finally, the discrete analogue of the cloud work function must 

be defined. Let us first rewrite (2.52) as 
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where 

The discrete form of (B.12) is then written 

where we have defined 

(B.12) 

(B.13) 

(B.14) 

(B.15) 
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Because of the complicated form of the function q*(T,p) an 

explicit equation for T^' cannot be derived from (C.4). However, an 

iterative scheme can be developed by applying Newton's method to (C.4), 

(Hack and Schubert, 1976). 

1The vapor is condensed to liquid water. The ice phase is not 
considered. 

(C.4) 

Equations (C.l), (C.2) and (C.3) form a closed system in the unknowns 

q k', T^' and C^At . q^' and C^At can be eliminated to give 

(C.3) 

The new water vapor mixing ratio q k' is the saturation value at 

the new temperature T^1 , 

(C.l) 

(C.2) 

APPENDIX C 

Numerical Procedures for Large-Scale Condensation and Dry Convection 

C.l Large-scale Condensation 

At level k, let the temperature be denoted by T^ and the water 

vapor mixing ratio by q^. If q^ is larger than the saturation value 

q^* , a certain mass of water vapor per mass of dry air must be con-

densed^. This condensation, denoted by C^At, will reduce q^ to q^1 

and increase T^ to T^' , 
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C.2 Dry Convection (Dry Convective Adjustment) 

At level k, let the temperature before adjustment be denoted by 

T^ and the temperature after adjustment by T^' . Then, if the adjust-

ment involves the contiguous layers beginning with k^ and ending with 

k , we can write 

(C.5) 

If 8 denotes the potential temperature which results from the adjust-

ment , then 

(C.6) 

(C.7) 

Substituting (C.6) into (C.5) we obtain 

After computing 6 from (C.7) we can easily compute T}, from (C.6). 

This procedure may result in an unstable potential temperature strati-

fication at intervals which border and k g , in which case the pro-

cedure is repeated with new k b and k g . The procedure is complete when 

there exists no single pair of k and k+1 for which 0 k < 6 k + 1 for any 

integer 1 < _ k £ K - l , i.e. when a stable temperature stratification in 

the entire vertical column is reached. 
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(D.l) 

(D.2) 

(D.3) 

(D.4) 

(D.5) 

(D.6) 

(D.7) 

In differential difference form they become 

where 

APPENDIX D 

Finite Difference Form of the Divergent Barotropic System of Equations 

The nonlinear divergent barotropic system of equations can be 

written in flux form as 
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Equations (D.4)-(D.7) have been used to produce the numerical examples 

in section (3.5.1). 



APPENDIX E 

Solution of the Discrete Vertical Structure Problem For 
Implementation of the Lateral Boundary Condition 

The vertically discrete flux forms of (2.2)-(2.7) can be linearized 

about a resting basic state and written as 

(E.l) 

(E.2) 

(E.3) 

(E.4) 

(E.5) 

The geopotential is determined from the linearized discrete hydro-

static equation 

(E.6) 
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where 

(E.7) 

(E.8) 

We assume (as in the vertically continuous case) that 

Equations (E.4) and (E.5) can be combined with the use of (E.3) to give 
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where 

(E.9) 

(E.10) 

Since by definition 

and 

equations (E.3), (E.1), (E.2) and (E.8) can be written 

(E.ll) 

(E.12) 

(E.13) 

(E.14) 
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Thus, for specified wave number n, (E.11)-(E.14) and (E.6) constitute 

an eigenvalue problem where iv is the eigenvalue and the quantities 

n , 0, V and T comprise the eigenfunctions {or vertical structure 

functions)., Since in the vertically continuous problem we consider 

the case for large n only, equation (E.13) can be neglected as can 

the term fV^ in (E.12). This approximation eliminates the stationary 

geostrophic modes from the problem and allows the eigenvalue to become 

~ , the pure gravity wave phase velocity for the corresponding ver-

tical structure functions. For a model with K levels, the eigenvalue 

problem can be solved numerically to yield 2K+1 eigenvalues and 

eigenfunctions. The eigenvalues correspond to K inward propagating 

modes, K outward propagating modes, and a stationary :omputational 

mode which arises due to the Lcrenz (1960) type vertical differencing 

employed in the model (i.e. non-staggered temperature I,, 
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