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ABSTRACT

VERTICAL MOTION STRUCTURE IN TROPICAL

MESOSCALE CONVECTIVE SYSTEMS

VHF wind profiler data were used to smdy the vertical draft structure within 13 tropical

Mesoscale Convective Systems (MCSs) near Darwin, Australia during the wet season of 1989­

1990 and 1990-1991. Single-Doppler radar and surface rainfall data were also utilized in order to

correlate the reflectivity and surface rainfall patterns with the structure of the vertical air motion

measured by the wind profiler during the passage of each system. Because of Darwin's unique

location at the southern tip of the Maritime Continem, the wind profiler was able to observe

vertical drafts in both the monsoon (maritime) and monsoon break (continental) convective

regimes.

The break regime MCSs (6 total) were all squall lines, characterized by a leading line of

convection with intense precipitation and sharp horizontal reflectivity gradients. A prominent zone

of weaker reflectivities and very light precipitation was observed to the rear of the convective line

(transition zone) in most cases, as well as a region with relatively small horizomaI reflectivity

gradients, light rainfall and a characteristic bright band marking the trailing stratiform region. In

contrast, the monsoon systems (7 total) were characterized as relatively unorganized regions of

stratiform cloud with embedded convective bands which moved on-shore in the monsoon flow.

Results from the Darwin rain gauge network indicated that the vast majority of the total rainfall in
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each monsoon and break MCS was associated with the convective portion of the system, in

contrast to previous studies of MCSs in other tropical locations.

The break regime MCSs were all characterized by a consistent low-level (4 km) updraft peak

associated with convective cells on the leading edge of each squall line, trailed by deeper

convective updrafts in the upper troposphere. A significant fraction of the convective rainfall was .

associated with the low-level updraft indicating that warm rain collision-coalescence processes

were as important to precipitation production as mixed phase processes involving both ice and

supercooled liquid water (associated with the upper level peak updraft). In the monsoon regime,

the convective region vertical air motions were typically less than the squall lines in the lower

troposphere but larger in the upper troposphere. The low-level differences are consistent with the

smaller virtual temperature excess in the monsoon soundings, as well as the larger vertical radar

reflectivity gradients observed in monsoon convection.

Consistent with the differences in vertical air motion patterns, diabatic heating and moistening

profiles showed that the monsoon MCSs were characterized by a higher level peak heating and

drying compared to the break MCSs. The results have important implications for cumulus

parameterizations in numerical models since the large scale circulation is sensitive to the vertical

distribution of diabatic heating in tropical MCSs. The vertical air motion and diabatic heating

profiles are compared with similar studies from other tropical and middle latitude locations,

including TOGA COARE.
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(a) and (c), positive (negative) radial velocity indicates upward (downward) motion. Note
the relatively large changes in radial velocity and standard deviation between the different
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Also note that the radial velocities have not been adjusted to account for particle fall speed
biases (see text for details). 23

2.4 Ten-minute averaged spectra collected at 1100 UTC 5 December 1989 at (a) 2.8 kID and
(b) 4.3 kID. The solid line shows the observed spectra with the left peak indicating
hydrometeor fall velocity and the right peak indicating vertical air velocity. Positive
(negative) radial velocities represent upward (downward) motion. The dashed line
represents the results of the curve-fit algorithm. In (b), the left (right) triangle indicates
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(a). 29

2.5 Composite profiles for the convective line (solid line), transition (long-dashed line), and
stratiform (short-dashed line) regions of four break MCSs sampled during the 1989-1990
wet season, based on results from the curve-fit algorithm. (a) Standard deviation. (b)
Vertical velocity difference calculated as the absolute value difference of the vertical air
velocity estimate generated by the curve-fit algorithm and the manually edited value. This
statistic indirectly measures the degree of spectra merging in the data (see text for details).

.(c) Signal-to-noise ratio, log (signal power)l1og (noise power). 31
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Chapter I

INTRODUCTION

1.1 Motivation for research

The global circulation is largely dependem on deep convection occurring in the tropics. This

deep convection often occurs in association with Mesoscale Convective Systems (MCSs), which

consist of not only deep convection, but regions of stratiform precipitation, with the latter being

characterized by important mesoscale circulations. Both the deep convection and mesoscale

circulations act to couple the ocean, planetary boundary layer and free troposphere through heat,

moiswre and momentum transports. Riehl and Malkus (1958) focused on deep convection (hot

towers) and identified their role in transporting heat from the boundary layer to the upper

troposphere. Since this early work, other smdies have identified the important comributions of

mesoscale vertical motions to heating and cooling the troposphere (Houze 1982; Johnson and

Young 1983; Johnson 1984, Houze 1989; and others). Indeed, numerical model simulations have

shown that the global scale circulations (e.g., Walker circulation and 30-60 day Intraseasonal

oscillation) are sensitive to the vertical distribution of heating associated with tropical MCSs

involving both convective and mesoscale processes (Hartmann et al. 1984; DeMaria 1985; Lau

and Peng 1987; Houze 1989; Hack and Schubert 1990; Johnson 1992). Since the vertical

distribution of heating in an MCS is dominated by contributions involving phase changes of water

(Houze 1989) which are in U1rn proportional to vertical air motion profiles (convective and

1



stratiform), it is important to continue to document these vertical motion profiles and to identify

differences with geographic location.

To a first approximation, the diabatic heating and moistening in an MCS can be characterized

by the convective system vertical air velocity profile (Johnson and Young 1983) according to:

as -- -as -asQ == - + v·Vs + w- .. w-
I at ap ap'

aq- - - -~;; -aq­Q == - + v·Vq + w_V'J._ III 6)- ,
2 at ap ap

where Ql is the apparent heat source, Q2 is the apparent moisture sink (Yanai et al. 1973), S

represents dry static energy( CpT + gz), q is specific humidity, c..> is the vertical air velocity

measured in the isobaric coordinate system and the overbars represent horizontal averages.

(1.1)

(1.2)

Although there is general agreement on the vertical heating distribution in the stratiform

portion of tropical and middle latitude MeSs, previous results suggest a relatively wide range of

variability in the convective region (Houze 1989; Johnson 1992). Convective region vertical air

motion and heating profiles have been empirically diagnosed as a residual of rawindsonde analyses

(Johnson, 1984), using a simple entrainment cumulus model with an assumed vertical air motion

profile (Houze, 1982), or more recently, using thermodynamic and microphysical retrievals in

concert with dual-Doppler radar analyses (Chong and Hauser 1990). The results of these studies

have shown significant variation in regard to the location of the peak heating rate (lower vs middle

troposphere). Given the fact that these previous studies have diagnosed the convective region

heating indirectly, it is difficult to determine how much of the difference in the location of the

heating peak is due to natural variability and how much is due to assumptions implicit in the
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analysis methods. This apparent disparity indicateS the need for more research to determine the

global variability of the kinematic structure and diabatic heating patterns within MCSs.

Typically, MCS vertical air motion profiles have been diagnosed indirectly following mass

continuity considerations. Data sources such as a rawinsonde network, aircraft, and Doppler

radar measure horizontal (radial) wind velocity and calculate horizontal divergence across a

specified domain, and then determine the corresponding profile of vertical air motion by

integration of the mass continuity equation (i.e. the kinematic method: O'Brien 1970; Ray et al.

1980). In order to extract the profile of vertical air motion using the mass continuity equation,

boundary condition assumptions are necessary and a value of vertical air velocity must be assigned

to at least one of the boundaries in the integra~on column. These boundary condition assumptions

can be subject to large error, especially in situations where data collection is restricted in height.

In such instances, the particular observing platform may not measure the entire depth of

divergence occurring in the column and an upper boundary constraint on vertical air velocity may

be improperly assigned (i..e., W = 0 at the top of the column may not be correct). This effect

would clearly corrupt the integration and resulting profile of vertical air velocity in the column.

Such an effect would result, for example, when Doppler radar data are subject to significant

attenuation or when vertical air motion extends above cloud top into echo-free regions.

Recently, the introduction of wind profilers to the study of MCSs has provided an opportunity

to sample the vertical air motion field nearly continuously without boundary condition

assumptions. Specifically, wind profilers operating at VHF can directly measure vertical air

motions from the lower troposphere to the lower stratosphere assuming that the spectral power

returns from hydrometeors and air motions can be reliably separated in cloudy regions (Carter et

al. 1991). Of course, in clear air the wind profiler continues to provide direct measurement of

3



vertical motions, something that is not possible with a scanning Doppler radar operating at

microwave frequencies.

This study describes the structure of vertical motion in 13 tropical MCSs using VHF wind

profiler data. The data were acquired during the DUNDEE [Down Under Doppler and Electricity

Experiment; Rutledge et al. (1992)] and therefore represent MCS vertical air motion in the

Maritime Continent region. Since the tropical MCSs examined are approximately equally divided

between continental and oceanic in origin (Le., 6 continental and 7 oceanic), the results

compliment similar results from both AMEX and EMEX, which focused on oceanic systems near

Darwin.

In addition to wind profiler data, radar reflectivity data from 5-cm Doppler radars and

surface rainfall data (from a network of rain gauges) are used to correlate the vertical air motion

field with the vertical structure and precipitation features of the MCSs. The vertical air velocity

profiles are also composited to construct representative profiles of the vertical motion field in the

convective and stratiform components of the MCS. Using the approximation that the apparent

heat source (Ql) and moisture sink (QJ variables are determined solely by the vertical advection of

dry static energy and specific humidity, respectively, composite profiles of Ql and Q2 are

constructed using the vertical air motion data. The resultant profiles are compared to vertical air

motion and heating-drying profiles from other tropical and middle latitude regions, including

TOGA COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmospheric Response

Experiment; hereafter referred to as COARE), in order to identify possible similarities and

differences.
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Determination of vertical air motion profiles derived from MCSs in the northern Australia

region [southern tip of the Maritime Continent, Ramage (1968)] is important for the following

reasons:

1) the results are based on the direct observation of MCS vertical air motion structure occurring

in the Maritime Continent region and provide additional data from a largely undocumented

region to compare with previously swdied areas;

2) the location of the·DUNDEE field program (discussed in Chapter 2) provided a unique

opporwnity to study both tropical monsoon (oceanic) and monsoon-break (continental)

convection and therefore to compare the vertical air motion within these convective regimes;

and

3) convection in this region is situated in the major upwelling branch of the zonal Walker

circulation and is therefore a major contributor to global diabatic heat production (i.e., the

"global heat engine").

1.2 Partitioning MeSs into convective and stratiform components

It has been recognized for some time that MeSs often contain identifiable substructures (e.g.,

convective and stratiform components; Hamilton and Archbold 1945; Newton 1950; Zipser 1969).

As discussed in Sec. 1.1, these substruettlres play distinct roles in affecting the large scale

circulation through heat, moisture, and momenmm transports within an MCS and it is therefore

important to identify their individual contributions.

Traditionally, convective and stratiform substructures have been classified based on satellite,

radar reflectivity, surface precipitation, hydrometeor, or vertical air motion characteristics. The

separation of components is fairly distinct in propagating squall line-type systems where a line of
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convective cloud is trailed by a relatively homogeneous region of stratiform precipitation with the

characteristic radar bright band signature (Houze et aI. 1989). Such features have been identified

in many tropical and middle latitude MCSs (e.g., Newton 1950; Hamilton and Archbold 1945;

Zipser 1969; Gamache and Houze 1982; Smull and Houze 1985; Rutledge et aI. 1988; Houze et

aI. 1990; and others) and have led to the development of conceptual models portraying important

aspects of the squall line-type MCS structure and organization (e.g., Houze et aI. 1989).

However, observational studies have also shown that there are many MCSs which do not fit the

conceptual model of squall line structure and appear to have no preferred mesoscale organization

(Houze et aI. 1990). Indeed, Houze et aI. studied 69 middle latitude MCSs in Oklahoma and

found that about one third of the heavy rain events studied were not classifiable. The results

suggest that there may be a continuous spectrum of mesoscale organization in MCS precipitating

clouds (Rutledge 1991).

In the non-squall type MCSs (e.g., many tropical oceanic MCSs), the organization of

precipitation features can be much less distinct compared to their squall line counterparts (Houze

1989). For example, widespread stratiform precipitation regions of MCSs occurring in the

vicinity of Darwin, Australia during the active monsoon have been observed with embedded

convective cells and even convective line-type structures (Houze 1989; Keenan and Carbone 1992;

Keenan and Rutledge 1993; Mapes and Houze 1993a). In precipitating events near the coast of

northern Australia, Keenan and Carbone (1992) showed that these embedded convective features

can be initiated from interactions of locaIland breeze and the large scale monsoon circulations. In

these situations, stratiform regions often develop in places where convection is dissipating, so that

the distinction between convection and stratiform features is not necessarily unambiguous.

Because of the lack of clearly defined substructures, the partitioning of non-squall type MCSs into

convective and stratiform components can be a rather subjective procedure.
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In addition to convective and stratiform partitioning, many previous observational studies of

propagating middle latitude and tropical squall lines have observed a low-middle level reflectivity

trough and associated surface precipitation minimum in the region located between the rear of the

convective line and the characteristic bright band associated with stratiform precipitation (Ligda

1956; Houze 1977; Sommeria and Testud 1984; Smull and Houze 1987a; Chalon et al. 1988;

Rutledge et al. 1988; Biggerstaff and Houze, 1993; and others). This region, commonly referred

to as the transition zone, is characterized by deep subsidence (e.g., Chalon et al. 1988).

Moreover, detailed dual Doppler analysis has shown that the transition zone consists of two

separate downdrafts: a mechanically forced downdraft in the upper troposphere resulting from

convergence of air near storm top in the vicinity of the tropopause and a microphysically forced

downdraft in the lower troposphere induced by melting and evaporation of hydrometeors

(Biggerstaff and Houze 1993).

1.3 Overview of observational research on MCS vertical air motion

A number of studies have documented vertical air motion patterns within tropical and middle

latitude MCSs using rawinsonde networks, aircraft penetration data, and Doppler radar analysis

techniques (Houze 1989). These studies have focused on vertical air motion profiles of tropical

MCSs from various parts of the equatorial region, including the eastern Atlantic Ocean region

[GATE (GARP Atlantic Tropical Experiment)] continental west Africa [COPT 81 (Convection

Profonde Tropicale)], the South China Sea [Winter MONEX (Monsoon Experiment)], the central

Pacific Ocean region near Christmas, Fanning, and Palmyra Islands (Line Islands Experiment),the

vicinity of Taiwan [TAMEX (Taiwan Area Mesoscale Experiment)], the northern tip of

continental Australia (DUNDEE), and the oceanic regions off northern Australia [AMEX

(Australian Monsoon Experiment), EMEX (Equatorial Mesoscale Experiment)]. In the middle

7



latitudes, results from several observational programs [NSSL (National Severe Storms Laboratory)

Spring Programs; SESAME (Severe Environmental Storms and Mesoscale Experiment); PRE­

STORM (Preliminary Regional Experiment for STORM-Central)] have documented vertical air

motions in several squall line-type MCSs occurring in the U.S. central plains region.

VHF wind profilers have also been used to diagnose vertical motions in a variety of

mesoscale precipitating systems occurring in the tropics and middle latitudes. Balsley et al. (1988)

diagnosed air motions in clear air and precipitation conditions at Pohnpei Island (r N, 1570 E) in

the tropical western Pacific using a vertically-pointing wind profiler. Based on rainfall rates from

a nearby rain gauge, Balsley et al. obtained composite profiles for both the convective and

stratiform portions of the precipitating systems. Cifelli and Rutledge (1994b) performed a similar

analysis for MCSs occurring over the Maritime Continent region near Darwin, N.T., Australia.

In that study. Cifelli and Rutledge were able to extract the vertical air motions for different

portions of precipitating systems that passed over a VHF wind profiler site in both the monsoon

and monsoon break convective regimes.

Augustine and Zipser (1987) described the use of a 3-beam VHF wind profiler to diagnose

the horizontal wind structure within several middle latitude MCSs observed during PRE-STORM.

The profiler-derived horizontal wind fields were found to be qualitatively consistent with wind

fields derived from nearby rawinsondes. Moreover, Yoe et al. (1992) presented a more detailed

analysis of the horizontal and vertical wind fields for one of the MCSs discussed in Augustine and

Zipser (1987). Using data from a VHF profiler in conjunction with two 5-cm Doppler radars,

Yoe et al. (1992) showed that the wind profiler was able to identify many of the storm mesoscale

features (e.g. mid-level rear inflow jet; upper-level front-to-rear flow), similar to the scanning

radars. A comparison of the vertical air motions diagnosed by profiler and scanning radars using
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a single-Doppler retrieval technique showed that the vertical velocity profiles were in reasonable

agreement for most heights above the melting level (for the one analysis time presented in the

study).

VHF profiler data have also been used to diagnose vertical air motions in precipitating

systems over Japan (Wakasugi et al. 1986; Wakasugi et al. 1987; Sato et al. 1990; Larsen et al.

1991). In particular, Larsen et al. (1991) used VHF wind profiler data to diagnose vertical

motions using the VAD (Velocity Azimuth Display) technique as well as direct measurements of

the clear air during a cold frontal passage. Their study concluded that the methods agreed well in

regions of isotropic scatter. However, poorer correlations were found in regions of strong

stratification or anisotropic scattering (aspect sensitivity). Chilson et al. (1993) diagnosed the

vertical air motion and precipitation fall speeds in a thunderstorm which passed over a VHF

profiler site in Puerto Rico. In that study, collinear beams from UHF and VHF profilers were

used to analyze the precipitation and wind structure of the thunderstorm.

Ralph et al. (1993) described the use of 50 MHz wind profiler data in conjunction with

automated surface meteorological and rawinsonde data to resolve a ducted mesoscale gravity wave

during a period of extensive convective activity in southwestern France in the LANDES-FRONTS

84 experiment. The array of instrumentation provided a mutually consistent picture of the detailed

vertical structure of the wave from the ground level to just above a critical level. However, the

data did not permit the role of the wave in initiating or modulating the convective activity to be

deduced. Crotchet et al. (1990) describe the application of 50 MHz wind profiler data to delineate

the 3-dimensional wind field and frontal features prior to and during the passage of an

extratropical cyclone in western Europe. The wind profiler was able to resolve many feanrres of

the disturbance including the warm frontal zone and upper level jet streaks.
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1.3.1 MCS vertical air motion structure

In this section, a brief overview of observational research results on the vertical draft

structure tropical and middle latitude MCSs is presented. It should be noted that the observational

results cited in the literature represent a wide range of sample sizes and temporal and spatial

averaging. Many of the salient features of these studies are summarized in Houze (1989) and

include:

1) A predominant profile of upward motion in the convective region. However, the location of

maximum ascent in the convective portions of tropical MCSs has considerable variability.

For example, profiles from Pohnpei Island in the western pacific (Balsley et al. 1988) and

west Africa (Chong et al. 1983) indicate regions of maximum ascent in the mid - to - upper

troposphere. In contrast, heating profiles derived by Johnson (1984) from winter MONEX

suggest a lower troposphere peak: of maximum ascent in the western Pacific region.

Moreover, profiles from the eastern tropical Atlantic (GATE) indicate a double peak ascent

structure in the lower and mid-troposphere (Houze and Rappapon 1984; Gamache and Houze

1985). Because of the different sampling teehniques employed in these studies, it is difficult

to determine the extent to which the contrasts in the vertical air velocity profiles between

different geographical regions can be attributed to meteorological phenomena (e.g.,

differences in the wind and moisture structure in the environment of the MCS), or

differences inherent in the various techniques used to diagnose vertical air motion. Results

from COPT 81 (Chong et al. 1983) suggest that the upward motion peak for continental

tropical convection may be located higher in the troposphere compared to oceanic convection

(Le., the eastern Atlantic region sampled in GATE). In the middle latitudes, results from an

Oklahoma squall line diagnosed by rawinsonde data (Ogura and Liou 1980) and dual-Doppler
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analysis (Smull and Houze 1987a) indicate a primary peak of upward motion in the

convective region centered in the lower troposphere. It should be noted that Biggerstaff and

Houze (1993) diagnosed the maximum vertical air velocity in the middle troposphere during

the passage of the convective region of a Kansas squall line using area-averaged dual-Doppler

results.

2) Profiles from stratiform regions indicate significantly smaller vertical air motions than in

convective regions with descent in the lower troposphere below the melting level (due

primarily to melting and evaporation) and ascent in the upper troposphere, supporting the

growth of ice particles by vapor deposition (Rutledge and Houze 1987). Results from

previous studies on tropical oceanic cases suggest maximum upward/downward motion on the

order of 0.20 m S-1; while for continental tropical MCSs, peak vertical motions are on the

order of 0.30-0.45 m S-1.

In addition to the studies discussed in Houze (1989), Frank and McBride (1989) described the

evolution and vertical structure of vertical air motion in oceanic MCSs in the Gulf of Carpenteria

region of AMEX, based on composited rawinsonde data. They showed that MCSs in the

developing stage had a double peak ascent structure, one peak in the lower troposphere (near 650

mb) and another peak of lesser magnitude in the upper troposphere (near 250 mb). During the

period when MCSs were producing maximum rainfall, a single peak of ascending motion was

found in the middle troposphere near 550 mb (5 km). Near the end of the system's lifecycle, the

position of maximum ascent moved upward to roughly 400 mb (7.5 km). Frank and McBride

(1989) also compared vertical air velocity profiles from AMEX to corresponding GATE results.

Their results showed that GATE profiles consistently had larger vertical velocities below 700 rob

compared to AMEX while upward motions in AMEX MCSs extended to higher levels compared
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to the GATE region. Thompson et al. (1979) and Frank and McBride (1989) attributed the lower

level peak in the GATE vertical air velocity profiles to a shallower layer of low-level convergence

and weaker instability in the east Atlantic, as compared to the west Pacific.

Jolmson and Bresch (1991) analyzed vertical air motion and diabatic heating fields for

selected cases during the 1987 TAMEX. They used 6 hour sounding data in order to construct

profiles of vertical air velocity and heating. Moreover, radar reflectivity data was available in

order to deduce the precipitation features associated with the vertical air motion field. Analysis of

the deep convective portion of one particular case (Johnson and Bresch 1991; their Fig. 8) showed

a double peak structure of upward motion with maximum ascent centered near 600 rob (4.5 Ian)

and 300 rob (9.5 Ian). This double peak vertical air velocity structure is remarkably similar to the

systems analyzed in the initial stages of the AMEX and GATE MeSs (Frank and McBride 1989).

Profiles constructed 24 hours later in the TAMEX case were more representative of stratiform

conditions with peak ascent centered near 650 rob (4 km). Descending motion was found above

500 rob (5.5 Ian) and below about 800 mb (2 Ian).

Results from flight-level aircraft data in several tropical oceanic environments including

GATE (Zipser and LeMone 1980), TAMEX (Jorgensen and LeMone 1989), and EMEX (Lucas et

al. 1994) have shown that the vertical draft sizes in precipitating oceanic convection are much

weaker than in continental thunderstorms. The results are consistent with the overwhelming

concentration of global lightning to continental and island locations as opposed to open ocean

regions (Orville and Henderson 1986). In addition, these studies point to the importance of warm

rain collision coalescence processes to precipitation production in the tropics, with the majority of

precipitation faIling out below the O°C isotherm and a rapid conversion to ice above this level

(consistent with the observed steep reduction in radar reflectivity above the O°C isotherm).
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Jorgensen and LeMone (1989) showed using a one-dimensional steady state model that water

loading and entrainment played a significant role in reducing both the convective core virtual

temperature excess with respect to the environment and the updraft velocity from what would be

expected based on parcel theory. Moreover, Lucas et al. (1994) suggest that, although the amount

of water loading in land-based and oceanic convection may be similar, the effect of water loading

is greater in the case of oceanic convection since these systems tend to have a narrower positive

area region on a thermodynamic diagram compared to continental convection [Le., oceanic

soundings usually have "skinny" positive areas compared to "fat" positive area regions and land­

based convection, even though the overall values of Convective Available Potential Energy

(CAPE) may be similar].

Gallus and Johnson (1991) used a rawinsonde network deployed during the PRESTORM to

diagnose vertical air motion and diabatic heating and moistening profiles for a continental squall

line in its mature to dissipating stages. The study documented the existence of three mesoscale jets

within the MCS, consistent with previous investigations using radar and wind profiler data. The

diagnosed vertical air motion profiles showed deep ascent in the convective region with a peak

near 400 mb that subsequently weakened and tilted rearward over time. The stratiform region was

characterized by upper level ascent and lower level descent. However, Gallus and Johnson (1991)

noted that the sounding network was barely adequate to resolve the convective line and that some

merging of convective and stratiform features occurred.

Lin and Johnson (1994) also performed a rawinsonde budget analysis for a different

PRESTORM MeS. Their study showed that the development of the stratiform region played an

important role in the evolution of several mesoscale circulation features, including the

strengthening of the RTF (Rear-To-Front) relative flow and the appearance of a midlevel mesolow
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and mesohigh couplet. During the early stages, upward vertical air motion in the convective line

peaked near 550-600 mb; however, similar to Gallus and Johnson (1991), the sounding resolution

allowed aliasing between the convective and stratiform regions. In the stratiform region, the

profile of vertical air motion showed a peak ascent near 450 mb with weak descent in the lower

troposphere. Similar to many previous studies, the results of Lin and Johnson (1994) show a close

correspondence in the vertical strUcture of the apparent diabatic heat source (Ql) and the profile of

vertical air motion.

In addition to vertical motion fields deduced within the cloud boundaries, recent attention has

focused on the vertical motion field in the vicinity of the tropopause in regions of deep convection.

In the tropics, Gray (1972) and Gray and Jacobson (1977) suggested that enhanced subsidence

occurred in the environment of upper-level cirrus clouds in response to radiative cloud top cooling.

Johnson and Young (1983) documented downward motion in the vicinity of the tropopause during

Winter MONEX using 6 hour composited sounding data. More recently, Balsley et al. (1988)

used wind profiler data from Pohnpei Island to show a secondary peak of upward motion

occurring near cloud top and a shallow layer of downward motion (10-15 cm S-l) extending into

the lower stratosphere. Houze (1989) suggested that the descent may be due to strong divergent

outflow from the tops of MCSs. Carter et al. (1991) also found a similar region of downward

motion in the vicinity of the tropopause near Darwin. No information relating vertical motion to

specific cloud features could be analyzed in either the Balsley et al. (1988) or Carter et al. (1991)

studies.

Downward motion in the vicinity of the tropopause has also been documented in middle

latiwde cases as discussed by Johnson et al. (1990) who used composited sounding data to show

the existence of downward motion centered in a 2-3 kIn layer near the tropopause, above the
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stratiform region of an MCS. The magnirode of this motion was on the order of 5 cm S-1. Similar

regions of downward motion was diagnosed by Gallus and Johnson (1991) and Lin and Johnson

(1994) above the anvil tops of middle latitude MCSs using rawinsonde data. Moreover, Johnson et

al. (1990) showed that the descent was largely independent of radiative effects and was associated

with adiabatic cooling in the vicinity of the top of the MCS with downward sloping isentropes to

the rear of the convective line. As Johnson et al. (1990) argued, the localized cooling at upper

levels in response to overshooting tops from convection within MCSs may at least partially explain

the global occurrence of low water vapor mixing ratios which are known to occur in the lower

stratosphere.
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Chapter II

METHODOLOGY

The majority of data for this research were collected near DaIWin, N.T., Australia during the

wet seasons (defined in Ch. 3) of 1989-1990 and 1990-1991. The 1989-1990 season coincided with

the second phase of the DUNDEE while the 1990-1991 wet season did not correspond with a formal

experiment field project, other than the ongoing TRMM (Tropical Rainfall Measuring Mission;

Simpson et al. 1988) ground troth program. During DUNDEE, two C-band 5-cm Doppler radars

(MIT and TOGA) were utilized in conjunction with the 50 MHz NOANBMRC (Bureau of

Meteorology Research Centre) DaIWin wind profiler to sample tropical convection. The location of

the radars and the wind profiler are shown in Fig. 2.1. The wind profiler was positioned about 4 Ion

from the TOGA radar, approximately along the baseline between MIT and TOGA. For the 1990­

1991 wet season, the TOGA radar and the 50 MHz wind profiler remained in place and continued to

collect data. Characteristics of the MIT and TOGA radars, as well as the Darwin wind profiler are

shown in Table 2.1.

Data were also collected in the western Pacific warm pool region during the COARE lOP

(Intensive ObseIVing Period; November 1992-February 1993). During COARE, the MIT and

TOGA radars were deployed aboard the RV. Vickers and Xiangyanghong #5 (hereafter referred
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Fig. 2.1. Location of the observational network used during the DUNDEE field program (adapted
from Rutledge et al. 1992). The TOGA radar, wind profiler, and rain gauge network remained
operational during the 1990-1991 wet season (other instrumentation ceased operation after
DUNDEE). Note that only a portion of the rain gauge network is shown in the figure.
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Table 2.1. Characteristics of the MIT-TOGA microwave radars and the Darwin VHF wind
profiler used during the DUNDEE and the 1990-1991 wet seasons.

Characteristic MITt TOGN Wind Profiler

Wavelength (em) 5.4 5.3 600

Peak power (lew) 250 250 30

Pulse length (p,sec) 1.0 0.50,1.9 6.7

Beamwidth (0) 1.4 1.65 3.4

Minimum detectable -106 -113 -165*
signal (dBm)

Pulse repetition 921 921 1000
frequency (S'l)

Antenna gain (dB) 42.2 40.8 29.7

Number of gates 226 224 50

Polarization Horizontal Horizontal Horizontal

1 Instrument platform available for DUNDEE only
2 Instrument platform available for DUNDEE and 1990-1991 wet seasons
* The minimum detectable signal of the VHF wind profiler has an estimated uncertainty of ± 20
dB.

to as the PRC 5) research vessels, respectively. The ships were typically separated by 125-225

km in the vicinity of 2°5, 156°E in order to sample atmospheric convection and diagnose rainfall

over a portion of the COARE IFA (Intensive Flux Array). The nominal location of the ship radar

platforms are shown in Fig. 2.2. The ships remained on-station collecting data in the COARE

IFA almost continuously for four months, providing an un-precedented record of the life-cycle

characteristics of a wide range of convective features occurring in the IFA. An additional ship-

based radar platform, the Keifu-Maru with a non-coherent C-band radar, also participated in

TOGA COARE for a brief period near the beginning of the lOP (Fig. 2.2) but was not used in this

study.
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Fig. 2.2. Location of the observational network deployed during the TOGA COARE lOP. (a)
The entire COARE domain with the Large-Scale Domain (LSD), Outer Sounding Array (OSA),
and Intensive Flux Array (IFA) outlined (from Webster and Lukas 1992). (b) The location of the
radar ships deployed in the IFA with approximate limits of radar coverage indicated.
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In addition to the C-band radars on ship platforms, X-band (3-cm) radars were also deployed

on several research aircraft during COARE. These platforms included the two NOAA P-3

aircraft (Jorgensen et al. 1996) and the NCAR Electra (Hildebrand et al. 1994). The aircraft were

stationed in Honiara, Solomon Islands, ferrying several hours to the COARE domain in order to

make detailed measurements of convective system structures and transports in the Pacific warm

pool region. For this SUldy, only the NOAA P-3 data were used and the Electra-ELDORA radar

platform will not be reviewed here. Characteristics of the C-band MIT and TOGA radars and the

NOAA P-3 X-band radars deployed during TOGA COARE are shown in Table 2.2.

Table 2.2. Characteristics of the MIT, TOGA, and NOAA P-3 tail-mounted radars during TOGA
COARE (adapted from Rutledge et al. 1993 and Jorgensen et al. 1996).

Characteristic MIT TOGA NOAAP-3

Wavelength (cm) 5.37 5.35 3.22

Peak power (kw) 155 250 60

Pulse length (p.sec) 1.0 0.48, 1.82 0.5

Beamwidth e) 1.6 1.55 1.35,1.90·

Minimum detectable -115 -105 -111
signal (dBm)

Pulse repetition 250-1500 250-1500 1600
frequency (S'l)

Antenna gain (dB) 40.5 40.0 40.0·

Number of gates 581 581 512

Polarization Horizontal Horizontal Horizontal

* Steerable antenna
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2.1 Darwin wind profIler

2.1.1 Signal processing characteristics

The Darwin VHF wind proffier operates at a frequency of 50. MHzI, allowing both clear air

and precipitation echoes to be measured directly (Carter et al. 1991; see Appendix A for a

discussion of echoing mechanisms). During the DUNDEE field program, the proffier was

operated with a single beam pointed at vertical incidence, providing a nearly continuous record of

the vertical air and precipitation motions. Each proffier observation had a temporal resolution of

100 seconds and a gate spacing of 495 m. The range to the first gate was 1.354 km during the

DUNDEE and 1.504 km during the 1990-1991 field season. The unambiguous velocity was

designed to automatically switch from ± 6 m S·l to ±20 m S-l whenever the Doppler spectral

width exceeded the 6 m S·l range (Carter et al. 1991). The unambiguous velocity of 20 m S·I

usually coincided with the occurrence of precipitation at the surface. During the 1990-1991 field

season, a 3-beam configura~on was used on the wind proffier and the update time on the vertical

beam was increased from 100 seconds to approximately 4.5 minutes. This procedure reduced the

spatial resolution capability of the wind proffier as described below in Sec. 2.1.2.

2.1.2 Effects of averaging

Prior to extracting the vertical air velocity, the raw spectra were averaged in time in order to

reduce random noise fluctuations and improve the statistical significance of the results. In the

stratiform regions, the individual spectra were averaged over an approximate 10 minute period

A second wind profiler operating at 915 MHz was deployed in 1992 and was co-located with the 50
MHz platform.
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(depending on the number of spectra used), the approximate length of time required to perform a

single-Doppler radar volume scan. Sensitivity analysis of the averaging period showed that the

vertical velocity estimates in the stratiform region did not vary appreciably over intervals of 5-15

minutes (Fig. 2.3). In the convective portion of each MCS, the averaging time of the profiler data

was reduced to approximately 4-5 minutes, due to large turbulence and resulting wide spectra.

Longer averaging intervals in the convective region usually "smeared out" the precipitation and

clear air components of the spectra so that estimates of vertical air velocity could not be accurately

determined (see below). Because of the different averaging length intervals used in the convective

and stratiform regions, the spatial scale sampled by the profiler in each region also varied, since

this scale is dependent on the speed of the MCS relative to the profiler, the profiler beam width,

and the length of the averaging interval. For the events described herein, this spatial scale ranged

from approximately 3-5 km in convective features to 5-9 km in the stratiform regions.

Due to the increase in the update time on the profiler vertical beam in the 1990-1991 season

compared to the 1989-1990 season, the resolution capability of the wind profiler was reduced.

The resolution reduction can be understood by considering a periodic feature (e.g., an updraft­

downdraft couplet) that is advecting over the wind profiler at a constant rate (assume 10 m S-I) and

is not evolving appreciably. In order to properly resolve this feature, assume further that five

observations are needed during its passage over the profiler. Thus, the feature must have a

wavelength of at least 54T (where 4T is the period) for the profiler to resolve it. For the 1989­

1990 season, the wind profiler vertical beam was updating every 100 s, allowing a feature

wavelength of - 5 km to be resolved in any particular observation. If the feature is smaller than

the 5 km threshold wavelength, it will be smeared (aliased) to a degree depending on its acUIal

horizontal dimension. The effect of the smearing will appear as an increase in spectral width.
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Fig. 2.3. Representative profiles of mean clear air vertical motion and standard deviation for the
5 December 1989 MCS using the results of the curve-fit algorithm. In (a) and (b), spectra were
collected during the passage of the convective line (0900 UTC), while profiles in (c) and (d)
represem spectra collected under stratiform conditions (1100 UTC). The solid, long-dashed, and
short-dashed lines represem the profiles obtained after averaging the spectra over 5, 10, and 15
minutes, respectively, and running the curve-tit algorithm. In (a) and (c), positive (negative)
radial velocit¥ indicates upward (downward) motion. Note the relatively large changes in radial
velocit¥ and standard deviation between the different profiles in the convective region compared to
similar profiles in the stratiform region. Also note that the radial velocities have not been adjusted
to account for particle fall speed biases (see text for details).



Now consider the 1990-1991 data with the wind profiler update time of 4.5 minutes (270 s).

In this case, the updraft-downdraft couplet must have a wavelength of at least 13.5 kIn for the

wind profiler to accurately resolve it. Thus, for measurements which include features with small

horizontal scales (e.g., updraft-downdraft cores in the convective portion of an MCS), there is

likely to be larger variance (Le., wider spectral width) in the data when the wind profiler is

operating in the 1990-1991 configuration compared to the 1989-1990 configuration.

During the sampling period of each MCS, the Nyquist interval occasionally alternated

between +6 and ±20 m S-l. Because the average profiles were generated using only data with the

same unambiguous velocity, they did not always contain the same number of raw spectra profiles

and the averaging time occasionally varied by a few minutes. Within a given averaging interval,

the magnitude of vertical air velocity in the averaged profile was not particularly sensitive to the

number of individual spectra used in the time-averaging. Individual spectra were scrutinized in

order to avoid contaminating the averaged results with spurious spectral power signals (Le. radio

interference, electrical discharges, etc.).

A comparison of the wind profiler and scanning radar sampling volumes is provided in

Appendix A. Here, it is simply noted that the atmospheric volume measured by the wind profiler

is a small fraction of the volume sampled by a scanning radar, even when the wind profiler spectra

are averaged over a long time period.

2.1.3 Retrieval of the profller Doppler spectra components

A number of different techniques have been used to separate the clear air vertical motion

from the hydrometeor fall speed in VHF wind profiler spectral data. Some of the procedures
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include: first moment analysis of the Doppler spectra (Clark and Carter 1980); least squares fit of

the Doppler spectra with one or two Gaussian approximations (Yoe et al. 1992); and least squares

fit of the Doppler spectrum with a drop size distribution approximation for the hydrometeor

component of the spectra and a Gaussian distribution to the turbulent component (Wakasugi et al.

1986; Wakasugi et al. 1987; Sato et al. 1990).

2.1.3.1 Objective algorithm description

In this study, a combination of methods was developed to separate the clear air and

precipitation components in the averaged spectra. First, an objective algorithm to derive both

atmospheric turbulence and precipitation parameters was developed based on the method described

by Sato et al. (1990). The Sato et al. technique utilizes a Marshall-Palmer distrIbution to

approximate the precipitation component of the spectra and a Gaussian distribution to fit the

turbulence component to the observed Doppler spectrum S(u) according to:

where S/"u) represents the Doppler power at frequency u associated with backscatter from

(2.1)

irregularities in the refractive index due to turbulence. Sp(u) represents the Doppler spectrum due

to liquid precipitation, SJ...u) is a normalized form of SAu), Pn represents the noise level in the

Doppler spectrum and the symbol * denotes the convolution operation (Sato et al. 1990). SAu) is

approximated by the Gaussian function
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where w is the mean radial (venical) wind velocity, V is the hydrometeor terminal fall speed, and

a is the spectral broadening. It is noted that the effects of beam. broadening and wind shear can

distort the shape of the vertical air component from a Gaussian distribution (Hocking 1983). Siu)

is expressed as

(2.3)

where N (D)dD is the number of raindrops per unit volume with diameters between D and D +

dD, and C is a constant related to the backscattered power. The relation between drop diameter D

(mm) and drop fall speed V(m sol) is taken from Gunn and Kinzer (1949) as

[ ]

0.4

V(D) = -[9.65 - 10.3exp(-0.6D)] - :0 . (2.4)

where Po and p are the air densities at the surface and aloft, respectively. As noted by Sato et al.

(1990), (2.4) is only valid for D larger than Dmin, the diameter required to make V(D) in (2.4)

zero. That is

D. = - In [(9.65/10.3)] = 0.11
mm 0.6 '

(2.5)

and it is assumed that there are no rain drops with diameters less than Dmin• It is also assumed that

the drop diameter cannot exceed 6mm (DmaJ without breaking into smaller particles. The

maximum drop fall speed (VmaJ corresponding to D".Js determined from (2.4). The Marshall and

Palmer (1948) drop size distribution in (2.3) is expressed as

N(D) = No exp (-A-D) • (2.6)

where A is the distribution slope (mol) and No is the slope intercept (m-4). The term S,ju) in (2.1)

is a normalized form of S/"'u) and is expressed as
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(2.7)

The convolution operation in (2.1) implies that the raindrops instantaneously respond to

atmospheric wrbulence (Wakasugi et al. 1987). In practice, a window function is usually applied

to the Doppler spectrum S(u) in order to account for data truncation effects and to improve the

curve-fit along the edges of the Doppler spectrum (Wakasugi et al. 1986). Because the objective

of this analysis was only to determine the mean vertical air velocity and due to computational time

constraints, no windowing function was utilized in the curve-fit procedure.

The objective algorithm was applied to each gate in the averaged wind profiler spectra. The

curve-fit solution is the set of parameters obtained through a nonlinear least squares minimization

of the error E defined as

E = t Ilog [S.(u)] - log [S(u)]1 2
.

i- tfr
(2.8)

In (2.8), Sobs(UJ is the observed Doppler spectra and ifs and ife are the range of frequency

points in the spectra as follows

ifs =J - 20pp

ife =Jp + 20 '

where jpt andjpp are the frequency points where the wrbulence and precipitation echoes are

maximized, respectively (Sato et al. 1990). Note that the data point corresponding to zero

Doppler shift is removed from the analysis in order to reduce clutter contamination.

(2.9)

In practice, the algorithm was applied to the power spectra at each gate by first assuming that

the spectra only had a contribution from the clear air. That is, (2.1) is modified to
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S(u) = SIU) + PrJ . (2.10)

This procedure greatly reduced the computational time required for the analysis since the

error minimization in (2.8) only had to be performed on four parameters (Po> W, 0, and P,J.

However, if the resulting chi-square statistic from the curve-fitting procedure exceeded an

empirical threshold, it was assumed that both components, precipitation and turbulence, were

present and the algorithm re-analyzed the power spectra according to (2.1). In this case, the error

minimization (2.8) had to be performed on seven parameters (Po> w, 0, PrJ, No, A, and Vmzx). As

described in Sato et al. (1990), a range of initial values was selected for No, A, and V".zx, and the

error minimization e was calculated to find the minimum among all combinations of these

parameters.

2.1.3.2 Manual editing procedure

Sensitivity analysis with the curve-matching program showed that the algorithm fit the spectra

reasonably well below the melting level (- 4.7 km) and above about 9 km; however, in the region

between about 4.5 - 9.0 km, the algorithm was often unable to distinguish between the vertical air

velocity and precipitation components (Fig. 2.4). This was probably due to the existence of water

drops, snow, and other types of ice particles in the mixed phase region of the cloud with faIl

speeds comparable to the vertical air motions (Carter et al. 1991). Because of the wide range of

hydrometeor faIl speeds (Le., a broad precipitation spectra), the precipitation and vertical air

velocity components of the spectra "merged together" to the point that the curve-fit program

attempted to fit both parts of the spectra with a single Gaussian distribution (Le., the fit was

underdetennined; Fig. 2Ab). Merging of the precipitation and turbulence components caused the

center of the Gaussian curve fit (Le., mean vertical air velocity) to be shifted to the left (i.e.,
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Fig. 2.4. Ten-minute averaged spectra collected at 1100 UTe 5 December 1989 at (a) 2.8 Ian and
(b) 4.3 Ian. The solid line shows the observed spectra with the left peak indicating hydrometeor
fall velocity and the right peak indicating vertical air velocity. Positive (negative) radial velocities
represent upward (downward) motion. The dashed line represents the results of the curve-fit
algorithm. In (b), the left (right) triangle indicates the vertical air velocity estimate selected by the
curve-fit algorithm (manual editing). Note the change in shape of the precipitation component of
the spectra in (b) compared to (a).

29



toward negative radial velocities) relative to the center of the turbulence peak power. Similar

difficulties in separating the vertical air motion from the particle fall speeds using a VHF profiler

were reported by Chilson et al. (1993) while sampling a thunderstorm in Puerto Rico; however, in

that study, data from a collocated UHF profiler were used to help extract the vertical air

component. In situations where the components of the spectra coUld not be objectively separated,

a second analysis technique was used to extract the vertical air velocity information from the

spectra. In these cases, the center of the Gaussian was manually edited so that the mean vertical

air motion coincided with the approximate location of the turbulence peak power (Cifelli and

Rutledge 1994b). This procedure greatly increased the time required to retrieve profiles of the

vertical air motions in each MCS.

Figure 2.5 shows composite profiles of several statistical parameters associated with the

curve-fit algorithm to quantify potential errors in the vertical air motion estimates. These statistics

were generated for the convective, transition, and stratiform regions using all of the averaged

spectra from the break MeSs sampled during DUNDE£2. Figure 2.5a shows the mean composite

vertical air standard deviation of the averaged spectra as determined by the curve-fit procedure.

Since this statistic was generated by the curve-fit algorithm, it provides a measure of vertical air

velocity variance in regions where the algorithm generated a reasonable match to the spectra (i.e.,

no merging of the turbulence and precipitation components).

The degree of spectra merging is indicated in Fig. 2.5b, which shows profiles of the average

difference (absolute value) of the curve-fit and manually edited vertical air velocity estimates

2 Because the update time on the profiler vertical beam increased substantially in the 1990-1991
season compared to DUNDEE, the spectra were not included in this statistical analysis (see
discussion in Sec.2.1.2)
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Fig. 2.5. Composite profiles for the convective line (solid line), transition (long-dashed line), and
stratiform (shon-dashed line) regions of four break MCSs sampled during the 1989-1990 wet
season, based on results from the curve-fit algorithm. (a) Standard deviation. (b) Vertical
velocity difference calculated as the absolute value difference of the vertical air velocity estimate
generated by the curve-fit algorithm and the manually edited value. This statistic indirectly
measures the degree of spectra merging in the data (see text for details). (c) Signal-to-noise ratio,
log (signal power)nog (noise power).



(hereafter referred to as velocity difference) for each region of the MeS. This parameter

indicates the magnimde of the bias in the program-retrieved venical air velocity estimate due to

panicle fall speed contamination. In regions where the algorithm identified separate spectra

components for precipitation and wrbulence, the magnitude of the velocity·difference is relatively

small, indicating that the corresponding standard deviation values are reasonable estimates of the

variability of vertical air velocity around the mean value. However, in places where the vertical

air and precipitation components merged, the difference in vertical velocity estimates is large due

to the panicle fall speed bias (compare Figs. 2.4a and 2Ab). In these situations, the algorithm

usually generated a single Gaussian curve-match and assigned a standard deviation value based on

the combined width of the vertical air and precipitation components. Therefore the standard

deviation values in the region of merged spectra shown in Fig. 2.5a provide conservative

(maximum) estimates of the vertical air velocity variability. More accurate estimates of the

venical air velocity standard deviation alone would require a very subjective estimate of the shape

of the wrbulence spectra component and resulting Gaussian curve-fit inflection point.

In the convective region, the profIle of composite standard deviation is relatively large (1.5­

2.0 m S-I) with a peak in the lower troposphere, due to the existence of broad spectra (Fig. 2.5a).

The large variability in the lower troposphere is coincident with large magnimdes of the velocity

difference profIle (Fig. 2.5b), indicating that the convective region spectra are most affected by

merging in the lower troposphere. In the stratiform region, the shape of the standard deviation

profile is significantly different from the convective region. The magnitudes of the composite

stratiform standard deviation profIle are on the order ofO.65-Q.7 m S-1 below about 3.5 Ian and

above 6.5 lan, significantly less than the corresponding convective region profile (Fig. 2.5a). In

the vicinity of the melting level (- 5 kIn), the stratiform standard deviations are of similar

magnimde to the convective region (> 1 m S-I) due to the large hydrometeor component of the
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spectra relative to the clear air and the resulting spectra mergfug (Fig. 2.5b). Vertical air

velocities were shifted over 2 m S-l on average (to more positive values) to correct for the particle

fall speed contamination in this region. Moreover, as can be seen from Fig. 2.5b, the magnitude

of the particle fall speed bias gradually tapers off with increasing height above 6.5 Ian (similar to

the convective region profIle), as the intensity of the hydrometeor component is reduced. As

expected, the magnitude and shape of the composite transition zone profile has similar

characteristics to both the convective and stratiform regions.

Additional errors in the deriving vertical velocity measurements from 50 MHz wind profiler

data can occur due to aspect sensitivity (Larsen et al. 1991). This error occurs when the refractive

layers (providing turbulence backscatter) are inclined with respect to the horizontal plane.

Because the strongest scatter is produced in a direction perpendicular to the refractive layer, tilted

layers will allow a component of the horizontal wind to be resolved along with the projection of

the vertical component along the effective beam direction (Larsen et al. 1991).

2.1.3.3 Signal to noise criteria

An arbitrary threshold of signal to noise was developed in order to determine if the power

return at a particular level represented meteorologically significant data or was part of the noise

spectrum. If the ratio of log(signal peak) / log(noise), determined by the curve fitting algorithm

was below 1.2, it was assumed that the power return was insignificant and no vertical air velocity

value was recorded for that particular gate. Since the signal power decreased gradually with

height, there were many borderline cases where the ratio was approximately 1.2. In these

situations, continuity of the velocity and width of the turbulence Doppler spectra with spectra at

lower levels (where the threshold was exceeded) was used to determine if the power return at the
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gate in question was meteorologically significant. The value of 1.2 was often found to be

approximately coincident with the location of cloud top height, based on available GMS satellite

imagery.

A comparison of the signal to noise threshold was performed with a similar empirical

formula used by tlle NOAA AL. The NOAA AL algorithm is an empirical threshold based on the

nwnber of points in the spectra, the nwnber of spectra averaged in the data processing, and an

empirically derived constant (Dr. Anthony Riddle, personal communication). The results showed

mat the two methods of determining meteorologically significant data were in close agreement for

me spectra profiles that were evaluated.

2.1.4 Partitioning profiler data into convective and stratiform components

In this study, MCS vertical air motions were partitioned into convective and stratiform

components using two techniques. While recognizing the subjectivity involved in any applying any

partitioning method, the procedure was done in order to facilitate comparisons of the wind profiler

results with previous studies of MCS vertical air motion.

In the first method, an objective algorithm was developed to partition a volwne of scanning

radar data into convective and stratiform components, based on gradients of reflectivity. The

method closely follows the algorithm of Steiner and Houze (1993) in which convective features in

me volwne of gridded radar data are identified based on the horizontal gradient of reflectivity at a

height near the surface (i.e., 2 Ian). After identification at low levels, the features are

extrapolated upward to the top of the radar volwne. From this extrapolation, mean profIles of

convective and stratiform reflectivity are calculated in order to obtain information on the vertical
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structure of convective and stratiform areas. Although this procedure can sometimes produce

misleading feature geometries in situations of large wind shear, it was found to produce reasonable

results, in a volume average sense, in most sensitivity tests of tropical MCSs and to be the most

computationally time efficient technique out of several that were attempted (Demott et al. 1995).

This method was applied to as many available scanning radar volumes as·possible in order to

achieve a similar time-resolution to the wind profiler data (Le., 10 minutes). Radar CAPPI's

(Constant Altitude Plan Position Indicator) plots at a height of 2 kIn were then constructed and

visually inspected to determine if a given feature over the location of the profiler was convective

or stratiform. The CAPPI's were also used to partition the rain trace from each of the available

rain gauges in the Darwin rain gauge network into convective and stratiform components (as

described below in Sec. 2.3).

In situations where scanning radar data were not available at 10 minute intervals during the

wind profiler observation period, a second technique was used to partition the wind profiler

vertical air motion profiles. In this case, the variance of the wind profiler vertical air motion data

were used to stratify the profiles into convective and stratiform components, similar to Willis et al.

(1995). Specifically, the standard deviation statistic generated by the curve-fit algorithm were

evaluated for each averaged spectra and assigned as convective or stratiform based on the

following empirically derived criteria. If the standard deviation of the vertical air motion

exceeded 1.25 m S-1 for a continuous range of at least 3 kIn, then the entire spectra was partitioned

as convective. It was found through sensitivity analysis that the continuous range of 3 kIn helped

to eliminate stratiform spectra from consideration as convective, since spectra merging (as

described above in Sec. 2.1.3.2) rarely occurred continuously for a range of more than 2.5 kIn.

Sensitivity tests also revealed that the results of the wind profiler partitioning method were in close

agreement with the scanning radar partitioning method described above.
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In addition to convective and stratiform partitioning, several of the MCSs occurring during

the monsoon-break had well-defined transition zone features observable in the radar reflectivity

data as the system propagated over the wind profiler. In these situations, the vertical air motion

data were partitioned into a transition zone category. The monsoon MCSs did not have clearly

identifiable reflectivity trough features during their passage over the wind profiler and transition

zone partitioning was not performed for these MCSs.

For each of the MCSs studied, approximately 3.5~10 hours of wind profiler data were

obtained as the systems passed over the profiler site. A total of 498 vertical air motion profiles

were constructed for all 13 of the MCSs. A summary of the number of convective, stratiform,

and transition zone spectra used for each MCS is provided in Table 2.3.

2.2 Scanning radar

2.2.1 Darwin

Scanning Doppler radar data for the Darwin portion of this study were collected from both

the MIT and TOGA radars during DUNDEE and from the TOGA radar, which continued to

collect data, during the 1990-1991 field season. The scanning radar data was used to partition the

wind profIler vertical air motion and surface rain gauge network data into convective and

stratiform components, correlate the vertical draft structure with inferred cloud microphysical

processes, and retrieve the kinematic flow patterns in the stratiform portion of several MCSs for

comparison with similar wind profiler data.
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Table 2.3. Summary of the number of wind profiler averaged. spectra (convective, stratiform, and
transition zone) analyzed for each of the 13 MCSs.

Event Date Type # Convective # Stratiform # Transition Hours of
(YYMMDD) Regime Spectra Spectra Spectra Coverage

891205 Break 7 27 3 6.2

900110 Monsoon 6 23 4.8

900112 Monsoon 6 18 4.0

900118 Break 13 4 1 3.0

900122 Break 9 12 4 4.2
-

900128 Break 8 14 6 4.7

901121 Break 7 29 6.0

901210 Monsoon 14 28 7.0

901212 Monsoon 17 43 10.0

901215 Break 14 32 7.7

910109 Monsoon 31 20 8.5

910129 Monsoon 19 42 10.2

910130 Monsoon 9 32 6.8

Totals 160 324 14 83.0

A description of the radar partitioning procedure is provided in Sec. 2.1.4. Details of the

single-Doppler radar and wind profiler kinematic retrieval comparison is provided in Appendix B.

A discussion of procedures to correlate the radar reflectivity and profiler veltical motion data is

provided below.

2.2.1.1 Correlation of radar reflectivity and profiler vertical motion

In order to infer cloud microphysical and precipitation production processes occurring within

an MCS, it is useful to compare the vertical air motion pattern with the corresponding proflle of
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radar reflectivity. Ideally, the reflectivity data would be retrieved from the same platform as the

vertical motion (Le., wind profiler), since using data from a remotely-located instrument (Le., the

scanning radars) introduces problems of comparing different sampling volumes as well as

requiring assumptions about beam attenuation and beam filling. Because the Darwin 50 MHz

wind profI1er had no absolute calibration, it was not possible to convert the measured

backscattered power from precipitation targets at each range gate to a radar reflectivity factor

value. Moreover, in the region where the two components of the spectra are merged, it would be

difficult to accurately estimate the total power contribution from the precipitation component alone

(see Fig. 2.5).

Another way to back-out the radar reflectivity factor from the wind profiler data would be to

use the drop size distribution data N(D) dD (see Eq 2.6) retrieved by the curve-fit algorithm to

calculate the radar reflectivity factor Z according to:

z = EN.D~
I I '

i
(2.11)

where Ni is the number concentration of drops with diameters between Di and Di + AD; (D is the

diameter of the melted equivalent particle). This procedure would work well below the melting

level where the components of the Doppler spectra are clearly separated; however, the method

will fail in regions above the melting level where the spectra merge or the precipitation component

is too weak, since in these cases, the algorithm attempts to fit the spectra with a single Gaussian

curve distribution and no drop size distribution parameters are retrieved. Even when no spectra

merging has occurred, it is expected that the retrieved drop size parameters above the melting

level would produce an inaccurate estimate of Z since the algorithm assumes a Marshall-Palmer

distribution which is only valid for liquid precipitation (Le., below the melting level).
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During the 1989-1990 DUNDEE season when MIT scaniling radar data were available, time­

height cross sections of radar reflectivity could be constructed over the wind profiler site and

correlated with the profiler venical air motion data. The reflectivity cross sections were generated

with MIT data since the location of this radar relative to the wind profiler allowed for reflectivity

data to be examined over the profiler up to a venical distance of about 12 km. Radar volumes

were analyzed approximately every 10 minutes in order to achieve the same temporal resolution as

the wind profiler data. In cases where radar data were unavailable, linear interpolation was used

to fill gaps in the reflectivity cross sections. The TOGA radar data were not used for the cross

section analysis due to the close proximity of the TOGA radar to the wind profiler site, which

precluded data retrieval above the melting level (see Fig. 2.1). No scanning radar reflectivity

cross sections were constructed over the profiler location during events occurring in the 1990-1991

season as well as the 28 January 1990 MCS since MIT data was not available.

Since it was determined that an accurate retrieval of the venical profile of reflectivity factor

could not be computed from the wind profiler spectra and because it was not always possible to

construct reflectivity cross sections over the profiler, a different approach was used to contrast the

venical reflectivity structure in monsoon and break MCSs. Available radar volume data for each

event were analyzed using the radar panitioning algorithm described above in Sec. 2.1.4. In this

way, the venical reflectivity structure for each event could be analyzed in a volume average sense.

In the break MCSs, the period of radar analysis was defined by the first and last recorded

rainfall in the rain gauge network. This time period varied from about 5-10 hours and bracketed

the observation period at the profiler. For the monsoon events, it was more difficult to define the

beginning and end of a panicular event and a 12 hour period, which bracketed the time of profiler

coverage, was selected for radar analysis. Although somewhat arbitrary, 12 hours was chosen
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since it is the approximate time required for a radar observed feature to cross the rain gauge

network (asswning that it moves at 8-10 m S·I). Subsequent to the partitioning analysis, time­

height cross sections of convective and stratiform reflectivity as well as composite profiles were

constructed for each MCS.

2.2.2 COARE Domain

For the COARE data set, both single and multiple Doppler analysis methods were applied to

recover the kinematic flow patterns in several MCSs that were sampled with the ship (MIT and

TOGA) C-band and aircraft (NOAA P-3s) X-band radars. The MIT and TOGA radar antennas

were stabilized to account for ship roll, pitch" and heading motions via an INU (Inenial Navigation

Unit) mounted on the antenna pedestal(Rutledge et al. 1993). A GPS (Global Positioning System)

receiver provided latitude, longitude, and time information. The stabilization was accomplished

by providing rapid updates (200 Hz) of the antenna position from the INU to the antenna controller

in order to maintain the d~sired azimuth and elevation angles.

Position errors in the ship radar data occurred due to a Schuler oscillation in the INU with a

period of about 84.4 minutes (Leary et al. 1993). This low frequency oscillation is present in the

u and v components of the ship's velocity data. The amplitude of the oscillation ranged from

±0.25-2 m S·1 for the MIT radar to 1-7 m S·1 for the TOGA radar. The magnitude is larger for

the TOGA radar, since the INU on this platform was manually updated from the GPS at intervals

of about one hour (the procedure as done automatically and at a much higher frequency for the

MIT radar). In order to eliminate bias in the radial velocity estimates, the Schuler oscillation must

be removed from the ship motion data as described by Leary et al. (1993). In this study, no

correction was made for Schuler oscillations in either the MIT or TOGA radar data since the
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magnitude of the bias during sampling of the MCSs reported herein were within the uncertainty of

the radial velocity measurements (- < 1 m s -1).

The NOAA P-3 X-band radars are mounted in the tail section of the aircraft and scan in a

vertical plane (Jorgensen et al. 1996) These radar antennas were also stabilized in COARE by an

lNU and GPS system to account for aircraft motion (Jorgensen et al. 1996). Similar to the ship­

based radars, an INU Schuler oscillation was present in the aircraft motion data. A variational

scheme was developed at NOAA NSSL to account for the Schuler oscillation drift and remove the

bias prior to multiple Doppler synthesis (Dr. Sharon Lewis, NOAA/NSSL).

Characteristics of all the radars deployed during TOGA COARE are shown in Table 2.2.

Similar to the Darwin radar data, the COARE radar data was partitioned into convective and

stratiform components using the partitioning algorithm described in Sec. 2.1.4.

2.2.2.1 Single-Doppler radar analysis

The single-Doppler analyses include the EVAD and CEVAD retrieval techniques, which are

described in detail in Appendix B. Briefly, these techniques make assumptions about variations in

the horizontal wind across the analysis domain in order to transform the measured radial wind

field into a two-dimensional horizontal wind vector, calculate horizontal divergence through a least

squares solution of the model, and then use the mass continuity equation to calculate a profile of

vertical air velocity. The methods are most reliable in situations where the wind field is relatively

homogeneous (i.e., stratiform as opposed to convective regions of MCSs) so that the wind field

assumptions are not significantly violated. In the vertical air velocity calculation, EVAD makes
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assumptions about the magnitude of vertical air motion at the top of the column whereas CEVAD

imposes a constraint on panicle terminal fall speed.

The single-Doppler retrievals were performed in the stratiform portion of two convective

s~stems which passed over the MIT radar during the latter part of the COARE lOP and produced

extensive areas of stratiform cloud lasting for several hours. As recommended by Matejka and

Srivastava (1991), the volume scans were optimized to perform the EVAD and CEVAD analyses:

the scan tilts in each volume ranged from 0.8°-52.6° or 55.1 ° in elevation angle (total of 17 to 20

scan tilts in each volume). A total of 27 volumes were analyzed in the two MCSs to retrieve the

kinematic flow field. The radar volumes were collected at approximately 10 minute intervals,

allowing for detailed time-height cross sections to be generated for the retrieved parameters in

each MCS.

2.2.2.2 Multiple Doppler analysis

Multiple Doppler syntheses, performed in a total of four TOGA COARE MCSs, were used

in this study to examine profiles of vertical air motion and reflectivity and compare these with the

Darwin results. One convective system was sampled by the ship-based radars which provided

several hours of wind field information using the dual-Doppler synthesis procedure (described in

Appendix C). An additional set of multiple Doppler analyses were performed on data collected by

the NOAA P-3 Doppler radars from three MeSs that were sampled using the quad Doppler

methodology (described in Appendix C).

A summary of multiple Doppler methodology is provided in Appendix C. Briefly, in the

analysis of multiple Doppler data, two or more radars each provide an estimate of the radial wind
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at a given location in the sampling domain which allows the horizontal wind field to be determined

with minimal error (when beam crossing angles exceed 25° or so). Thus, the technique is

applicable to all regions of the precipitating cloud,. including the convective region. If two radars

are used in the analysis (Le., dual-Doppler), then the full three dimensional wind field can be

recovered, provided that the terminal fall speed of the precipitation particles is known, or

assumed. This is normally done by application of a radar reflectivity (2) vs. hydrometeor fall

speed (VT) relationship. The vertical air velocity is then diagnosed using the assumption of mass

continuity and applying a constraint on the vertical air velocity at one or both boundaries of the

integration column, similar to the EVAD and CEVAD single-Doppler methods. When three or

more radars are used in the analysis, the vertical component of particle motion ~ can be directly

measured, allowing for a more reliable upper boundary condition in the integration procedure to

diagnose vertical air velocity w since ~ =VT + W.

2.3 Darwin rain gauge network

Surface rainfall data were available from the Darwin area rain gauge network (Fig. 2.1) and

were used to compute rainfall statistics for each of the convective events. The Darwin rain gauge

network covers an area exceeding 45,000 km2 centered on the TOGA radar. Most of the gauges

are located within 75 km of Darwin in order to correlate radar and rain gauge rainfall estimation

for TRMM objectives. A summary of the rain gauge locations relative to the TOGA radar are

provided in Appendix D. A total of 30 rain gauges were available for analysis during the 1989­

1990 season and 24 were available during the 1990-1991 season. However, due to malfunctions,

several of the rain gauges did not record data for particular convective events studied herein so

that the actual number of gauges available for each event varied.
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Rainfall was recorded digitally using a tipping-bucket gauge. The tipping bucket recorded

data whenever rainfall accumulation exceeded 0.2 rom (T. Keenan, personal communication).

Whenever available, data from the Berrimah rain gauge (TOGA radar site) was utilized for

comparing rainfall with venical air velocity measured with the wind profiler. This panicular

gauge was the closest gauge to the wind profiler (- 4 km separation distance).

For each convective event, the rain gauge trace was partitioned into convective and stratiform

components, based on the scanning radar algorithm described above in Sec. 2.1.4. This procedure

allowed for the relative rainfall contribution of convective and stratiform components of each MCS

to be determined. Rainfall statistics for each event are presented in Ch. 5 and the rainfall traces

for all gauges for are presented in Appendix D.

2.4 Atmospheric sounding data

Radiosondes launched by the Bureau of Meteorology in Darwin were used to construct heat

and moisture budget profiles and to calculate various thermodynamic parameters. The soundings

were launched twice daily (00 and 12 UTC) from the Darwin airport, located approximately 8 kID

from the TOGA radar site.

2.4.1 Budget calculations

Profiles of the apparent heat source Ql and moisture sink Qz (Yanai et al. 1973) were derived

by assuming that the venical advection of dry static energy s and specific humidity q were the

dominant terms in the equations [see Eqs. (1.1) and (1.2)]. In order to facilitate comparison with
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other studies, the Q1and Q2 budgets were partitioned into convective and stratiform components

and normalized by the distribution ofrainfaIl within the MCS (Johnson 1984). That is

Q2 == Q' = LQ + (l-j)Q
p 2 P 2m P 2&'

o m c

(2.12)

(2.13)

where Q'l and Q'2 are the normalized budgets, f is the fraction of precipitation associated with

mesoscale (stratiform) features, Pm is the stratiform rain rate (em d·l), Pc is the convective region

rain rate (em d,l) and Po is the area averaged rain rate (em d,l). The values of Pm and Pc for each

MCS were derived from the rain gauge network data and are presented in Ch. 5.

2.4.2 Thermodynamic variables

An algorithm was used to calculate CAPE (Convective Available Potential Energy) and

construct profiles of available thermal buoyancy from the sounding data. The program closely

follows the equations for moist thermodynamic analysis in Emanuel (1994). In order to calculate

CAPE and thermal buoyancy, a 50 rob mixed layer depth was specified for all soundings and

pseudo adiabatic parcel ascent (with no contribution from ice processes) was assumed. In

addition, CAPE values were taken to be the positive area on the sounding. That is

LNB PI

CAPE; = f Bdz = fRd'(Tvp - TvJ dlnp ,
p.
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(
T - T 1B = go vpTva va , (2.15)

where B is buoyancy, g is the acceleration of gravity, Rd is the gas constant for dry air, Tvp is the

virtual temperature of the parcel, T\IG is the virwal temperature of the environment, Pn is the

pressure at the LNB (Level of Neutral Buoyancy - the equilibrium level), and PI is the pressure at

the LFC (Level of Free Convection). In practice, the virtual temperature difference at each

pressure level was calculated by solving the expression for moist entropy (Emanuel 1994). It

should be remembered that the profiles of thermal buoyancy represent a theoretical maximum

virtual temperature excess that a parcel rising from low levels could achieve, since the effects of

entrainment and water loading are not included in the analysis.
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ChapterID

CONVECTIVE REGIMES

3.1. Convective Regimes in Northern Australia

Darwin is located at the southern tip of the Maritime Continent and experiences a monsoon

type climate (Holland 1986; Rutledge et al. 1992). The onset of the active (wet) period usually

occurs in early November and typically lasts through early March. Previous investigations of

active season cloudiness patterns in the vicinity of northern Australia have shown that the

cloudiness is a maximum in the morning hours over the ocean and in the late afternoon over the

land region of northern Australia, based on satellite and radar data (Keenan et al. 1989). The

observed diurnal variations were found to be associated with interactions of solar-forced local

circulations (e.g., sea breeze fronts) and the large scale flow.

During the wet season, there are two convective regimes that occur over tropical northern

Australia: monsoon and break (Rutledge et al. 1992). Monsoon convection occurs when the axis

of the ITCZ (Inter Tropical Convergence Zone) moves south of the Darwin area, providing deep

northwesterly flow from over the ocean and placing the continental northern Australia region in a

maritime air mass. Break period convection occurs when the axis of the ITCZ is north of Darwin.

This juxtaposition of the monsoon trough results in low level southeasterly flow over the "Top

End" of northern Australia and allows strong surface heating and intense continental convection to
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develop. Although a number of cloud, rainfall, and wind based definitions have been used to

describe the onset and cessation of the Australian summer monsoon, Holland (1986) found the

most objectively-based classification to be the first and last occurrence of westerly flow at 850 mb.

Similar to Keenan and Carbone (1992), monsoon conditions were identified whenever the daily

mean surface to 3 km flow was westerly. Break conditions occurred when the daily mean flow

was easterly.

On average, break period conditions occur during apprOximately 20% of the summer

monsoon season with a mean period of 40 days (Holland 1986). Numerous studies (e.g. Madden

and Julian 1972; Krishnamurti and Subrahmanyam 1982; Hendon and Liebmann 199Oa) have

shown that the duration of the monsoon and break regimes may be sensitive to the 30-50 day

oscillation in the Indian and west Pacific oceans. Moreover, Hendon and Liebmann (199Ob) have

shown that the onset of the Australian monsoon season is associated with the passage of the 30-50

day oscillation over Darwin.

As pointed out by Keenan and Carbone (1992), the primary trigger for both monsoon and

break regime MCSs are land and sea breeze circulations. Typically, monsoon MCSs originate

over the ocean north and west of Darwin and spread over the continental region of northern

Australia. Characteristic monsoon MCSs consist of wide spread stratiform precipitation with

embedded convective bands aligned (at least initially) parallel to the coastline. Keenan and

Carbone showed that these embedded convective features can be initiated from convergence of the

local land breeze circulation and the large scale monsoon flow. Wind shear is typically

concentrated in the lowest 1.5 km during the monsoon and over a 3 km depth in the monsoon

break.
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During break conditions, continental MCSs often originate over the Oenpelli escarpment

region approximately 300 kID. east of Darwin, on modest mountain ranges 100-200 kID. southeast of

Darwin, or on sea breeze convergence zones (Keenan and Carbone 1992). The continental

systems often evolve into propagating squaIllines with a distinct leading line of convection and a

trailing stratiform region, similar to the conceptual model developed from previous observations of

tropical and middle latitude squall line systems (e.g., Houze et al. 1989). Keenan and Carbone

(1992) observed that the squall lines they studied during the 1987-1988 wet season moved at a

speed similar to the 700 mb flow and that both monsoon and break: MCSs tend to initially align

parallel to the lower tropospheric shear but later evolve in a orientation perpendicular to the low­

level shear vector. Similar results were demonstrated by Alexander and Young (1992) for EMEX

convective lines.

Typically, the squall systems achieve maximum intensity before they reach the coastline at

Darwin. All of the break MCSs in this study were sampled in their mature to dissipating stages of

convective activity [stages defined by Leary and Houze (1979a)]. The 13 MCSs used in the

analysis include six from the break regime and seven from the monsoon regime.

3.2 Convective Regimes in the Pacific warm pool

The Pacific warm pool region contains the largest area of warm water on Earth, with long

term December-February SSTs (Sea Surface Temperatures) in excess of 28° C (Webster and

Lukas 1992). The warm water results in a strong coupling between the ocean and atmosphere

through exchanges of heat, moisture, and momentum. The fluxes of heat and moisture from the

ocean surface to the atmosphere give rise to atmospheric convection occurring over a wide range

of time and space scales, establishing global-scale gradients of diabatic heating, and emphasizing
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the importance of the warm pool to the general circulation of the atmosphere (Webster and Lukas

1992). Indeed, the ascending branch of both the zonal Walker and meridional Hadley circulations

occur over the warm pool region. Moreover, the effect of the warm ocean water is also directed

downward since the resulting atmospheric convection can influence ocean circulation patterns by

producing a fresh water flux at the ocean surface, thereby establishing temperature and salinity

gradients that may, in turn, influence future convective activity.

COARE was designed to increase understanding of the dynamical processes operating in the

Pacific warm pool coupled atmospheric-oceanic system (Webster and Lukas 1992). Among the

objectives for the atmospheric component was to determine the kinematic structure, including the

heat, moisture, and momentum transports within regions of convective activity over the warm pool

region.

A recent satellite climatology study by Mapes and Houze (1993b) of the Indian and Pacific

warm pool region showed that the cloud clusters they sampled were approximately lognormally

distributed in size, with no separate meso scale sized peak in the distribution. In particular, over

the COARE IFA 25% of the cold cloud area (Le., blackbody temperature TBB < -65 0 C) was

associated with CEs (Cloud Elements: spatially connected areas of cold cloudiness at 10 km

resolution) with areas less than - 6,000 km2
, 50% by CBs less than 20,000 km2

, and 75% by CEs

smaller than 65,000 km2• The diurnal cycle of cold cloudiness was found to be sun-synchronous

within the largest CEs, reflecting the lifecycle of associated MeSs; however, the incidence of

small CBs was nearly independent of time of day. The deep convection in the largest CBs peaked

before dawn and decreased through the morning (Mapes and Houze 1993b).
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Subsequent to the completion of the eOARE, a convective climatology has been developed

based on the horizontal morphology ofprecipitating convective systems observed with the

shipboard radar data (Rickenbach 1995). The classification scheme is based on the spatial scale of

contiguous convective echo as well as the presence or absence of linear arrangement in the

convective echo pattern. Using the MIT radar data during the entire four month eOARE lOP,

Rickenbach found that nearly 75%of the total rainfall was associated with precipitating systems

greater than 100 kID in horizontal extent, even though they were present only 37% of the time.

The results suggest that the majority of rainfall is produced by large MeSs which occur relatively

infrequently. Scattered, isolated convection was present about half the time (the most common

mode of convective activity) and produced about 16% of the total rainfall. The majority of

stratiform precipitation (75 %) was found to occur in association with convection organized into

lines at least 100 km long. Also, the vast majority (78%) of the total eOARE lOP rainfall was

found to be associated with convective (as opposed to stratiform) features (T. Rickenbach,

personal communication). There was a nocturnal (Le., midnight to dawn) maximum in the total

(and convective fraction) rainfall followed by a mid to late morning minimum and a weaker

secondary maximum in the late afternoon hours. Research is continuing to explain the diurnal

rainfall patterns as well as to correlate the observed convective morphology with changes in the

large scale environment.
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Chapter IV

INDIVIDUAL ANALYSIS OF DARWIN MCS EVENTS

This chapter provides an analysis of each MCS as it crossed over the observational network.

The MCSs are categorized into monsoon and break and the results summarized in terms of

environmental sounding and scanning radar characteristics, as well as wind profiler measurements

in conjunction with nearby surface rain gauge information. The individual MCSs are named

according to their date of observation in UTC (= L - 9.5 hr) with the format YYMMDD. For

example, 5 December 1989 is referred to as 891205.

4.1 Break events

4.1.1 Environmental characteristics

Environmental soundings and corresponding profiles of thermal buoyancy for each of the six

break MeSs are shown in Figs. 4.1 and 4.2, respectively. It should be noted that some of the

soundings were launched several hours prior to the arrival of the MCS over Darwin and therefore

may not be entirely representative of the environment supporting the MCS. However, as will be

shown below, the vertical draft structure in the MCSs sampled by the wind profiler is at least

partially consistent with the thermodynamic properties of the environment sampled by these

soundings.
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Fig. 4.1. Skew-T plots of upper-air soundings from Darwin for each of the six break period

MeSs. Temperature and dewpoint traces (0C) are indicated by the bold solid lines. Wind data

are shown in the right portion of each plot with wind speed (knots) represented by the length of the

barb (long barb: 10 kt; shott barb: 5 kt). The date and time of each sounding is indicated at the

top of each plot.
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Fig.4.1. (continued).
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Fig. 4.2. Profiles of thermal buoyancy corresponding to the soundings in Fig. 4.1. The line trace
in each plot indicates the magnitude of virtual temperature excess (0C) between a parcel rising
from low levels and the environmem. The O°C isotherm is shown by the horizomalline in the left
portion of each plot. The date and time of each profile, as well as the CAPE in the sounding, is
indicated at the top of each plot.
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The soundings all show approximately moist adiabatic ascent above 500 mb; however, there

is considerable variability in the temperature and moisture profiles below 500 mb. In general, the

soundings all show at least one dry layer in the lower troposphere below about 600 mb. With the

exception of 901121 and 901215, the break soundings show a relatively stable sub-cloud layer.

The low-level wind typically has a southeast component, consistent with flow off the continent in

the break regime. Figure 4.2 shows that the corresponding CAPE values are large (with the

exception of 891205), ranging from - 1500-3900 J kg'l. Moreover, the profiles in Fig, 4.2

indicate a rapid increase in buoyancy between about 800-600 mb with positive buoyancy extending

to above 150 mb in most cases. The maximum virtual temperature excess between a rising low­

level parcel and the environment was usually greater than 5°C above 600 mb (note the virtual

temperature excess is above lOoC for the 901121 sounding). Several soundings in Fig. 4.2 also

indicate a secondary, minor thermal buoyancy peak in the upper troposphere (Le., 900128,

901121, and 901215). The low-level negative thermal buoyancy varied from essentially O°C for

901121 (Fig. 4.2e) to greater than 2°C for 891205 (Fig. 4.2a).

4.1.2 Partitioned radar reflectivity characteristics

Time-height cross sections of partitioned volume average reflectivity for the six break MCSs

are shown in Fig. 4.3. With the exception of 900118, all of the convective region cross sections

indicate maximum reflectivities occurring in the late afternoon to evening (local time), consistent

with the sun-synchronous cloudiness maximum over the northern tip of Australia identified by

Keenan et al. (1989). Moreover, all the cross sections show at least one period in which the 30

dBZ contour extends near or above the melting region (in a volume average sense), suggesting the

presence of relatively large vertical drafts in the convective cells required to loft significant

amounts of liquid water into the mixed phase region of the cloud and marking an intense phase of
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Fig. 4.3. Partitioned time-height cross section of volume average radar reflectivity within 120 km
of the radar location for each of the six break period MCSs. Left hand column represents the
convective region and the right hand column is the stratiform region. The MCS corresponding to
each row in the figure is indicated at the top of each plot. Units are reflectivity (dBZ) contoured in
5 dB increments with shading for dBZs 0-25 (light), 25-35 (medium), and > 35 (dark). The
dashed horizontal line in each plot indicates the approximate location of the O°C isotherm.
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Fig. 4.3. (continued).
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convective activity. This profile is consistent with observations of high lightning flash rates

associated with many of the break period MCSs studied herein (petersen 1992). In general, the

convective activity waned toward the end of each observation period as the MCS moved over open

water north or west of Darwin and dissipated.

The volume average stratiform cross sections generally show the development of enhanced

radar reflectivities in the trailing region to the rear of the convective line just below the melting

region during the middle to latter stages of the observation period (Fig. 4.3). This feature,

marking the existence of a radar bright band, coincides with a decrease in convective reflectivity

and the developmem of mesoscale (stratiform) precipitation features over the observational

network to the rear as the MCS propagated toward Darwin. The exception to this trend in

stratiform development is 900118 (Fig. 4.3b) which does not show a clear bright band feature in

the partitioned stratiform time height cross section. As descnbed below, this MCS remained more

or less as a line of convection and never developed a significant region of trailing stratiform

precipitation. Also, the marked decrease in reflectivity evident from 0100-0140 UTC in the

stratiform cross section indicates the time period during which a sector scanning strategy was

employed to sample only the convective line portion of the MCS.

4.1.3 MCS general description

In this section, general observational characteristics of the break: MCSs are presented and

interpreted in light of previous investigations of break period convection (e.g., Keenan and

Carbone 1992). Since most of the MCSs developed in a similar fashion, this discussion

summarizes the salient features in the evolution of the MCSs as they moved over the network as

well as any anomalous characteristics.
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All of the break MCSs smdied herein were squall lines, characterized by a leading line of

convection, where new cell growth was concentrated along with deeper, mamre cells, and a

trailing region of stratiform precipitation, similar to previous studies of tropical and middle latitude

squall line systems (Houze et al. 1989). Often, a reflectivity trough (i.e., transition zone) was

observed between the convective line and the stratiform region. An example of an MCS with the

characteristic squaIlline stI'Ucmre is shown in Fig. 4.4.

With the exception of 891205 and 900118, all of the break MCSs developed over higher

terrain southeast of Darwin. The 891205 event formed south of Darwin near the coastline,

perhaps along a sea breeze front, while the 900118 MCS developed over the Van Dieman Gulf

region and moved across the northern tip of Australia. This system was tracked for approximately

24 hours by the MIT radar crew prior to its passage over Darwin (S.A. Rutledge, personal

communication).

Radar observations indicated that the MCSs evolved through a distinct diurnallifecycle

pattern, similar to that described by Leary and Houze (1979a) for a GATE tropical cloud cluster.

The squall systems tended to initiate during the late morning to afternoon hours over the higher

terrain regions and propagate toward the coastline, reaching Darwin in the evening hours. Figure

4.5 shows selected CAPPIs of the lifecycle stages observed in two of the break period MCSs. In

the formative stage (Fig. 4.5a and b), the radar echo pattern is characterized by a group of isolated

convective cells. Later in the afternoon, the cells merge into a single broader echo in which newer

cells appear as intense convective cores (Fig. 4.5 c and d). This marks the intensifying stage. In

the mature stage (Fig. 4.5 e and t), an areally extensive region of widespread precipitation

develops to the rear of the line of convective cells. Typically, the widespread precipitation region

contains a radar bright band signature. Finally, in the dissipating stage (usually in the late evening
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Fig. 4.4. Representative low level radar reflectivity CAPPI of a break period squall line MCS
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to early morning hours), the convective cells become progressively shallower and weaker (in

terms of radar echo intensity) and the entire echo pattern begins to dissipate (Fig. 4.5 g and h).

Unlike the first three stages which generally last 1-5 hours, the dissipating stage may last more

than 8 hours (Leary and Houze 1979a).

Most of the break period MCSs were oriented with convective lines approximately

perpendicular to the low-level shear, consistent the observations ofKeenan and Carbone (1992) for

Darwin area squall systems. The systems moved at roughly 8-14 m S·l; however, discrete

propagation of cells often made it difficult to accurately determine the convective line speed.

Radar echo tops of the break MCSs typically ranged up to 16-18 kIn, although several of the squall

lines (900118 and 900128) were particularly intense in terms of reflectivity struenlre, with echo

tops exceeding 20 kID and reflectivity cores in excess of50 dBZ in selected cross sections (not

shown).

Radar observations indicated that the squall lines sometimes interacted with local circulation

patterns (i.e., sea breeze circulations) as they propagated toward the coast line. An example of

this interaction is provided in Fig. 4.6 for the 900118 MCS. As the 900118 MCS approached the

MIT radar site near 0050 UTC, an east-west oriented convective feanrre formed about 30 kID

ahead (i.e., west) of the MCS, probably in response to a local sea breeze convergence circulation

(Fig.4.6a). It was not clear to what extent the east-west band formed as a result of diurnal

heating along the coastline or was forced as a result of outflow from the approaching squall line.

The band later merged with the squall line as it propagated toward the southwest. Approximately

one hour later, the squall line developed a distinct bow shape after crossing over the profiler

location (Fig. 4.6b), suggesting the presence of a relatively strong storm relative rear inflow
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Fig. 4.6. Low level radar reflectivity CAPPIs for the 900118 MCS. (a) Approaching squall line
in the northeast sector of the plot and the sea breeze from (labeled SB in the plot) at 0051 UTe.
(b) Development of bow echo structure at 0201 UTC. Note that the plot is centered on TOGA in
(a) and on MIT in (b). Scale (dBZ) is indieated in the figure.



circulation. Similar features have been observed in middle latitude squall line type MCSs (Smull

and Houze 1987b; Rutledge et al. 1988).

Convective activity would often re-intensify over the open water region straddling the

mainland and the Tiwi Islands off the north coast after the initial squall line had passed over the

coastline and begun to dissipate, probably as a result of interaction between storm outflow and the

local land breeze circulation. An example of this re-intensification process is shown in Fig. 4.7

for the 901121 system. In Fig. 4.7a, the squall line in its mature phase approaches Darwin,

eventually passing out to sea and dissipating (Fig. 4.7b), and finally producing additional

convective activity along the southern coast of the Tiwi Islands (top portion of Fig 4.7c).

4.1.4 Wind prorIler results

4.1.4.1 Analysis of time-height cross sections results

This section provides an analysis of the vertical air motions sampled by the wind profiler as

each break period MCS crossed over the observational network. Salient features in the vertical

motion patterns analyzed in all the squall lines were most clearly observed in the 891205 event.

Therefore, a detailed description is provided for this event and the other squall line MCS analyses

are compared to 891205.

1) 891205

Time-height cross sections of radar reflectivity, vertical air velocity and surface rainfall for

the 891205 MCS are shown in Fig. 4.8. Comparing the cross sections of reflectivity, surface
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rainfall, and vertical velocity, it can be seen that the squall line's leading edge passed over the

profiler near 0840 UTC. At this time, an updraft with magnitudes up to 4.5 m S-l was centered in

the lower troposphere, at the leading edge of the MCS. Above about 7 Ian, weaker ascent

extended through the troposphere. Vertical cross-sections generated with MIT radar data (not

shown) suggest that this leading region of low-level ascent was associated with the development of

new convection along the leading edge of the MCS. This leading low-level updraft developed as

the system tilted rearward (Le., the opposite direction toward which the line was moving) and

persisted for several hours after the convective region passed over the observational network. The

characteristic tilting of convective cells along the leading edge of MCSs has been previously

documented in both middle latitude and tropical MCSs (Houze 1977; Smull and Houze 1987a;

Rasmussen and Rutledge 1993).

The cross section in Fig. 4.8a indicates a rapid decrease in reflectivity above the melting

level (near 0900 UTC) associated with the low-level updrafts. Szoke et al. (1986) and Jorgensen

and LeMone (1989) also documented sharp decreases in reflectivity above the melting level in

tropical convection and suggested the reflectivity gradient was due to the inability of the updraft to

carry large drops a significant distance above the O°C level. The profile in Fig. 4.8a is consistent

with a low-level precipitation generation by a collision-coalescence process. Inspection of the

rainfall intensity trace (Fig. 4.8c) shows that a sharp peak in rainfall intensity (72 mm hr-1
)

occurred near 0900 UTC, in association with the low-level updraft peak:.

Between about 0910-0920 UTC, a deep updraft core with magnitudes exceeding 9 m S-l

passed over the profiler site (Fig. 4.8b), with maximum ascent centered between 9-10 Ian. Based

on extrapolation of data compiled in Jorgensen and LeMone (1989; their Fig. 4) the magnitude of

this updraft is greater than the strongest 10% average updraft reported for tropical oceanic
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systems, but is less than the value reported for continental systems studied in the Thunderstorm

Project (i.e., the regions of central Florida and Ohio).

The deep updraft was flanked by subsidence at upper levels. This subsidence (approximately

1-2 m S·l) was probably a dynamical response of ascending air impinging on the stable region

above cloud top (in the vicinity of the tropopause) and being forced to descend by mass balance

constraints. The position of these downdrafts are remarkably similar to downdrafts in other squall

line studies diagnosed from dual-Doppler analyses (Heymsfield and Schotz 1985; Smull and

Houze 1987a Biggerstaff and Houze 1993). Coincident with the strengthening of the maximum

ascent region in the middle troposphere, the cross section in (Fig. 4.8a) shows a sharp increase in

reflectivity above the melting level with the 20-30 dBZ contour extending up to about 10 kIn. The

relatively large reflectivities (up to 30 dBZ) co-located with the strong upward motion are likely

associated with the presence of graupel. The shift of the maximum updraft to the middle

troposphere and the increase in reflectivity above the O°C level reflects the passage of mature,

deep convective cells across the profiler site at this time. A secondary peak in rainfall intensity

occurred at 0910 UTC in conjunction with the passage of the deep updraft core in the middle

troposphere. To the extent that the single rain gauge trace (Fig. 4.8c) represented the rainfall

rates associated with the passage of the leading edge of the MCS, it is important to note that the

peak: rainfall rates associated with the low-level updraft and the deeper, mid-to-upper troposphere

updraft are similar in magnitude (72 and 62 mm h-l respectively). It will be shown that a similar

bimodal structure was evident in most of the Berrimah rain gauge traces for all six of the break

regime MCSs.

Deep subsidence (on the order of 1.5 m sol) was present over the profiler from 0940-1010

UTC (Fig. 4.8b). This downward motion coincided with a reflectivity trough (transition zone) in
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both the reflectivity cross section (Fig. 4.8a) and the low-level horizontal reflectivity pattern (not

shown). The reflectivity trough was most pronounced in the upper and lower troposphere and was

separated by a region of higher reflectivity at middle levels (4-6.5 km). Although the precise

relationship between the upper and lower reflectivity minima is not clear, the trough below the

melting level could be related to melting and evaporation of hydrometeors in the presence of a

downdraft. As discussed previously, the upper level subsidence was probably associated with

divergent outflow from the convective region. Biggerstaff and Houze (1993) have argued that this

subsidence would cause sublimation and reduced aggregation of ice phase hydrometeors advected

rearward of the convective line thus explaining the lower reflectivity minimum. The Berrimah

rain gauge time series shows that this period was characterized by very light rain (Fig. 4.8c).

After about 1010 UTC, upward motion was present in the middle to upper troposphere, with

mesoscale downward motion at lower levels. This upward motion coincided with the development

of a distinct maximum in radar reflectivity (bright band) near the melting level, consistent with the

development of more widespread stratiform precipitation over most of the observational network

at this time. The magnitudes of vertical air motion in the stratiform region were generally weak,

ranging up to about 0.5 m S-1 with the updraft generally restricted to the upper troposphere.

Inspection of radar-derived relative flow structure (not shown) indicated the presence of weak rear

inflow, restricted to heights below the O°C level. Thus, the depth of the mesoscale downdraft in

this case does not appear to be linked to the location of the rear inflow jet, in contrast to the results

of Rutledge et al. (1988) and others for middle latitude squall lines.

The reflectivity cross section in Fig. 4.8a indicates a cessation of the bright band after about

1110 UTe. The reduction in the bright band appears to be related to enhanced subsidence

occurring at this time. The precipitation intensity remained very light throughout the duration of
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the stratiform region in the vicinity of the profiler. During the observational period, a total of 25

rom of rain was recorded at the Berrimah rain gauge, with 89% occurring in association with the

passage of the convective region (see Appendix D).

2) 900118

The time-height cross section of reflectivity, vertical air motion, and surface rain for the

900118 MCS is shown in Fig. 4.9. The wind profiler resultS in Fig. 4.9b reveal a more

complicated vertical air motion pattern associated with the evolution of the MCS as it crossed over

the profiler site compared to 891205. A low-level updraft peak of about 3 m S·l was sampled at

0100 UTC in association with convective cells forming ahead of the 900118 MCS (Fig. 4.6a).

Near 0150 UTC, the leading edge of the main portion of the 900118 MCS passed over the profiler

with a low-level updraft of about 4 m S'l. Similar to the 891205 MCS, this updraft was associated

with a relatively intense, brief rainfall spike( - 60 rom hr·l
) at the Berrimah rain gauge (Fig. 4.9c).

Approximately 10 minutes later (0200 UTC), a reflectivity trough passed over the profiler

associated with deep subsidence and absence of surface precipitation (Figs. 4.9a); however, by

0210 UTC the profiler was again sampling a portion of the convective line due to the bowing of

the MCS and resulting concave shape of the convective line (Fig. 4.6b). The convection sampled

at this time was deeper compared to the vertical draft core at 0150 UTC, with the 30 dBZ contour

extending well above the freezing level (Fig. 4.9a) and the peak vertical air motions occurring

above 9 km (Fig. 4.9b), also similar to the mature convective cell sampled in the 891205 event.

The wind profiler continued to sample elements along the convective line through about 0250

UTC, which became weaker with time and apparently were separated by regions of overturning

(subsidence). During this time period, the Berrimah rain gauge recorded rainfall rates up to - 20

rom WI, much weaker than the rainfall associated with the low-level draft along the leading edge.
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Stratiform conditions persisted over the profiler for a short period subsequent to the passage of the

convective line; however, there was no characteristic bright band during this time period. The

results are consistent with the Berrimah rain gauge trace which indicated that 99% of the rainfall

was associated with the convective region (Appendix D).

3) 900122

Cross sections of reflectivity, vertical motion and rain rates for the 900122 case are shown in

Fig. 4.10. The convective line passed over the profiler around 1100 UTC as indicated by the low­

level reflectivity patterns (Fig. 4.lOa) and the development of a lower troposphere updraft core

(Fig. 4. lOb). At the Berrimah rain gauge, the onset of precipitation occurred at 1105 UTC (Fig.

4.1Oc). Similar to the previous MCSs, the pattern is due to low-level convective cells on the

leading edge of the squall line. However, the reflectivity and vertical air motions cross sections in

Fig. 4.10 indicate that the 900122 MCS was weaker than the 900118 and 891205 events. Figure

4.3c shows that the most active convective phase of 900122 occurred prior to its passage over the

wind profiler. Also, selected reflectivity cross sections (not shown) indicate that the most intense

convection passed to the northeast of the profiler site. At the Berrimah rain gauge, the maximum

rainfall intensity (about 24 mm h-i ) occurred around 1120 UTC in association with the passage of

the low-level updraft. In contrast to the 891205 and 900118, the 30 dBZ contour was confined to

heights below the O°C level during the passage of the convective line.

Additional updraft cores, centered in the middle to upper troposphere, passed over the

profiler site at between 1140-1200 UTC (Fig. 4.lOb); however, the radar reflectivity cross section

does not indicate any intensification of the MCS during this time interval (Fig. 4.lOa). Upper

level subsidence occurring ahead and behind the peak updraft at 1150 UTC was weak « 0.5 m
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S·I) and shallow compared to 891205 and 900118. The surface rainfall at Berrimah shows a small

increase in rainfall intensity which is roughly coincident with the passage of the middle and upper

troposphere updrafts.

A radar bright band formed over the wind profiler beginning near 1300 UTe, accompanied

by a slight increase in surface rainfall intensity (Fig. 4.10a and c), suggesting the development of

stratiform conditions. The stratiform region of the 900122 MCS was characterized by alternating

regions of downward and upward motion at upper levels (Fig. 4.lOb). Upper level subsidence

was present over the profiler from about 1250-1340 UTC. During this time, ascent was confined

to a thin region above the bright band. Approximately 88%of the total precipitation recorded at

the Berrimah site was associated with the passage of the convective region for the 900122 case

(Appendix D).

4) 900128

Cross sections of vertical air velocity and surface rainfall, for the 900128 case are shown in

Fig. 4.11. Since MIT radar data were not available on this day, a time-height cross section of

reflectivity over the location of the wind profiler was not possible.

Inspection of low-level radar reflectivity data (not shown) indicate that the wind profiler

began to sample convection out ahead (i.e., west) of the main portion of the convective line around

1225 UTC (Fig. 4.11a), although no surface rainfall at the Berrimah rain gauge was associated

with the convective activity at this time. It is interesting to note that a GMS IR image collected at

1133 UTC showed that the area encompassed by the rain gauge network was almost entirely

covered by a region of cloud top temperatures < 200° K; however, only four of the rain gauge
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sites, located in the eastern pan of the network, reported rainfall between 1100-1200 UTC

(Appendix D).

The leading edge of the 900128 convective line passed over the profiler site about 1305 UTC

(Fig. 4. 11a). Similar to the previously described squall lines, the profiler sampled a bimodal

updraft structure associated with the convective region. A low-level updraft crossed the profiler

around 1310 UTC and was centered near 3 kIn with a magnitude of about 3 m S-I (Fig. 4.11a).

Weaker ascent (1 m S·l) was also occurring in the mid-to-upper troposphere at this time. The two

updraft regions were nearly split by downward motion in the 7-9 kIn level. At 1325 UTC, another

updraft core centered near the 9 kIn passed over the wind profiler which was flanked by

subsidence near the tropopause. The passage of this middle troposphere updraft core coincided

with the onset of rain at the Berrimah rain gauge site.

There was considerable spatial variability in the intensity and amount of rainfall recorded in

the rain gauge network during the passage of the 900128 system. At the Berrimah site, only a

total of 6.2 mm of rain were recorded and the rainfall rate never exceeded about 8 mm h-I during

the observation period. In contrast, the Humpty Doo rain gauge located approximately 43 Ian

southeast of the wind profiler site recorded 30 mm of rain in a 30 minute period, with a 10 minute

average maximum intensity of 64 mm h-I (Appendix D). The significant variability of surface

rainfall suggests corresponding large variability in the magnitude of vertical air velocity along the

convective line portion of the squall line.

Subsidence occurred throughout the troposphere from 1330-1355 UTe, suggesting the

existence of a transition zone rearward of the convective line (Fig. 4.11a). The pattern is

consistent with low-level reflectivity plots (not shown) which indicated the existence of a 20-30 Ian
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wide reflectivity trough about 40 km east of the MIT radar site at 1305 UTe. Using the

translation speed of the MCS (- 10 m S·I)and assuming steady state conditions, this feature could

have been advected over the profiler around 1400 UTC. Minimal rainfall accumulations occurred

at the Berrimah site from 1335-1425 UTC, probably as a result of the enhanced subsidence and

subsequent evaporation.

By about 1430 UTC, a broad stratiform region developed over the profiler. In the vertical

motion cross section (Fig. 4.11a), subsidence in the mid-to-upper troposphere was replaced by a

mesoscale updraft with magnitudes ranging up to 1 m s·t. Data from the Berrimah site showed an

increase in surface rainfall corresponding to the development of the stratiform region (Fig. 4.11b).

The depth of the mesoscale updraft was variable, ranging from less than 1 km to about 8 km. In

general, the deepest regions of updraft corresponded with the largest magnitudes. After about

1515 UTC, the magnitude and depth of the updraft generally decreased, indicating that the

stratiform region was dissipating at this time. In contrast to the previously discussed break MCSs,

a large portion of the total rainfall (77%) recorded at the Berrimah site for the 900128 was

associated with the passage of the stratiform region (Appendix D). The larger stratiform

contribution may be associated with the stronger updrafts sampled by the wind profiler in the

stratiform portion of the 900128 MCS compared to 891205,900118, or 900122. However, as

discussed in Ch. 5, the majority of rainfall measured from all the rain gauges for 900128 was

associated with the passage of the convective line.

5) 901121

The time-height cross section of vertical air motion over the wind profiler and the Berrimah

rain gauge trace for 901121 are shown in Fig. 4.12. The convective line portion of the MCS
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crossed over the profiler near 1030 UTC, associated with a relatively weak updraft core ( - 2 m

S-l) and brief, heavy rain (- 65 mm br1), similar to the 8901205, 900118, and 900122 squall

lines. A secondary weak updraft centered in the upper troposphere passed over the profiler near

1050 UTC, flanked by subsidence. This pattern is consistent with all of the previously described

squall systems. The Berrimah rain gauge recorded minimal rainfall associated with the upper

level updraft core. Deep subsidence was sampled rearward of the upper level draft near 1110

UTC, similar to the previous squaI1line cases; however, a clearly defined reflectivity trough was

not apparent in the radar data in the vicinity of the wind profiler.

Stratiform conditions developed over the profiler by about 1130 UTC (Fig. 4.7b) coincident

with a relatively consistent pattern of ascending motion generally occurring above about 8 kIn and.

descending motion below this level. The stratiform region was sampled until 1600 UTe. Minimal

rainfall was recorded at the Berrimah rain gauge during this time interval. For the entire MCS,

97% of the rainfall recorded at the Berrimah rain gauge was associated with the passage of the

convective line (Appendix D).

6) 901215

The time-height cross section of vertical motion over the wind profiler and the resulting rain

trace from the Berrimah rain gauge are shown in Fig. 4.13. The 901215 MCS actually consisted

of two separate squall convective lines which passed over the observational network on this day.

The first line passed over the profiler around 1030 UTC, shortly before it began to decay over

open water west of Darwin. A trailing region of stratiform precipitation persisted over the profiler

for several hours before the next convective line, weaker and less organized than the first, crossed

over the profiler around 1430 UTC.
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The vertical air motion time-height cross section shows the passage of a rather intense ( - 7

ms-l) low-level updraft centered below the melting level trailed by several deeper, but less intense

updrafts in the middle to upper troposphere associated with the passage of the first line (similar to

the observations of the previous squall line MCSs). The rain trace shows a sharp peak (- 40 mm

hr-l) associated with the low-level updraft; however, it's not clear which of the deeper updrafts the

second, slightly weaker, rainfall peak is associated with. Subsidence flanks the upper level

updrafts near the tropopause. The vertical air motion pattern sampled in the stratiform region

between the passage of the first and second convective lines is rather complicated (Le., Fig. 4.13

at - 1200-1400 UTe). Arbitrary cross sections through the radar data as well as the partitioned

stratiform time-height cross sections (Fig. 4.3f) do not indicate the presence of a well defined

radar bright band feature and the Berrimah rain gauge did not record any precipitation during this

time interval. It is only after the passage of the second convective line (i.e., after 1430 UTe) that

the mesoscale updraft-downdraft couplet is present in association with the bright band signanrre

and measurable surface precipitation (Figs. 4.3f and 4.13c). Results from the Berrimah rain

gauge trace indicate that 87%of the recorded rainfall in the vicinity of the wind profiler was

associated with the passage of the convective lines (Appendix D).

4.1.4.2 Partitioned vertical air motion results

Composite profiles of partitioned vertical air motions for the six break period MCSs are

shown in Fig. 4.14. Each plot includes a composite profile of convective updrafts, convective

downdrafts, total convective drafts (updraft and downdraft), total stratiform, and total transition

(not observed in all cases). In the convective region, each composite updraft shows a bimodal

pattern with peak vertical air motions centered in the vicinity of the melting level and in the middle

to upper troposphere. As discussed in Sec. 4.1.4.1, the low-level updrafts occurred on the leading
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edge of each squall line and were probably associated with a collision-coalescence precipitation

mechanism in each case. The upper level updraft was associated with deeper convective cells

which trailed the leading low-level updraft. The location of the peak updraft in the middle to

upper troposphere is quite variable compared to the lower level peak (i.e., the centroid ranges

from - 8.5 kIn in 901121 to -15 kIn in 900118), suggesting that the upper level peak may be

more influenced by lifecycle effects of the MCS as it crossed the observational network 3.nd/or

variability in the relative intensity of the MCS in the along-line direction (Le., the low-level

updraft may have a more two-dimensional structure compared to the upper level peak). It should

be noted that for the one break period MCS in which dual-Doppler analyses were available

(900122), the resulting pattern of vertical air motions averaged over the length of the convective

line were in excellent agreement with the wind profiler composite (Fig. 4.14c), suggesting that, at

least for this one MCS, the profiler obtained a representative sample of the convective region

structure.

The composite updraft profiles in the lower troposphere are at least consistent with the

corresponding profiles of thermal buoyancy (Fig. 4.2), which all show large positive virtual

temperature excesses (suggesting large positive acceleration of the vertical wind) in the vicinity of

550 mb. The correlation is somewhat surprising considering that the effects of entrainment and

water loading are neglected in this analysis, as well as the fact that the sounding data was

sometimes collected many hours in advance of the MCS passage over the profiler. Several of the

profiles in Fig. 4.2 also indicate a secondary virtual temperature increase above 500 mb (- 6

kIn); however, the correlation with the corresponding peak vertical wind in the upper troposphere

is not nearly as evident as the correlation in the lower troposphere. The results suggest that the

soundings may not have been entirely representative of the environment supporting the MCS (as

indicated in Sec. 4.1.1) or that additional forcing mechanisms are required to explain the location
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of the peak drafts in the upper troposphere (note that the 891205 had the largest magnitude upper

level updraft despite the narrowest positive thermal buoyancy region).

Figure 4.14 indicates that the largest convective downdrafts generally occurred in the upper

troposphere, consistent with a dynamically forced subsidence response of convective drafts

converging on the tropopause, followed by descent. The effect of the large upper level subsidence

is to produce net downward motion in many of the total convective draft profile composites

(900118,900128,901121, and 901215). Downward motion is also indicated in the transition zone

composite (with the exception of 900122), consistent with the observed reflectivity trough and near

absence of measurable precipitation. The stratiform composite of vertical drafts are much weaker

than the corresponding convective composites with downward motion generally occuring below the

melting level. However, in the middle to upper troposphere the stratiform composites can be of

similar in magnitude to the net convective profiles (with the exception of 891205), due to the near

cancellation of convective updrafts and downdrafts. Also, the depth of upper level ascent in the

stratiform profiles is highly variable in the break MCSs, ranging from non-existent in 901215 to

more than 6 Ian in 891205.

4.2 Monsoon events

4.2.1 Environmental characteristics

Atmospheric soundings and the corresponding profiles of thermal buoyancy for the seven

monsoon MCSs are shown in Figs. 4.15 and 4.16, respectively. All of the soundings show nearly

saturated conditions and approximately moist adiabatic lapse rates through a significant fraction of

the troposphere, consistent with the active monsoon environment (Keenan and Rutledge 1993).
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The corresponding CAPE values (Fig. 4.16) are generally small to moderate for the first four

events (a-d in Figs. 4.15 and 4.16) but are moderate to high in the remaining three events (e-g in

Figs. 4.15 and 4.16), due to the higher surface moisnrre and mid level regions where temperanrres

are slightly cooler than moist adiabatic values (Fig. 4.15).

The maximum virtual temperature excess corresponding to each sounding (Fig. 4.16)

generally occurs in the vicinity of 500 mb with several soundings showing a secondary peak in the

upper troposphere, similar to the break events described previously; however, the virtual

temperanrre excess rarely exceeded 4°C in the monsoon profiles (the highest values never more

than 6.5°C). Also, the vertical gradient of buoyancy in the lower troposphere is typically less than

in the corresponding break profiles (Fig. 4.2).

4.2.2 Partitioned radar reflectivity characteristics

Time-height cross sections of partitioned volume average reflectivity for the seven monsoon

events are shown in Fig. 4.17. The convective region cross sections all show a relatively sharp

gradient of reflectivity in the vicinity of the melting level with the 30 dBZ contour either absent or

usually confined to the lowest levels, indicating that the monsoon MCSs were less intense than

their break period counterparts. These profiles are consistent with previous investigations of

tropical oceanic convection (e.g., Szoke et al. 1986; Jorgensen and LeMone 1989; Rutledge et al.

1992; Williams et al. 1992; Keenan and Rutledge 1993; Zipser and Lutz 1994) suggesting the

presence of relatively weak low-level vertical drafts which are unable to loft substantial quantities

of supercooled liquid water into the mixed phase region of the cloud. It is expected that mostly

glaciated conditions with small particle sizes occur above the aoc level. The profIle is also
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consistent with Petersen (1992), Rutledge et al. (1992), and Randell et al. (1994) who showed

relatively low lightning flash rates in monsoon convection, suggesting weaker convection.

There is also a tendency for the convective reflectivity patterns in Fig. 4.17 to remain

relatively constant during the observation period of each MCS with less pronounced variability in

the height of selected contours compared to the break profiles in Fig. 4.3. This result is consistent

with Keenan et al. (1989) who showed that oceanic convection off northern Australia displayed

much less pronounced diurnal variability compared to land-based convective activity over the

continent. All of the monsoon MeSs showed evidence of a radar bright band signature in the

partitioned stratiform composite cross section for at least pan of the observation period.

4.2.3 MCS general description

In this section, a brief description of the evolution characteristics of the seven monsoon

MCSs from a radar perspective is provided. Because of the disorganized nature of the monsoon

convection, it is difficult to make many generalizations about the evolution of convective activity.

Herein, an attempt is made to discuss only the most salient features common to the events

analyzed.

During the monsoon, convective activity (as determined by the occurrence of radar echo)

tended to pulsate over a period of several days with individual events usually lasting less than 12

hours. Typically, the convective activity of each event initiated as scattered cells (Fig. 4.18a) and

became loosely organized into linear bands of enhanced precipitation (hereafter referred to as

convective bands) embedded in areally extensive stratiform cloud (Fig. 4.18b). With time, the
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Fig. 4.18. Selected low-level radar CAPPIs for the 901212 monsoon MCS showing a typical
progression of convective activity. Date and time of each CAPPI is shown at the top of the plot.
Units are dBZ with the scale shown in the middle of the figure.
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intensity of the bands decreased, leaving a region of widespread stratiform precipitation which

gradually decreased (Fig. 4.18c and d).

All of the monsoon MeSs formed over the ocean north or west of Darwin and moved

onshore in the westerly monsoon flow. The embedded convective bands would often form parallel

to the coastline (approximately parallel to the 850 mb wind), suggesting that local sea breeze

circulations may have played a role in initiating convection, consistent with the radar observations

of Keenan and Carbone (1992) in the Australian summer monsoon. Radar data indicated that the

convective bands could range from less than 50 km in length (Fig. 4.19a) to more than 150 lan

(Fig. 4.19c and d), sometimes with more than one preferred direction of orientation (Fig. 4.18b).

Moreover, the convective bands would often interact with local sea breeze circulation features as

they propagated on shore (Fig. 4.20). It was also commonly observed that convective elements

formed, intensified, merged with other cells, and decayed into a region of stratiform precipitation

within a span of about one hour, sometimes without appreciable movement with respect to the

ground, making it difficult to generalize the overall organizational structure of these MCSs.

Several of the monsoon MCSs have been studied previously (Le., 900112 and 901210) and

provide a base of comparison for this study. Keenan and Rutledge (1993) used dual-Doppler radar

data to diagnose the kinematic flow patterns of the 900112 MCS. This event had some

characteristics of a squall line: a leading line of convection and trailing stratiform region with a

mesoscale vortex circulation. However, the vertical circulations in the stratiform region were

highly variable, characterized by decaying convective cells with regions of overturning

(subsidence) alternating with regions of ascent.
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May (1995) used radar and wind profiler data to study the 901210 MCS which was part of a

weak tropical cyclone disrorbance (Laurance). May described the existence of cyclonically

rotating spiral rainbands in Laurance which moved radially outward from the eyewall at 6-8 m S-I.

The bands were organized at two different scales; the rainbands themselves formed about 100 km

from the storm center and were characterized as regions of mostly stratiform precipitation about

60 km wide. Within the bands, convective lines developed at regular intervals oriented' - 45 0 to

the rainband and propagated outward with respect to the flow at all levels, acting as a partial

barrier to radial inflow (May 1995). May hypothesized that the convection was initiated by

inertia-gravity waves propagating from near the storm eye.

4.2.4 Wind profIler results

4.2.4.1 Analysis of time-height cross sections results

1) 900110

The time-height cross section of wind profiler vertical air motion, MIT radar reflectivity over

the wind profiler, and the Berrimah surface rain gauge trace for 900110 are shown in Fig. 4.21.

The vertical air motion and reflectivity cross sections indicates that several relatively weak

convective bands, separated by about one hour, passed over the profiler during the observation

period. The small magnitude drafts are consistent with the reflectivity pattern over the profiler

(Fig. 4.21a), which shows that the higher reflectivity regions are restricted to heights below the

melting level with a relatively sharp reflectivity gradient in the vicinity of 5 km. Selected radar

cross sections (not shown) indicated that the 30 dBZ contour did not extend above 6 km in any part

of the MCS during the observation period, suggesting the predominance of ice phase precipitation
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Fig. 4.21. Same as Fig. 4.8 except for the 900110 Mes.
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above the melting level, consistent with previous observations of tropical oceanic convection

(Houze and Churchill 1984; Jorgensen and LeMone 1989; Gamache 1990; Rutledge et al. 1992;

Keenan and Carbone 1992; Williams et al. 1992).

The first band at 0700 UTC produced no rain at the nearby Berrimah rain gauge site. A

similar band passed over near 0750 UTC, coincident with the onset of rain at Berrimah. After

0830 UTC, the vertical motion cross section indicates enhanced upper level ascent, corresponding

with the development of a small radar bright band and slightly enhanced surface rainfall in the

vicinity of the profiler (Fig. 4.21). By 0930 UTC, convective activity associated with the 900110

MCS was dissipating as revealed in the vertical air motion pattern over the profiler and volume

average reflectivity cross section (Fig. 4.17a).

2) 900112

Time height cross sections of vertical velocity and reflectivity over the profiler are shown in

Fig. 4.22. Because the MIT radar was collecting only surveillance scan data prior to 1010 UTC,

the reflectivity cross section (Fig. 4.22a) could only be constructed from 1010 UTC to the end of

analysis period (1230 UTC). Also, instrument problems prevented rainfall data from being

recorded at the Berrimah site on this date. In Fig. 4.22c, rainfall data is shown from the Darwin

aerodrome rain gauge, located about 7 km northwest of the wind profiler.

Inspection of Fig. 4.22b shows a series of updraft cores which passed over the profiler during

the sampling period. Low-level CAPPI's (not shown) indicated that the regions of ascent were

associated with convective bands which crossed over the wind profiler location, with the first band

corresponding to convection along the leading edge of the MCS as it propagated from the ocean
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northwest of Darwin toward the southeast (see Kennan and Rutledge 1993 for a detailed

description of the evolution of the 900112 MCS). The strength of the updrafts progressively

decreased from about 2-3 m S·l in the first band (0830-0920 UTC) to less than 0.5 m S·l in the last

band (1100-1200 UTC). The magnitude of the peak updraft is in reasonable agreement with

previous studies of oceanic convection (LeMone and Zipser 1980; Zipser and LeMone 1980;

Jorgensen and LeMone 1989). Each of these ascent regions were separated by relatively narrow

regions of subsidence. Moreover, with the exception of the earliest observational time (0830

UTC), subsidence occurred at low-levels throughout the passage of the system and became

progressively deeper with time. The wind profiler analysis is consistent with the results of Keenan

and Rutledge (1993) who documented a series of convective bands in the 900112 MCS oriented

parallel to the direction of storm motion which they attributed to convective scale overturning.

The reflectivity cross section (Fig. 4.22a) shows several higher reflectivity regions with small

bright band signaOlres separated by region of lower reflectivities, in agreement with the overall

vertical velocity structure.. This pattern is also consistent with the interpretation of Keenan and

Rutledge (1993) that convective elements were being advected rearward from the leading line

convection in a front to rear storm relative flow and decaying into the stratiform region. In this

view, the stratiform region developed from decaying convection. Selected radar cross sections

(not shown), as well as the cross section over the location of the profiler (Fig. 4.22a), showed that

the largest reflectivities in the 900112 MCS were confined to heights at or below the melting level

(similar to the 900110 MCS), suggesting that glaciated conditions occurred throughout the middle­

to-upper troposphere and that the precipitation from this system may have had significant

contributions from a low-level warm rain (coalescence) process (Keenan and Rutledge 1993).
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The rain trace at the Darwin aerodrome site for the wind profiler observation period is shown

in Fig. 4.22c. The rain trace shows a relatively small amount of rainfall occurred (8.4 mm total).

The first onset of rainfall appears to be associated with the passage of the first band over the

profiler site (e.g., the time period 0830-0910 UTC); however there is somewhat of a phase lag at

later times. Also, there is no evidence in the rain trace that the first band was more intense than

later bands. Similar to 900110, the accumulation of rainfall was relatively evenly distributed

throughout the observational period.

3) 901210

The time-height cross section of vertical air motion sampled by the wind profiler for 901210

and the corresponding rain trace from the nearby Berrimah rain gauge are shown in Fig. 4.23.

The profiler data shows the simultaneous passage of updraft cores in the lower and upper

troposphere near 0650 UTC marking the arrival of a rather intense convective band (Fig. 4.20).

Selected radar cross sections (not shown) indicated that this convective band was more intense as it

approached the coastline west of the profiler, with the 30 dBZ contour extending to near 9 km and

echo top heights approaching 15 kIn, but weakened considerably as it propagated onshore toward

the proffier. The passage of the drafts at roughly the same time is consistent with selected cross

sections of reflectivity (not shown) which indicate that most of the convective cells within the

bands had little vertical tilt as they propagated to the southeast. Overall, the pattern of vertical air

motion in this band was very similar to the pattern observed in the first band of the 900112 event.

The rain trace from Berrimah shows a sharp peak (- 60 mm hr1
) associated with the passage of

the updrafts, though it is not possible to tell if the peak is due primarily to the low or upper level

draft.
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Near 0750 UTe, a second embedded convective band passed over the profiler; however, the

vertical air motion and rain gauge plots suggest that this band was weaker than the first. Again,

the pattern is consistent with 900112, though the 901210 event, as sampled by the wind profiler,

was more intense. The vertical air velocity data after 0750 UTe is difficult to interpret without

adequate reflectivity coverage over the profiler. Based on selected radar cross sections (Fig.

4.24), it appears that the pattern may reflect the decay of convective elements rearward of the

main convective band.

4) 901212

The time-height cross section of vertical air motion over the wind profiler and the surface

rainfall pattern from the Berrimah rain gauge for 901212 are shown in Fig. 4.25. Overall, the

vertical air motion pattern is noisy and weak with drafts never exceeding about 1 m S·l through the

observation period. Similar to the previous monsoon MCSs, low-level CAPPIs showed that the

regions of enhanced vertical air motion corresponded to the passage of several weak convective

bands embedded in more uniform stratiform region. The passage of the bands over the profiler

occurred near 1830, 1930, and 2230 UTC and are approximately delineated by the occurrence of

rain at the Berrimah rain gauge site; however, consistent with the weak vertical air motions, the

rainfall intensity at Berrimah never exceeded about 10 rom br1
•

The radar data indicated that the convective bands weakened considerably as they propagated

on shore and over the mainland. This fact was also revealed in the rainfall statistics for 901212

which showed a sharp west to east gradient of rainfall intensity with maximum values exceeding

90 rom hr-1 along the west coast and Island stations and less than 20 rom hr-1 in the eastern portion
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of the network. During the observation period, 15.6 mm of rain was recorded at Berrimah with

the vast majority (83%) associated with the convective bands (Appendix D).

5) 910109

The time-height cross section of vertical air motion and the Berrimah rain gauge trace for

910109 are shown in Fig. 4.26. The vertical motion plot shows generally weak vertical drafts

with a characteristic stratiform struCOlre of upper level ascent and lower level descent. This

pattern was interrupted by several episodes of relatively large vertical drafts associated with the

passage of intense convective bands over the profiler. The vertical air motion pattern between

about 1830-2200 UTe is consistent with the volume average stratiform reflectivity pattern which

shows an enhanced bright band over the observational network at this time (Fig. 4.17e).

The passage of the first convective band occurred between about 1730-1800 UTC and is

revealed by vertical drafts exceeding 4-5 m S·l in the lower and upper troposphere and a small

increase in surface rainfall at the Berrimah gauge. Two other bands crossed over near 2230 and

0000 UTC with peak vertical air motions centered in the middle to upper troposphere. The band

feaOlre near 0000 UTC had a peak updraft exceeding 9 m S-l and was accompanied by a rainfall

rate exceeding 40 rom hr-l for 30 minutes (Fig. 4.26b). Eighty one percent of the total rainfall

recorded at the Berrimah rain gauge during the 910109 observation period was associated with the

convective band feaOlres, the remainder from stratiform rain (Appendix D).
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6) 910129

The time-height cross section of vertical air motion and nearby surface rain gauge trace for

the 910129 event are shown in Fig. 4.27. Similar to 901212, the vertical air motion pattern is

relatively noisy throughout the observation period. Vertical air motions are generally weak « 1

m S·l) with the exception of the time period near 1800 UTC and 0230 UTC where updrafts were

on the order of 2 m sol. Similar to the previous monsoon MCSs, the regions of higher vertical air

velocities coincided with the passage of the convective bands over the profuer location. The

rainfall observed at the Berrimah rain gauge was relatively light (Le., less than 15 mm hr-l)

throughout the majority of the observation period and was restricted to the passage of the

convective bands; however the last band at 0230 UTC produced a brief heavy rain rate (- 65 mm

hr-l). In this case, 83% of the precipitation was associated with the convective bands (Appendix

D).

7) 910130

The time-height cross section of vertical air motion for the 910130 event are shown in Fig.

4.28. Unfornmately, surface rain gauge data in the vicinity of the profiler was not available for

this event. The vertical air motion cross section indicates relatively weak drafts throughout the

majority of the analysis period, consistent with low-level radar CAPPIs which generally indicated

the absence of intense convection in the vicinity of the profiler. An exception to this trend

occurred between about 2340-0030 UTC in which radar data showed the passage of a convective

band over the profiler site. Selected radar cross sections (not shown) indicated that this band was

relatively intense as it approached the mainland coastline from the west-southwest with echo tops

approaching 16 kIn and the 30 dBZ contour extending to near 7 kIn. Similar to several of the
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previously described monsoon MCSs, this band weakened considerably as it propagated onshore.

The vertical air motion sampled by the wind profiler shows peak vertical drafts < 2 m S-l centered

below about 8 lan, consistent with the band weakening as it crossed over the coastline.

4.2.4.2 Partitioned vertical air motion results

Partitioned composite vertical air motion profiles for each of the monsoon MCSs are shown

in Fig. 4.29. The convective region composite profiles show large variability in the magnitude of

the drafts that were sampled in each MCS. The largest monsoon updrafts occurred in the middle

to upper troposphere (901210 and 910109). Many of the composites (900110, 900112, 901210,

901212) show a bimodal updraft structure similar to the break period Mess descnbed earlier;

however, the lower troposphere updrafts were often weak (900110,901212, 910129, 910130)

compared to the break composites consistent with the smaller virtual temperature excess in the

thermal buoyancy profiles (Fig. 4.16). All other factors being equal, the reduced virtual

temperature excess available to air parcels rising in monsoon convective cells means that water

loading plays a proportionally larger role in reducing the total bouyancy forcing of the vertical

wind compared to break period convective cells.

As stated in Sec.4.2.1, many of the thermal buoyancy profiles in Fig. 4.16 show small

increases in the virtual temperature excess in the upper troposphere consistent with the renewed

vertical acceleration observed in this region; however, it is not clear to what extent the additional

thermal buoyancy is due to the release of latent heat of fusion as suggested by previous

investigators (e.g., Williams and Renno 1993). Similar to the break period MCSs, the correlation

between the thermal buoyancy and the vertical wind peaks in the upper troposphere is not always

clear (e.g., 900110, 900112, 901210, and 910130).
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Fig. 4.29. Same as Fig. 4.14 except for the seven monsoon MeSs.
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The location of the peak convective downdraft was variable in the monsoon events,

sometimes occurring at upper levels (901210, 910109, 910129) similar to the break period Mess

and sometimes in the lower troposphere (900110, 900112, 901212). Similar to the break events,

the stratiform vertical drafts were weak compared to the convective region (with the exception of

900110) and the depth of the upper level ascent region was variable, ranging from essentially zero

(901212) to - 7 kIn (900112).
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Chapter V

COMPOSITE ANALYSIS OF DARWIN EVENTS

This chapter presents a comparison of the monsoon and break period MCSs in terms of

environmental, scanning radar, and wind profiler composite characteristics. In Ch. 6, further

comparisons of the Darwin composites are made with similar results from other geographical

regions including COARE.

5.1 Thermal Buoyancy

The monsoon and break period composite profiles of thermal buoyancy are shown in Fig.

5.1. Each profile was constructed by averaging all of the individual profiles shown in Figs. 4.2

and 4.16 for the break period and monsoon regimes, respectively. The composites are similar just

above the surface with less than about 1°C of negative buoyancy below 900 mb and positive

buoyancy extending to near 150 mb. The major difference in the profiles occurs above 800 mb

( - 2 km), where the break period composite shows a large increase in the positive gradient of

thermal buoyancy ( - 2°C km-l
) up to about 600 mb (4.5 km); whereas the monsoon profile

shows a much smaller buoyancy increase (- 0.8°C kIn-I) in this region. The virtual temperature

excess of the monsoon composite is almost 4°C less than the corresponding break period profile at

4.5 kIn.
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Fig. 5.1. Composite thermal buoyancy profiles (0C) for the 6 break (solid line) and 7 monsoon
(dashed line) regime MCSs. The horizontal line in the left portion of the plot represents the
approximate O°C isotherm. The corresponding composite CAPE values are indicated at the top of
the plot.
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Both profiles show similar patterns in the middle to upper troposphere, marked by a decrease

of several degrees in buoyancy to 450 mb (6.7 kID), a small increase to 350 mb (8.6 km) and a

general falloff to the top of the profiles. The virtual temperature excess of the monsoon composite

remains several degrees less than the corresponding break period profile in the middle to upper

troposphere. The profiles are consistent with the hypothesis of Lucas et al. (1994) that oceanic

environments have a narrow (i.e., skinny) positive area region on a sounding compared to

continental soundings. Similarly, the composite CAPE value of the break period is nearly double

the corresponding monsoon value (Fig. 5.1). The difference in CAPE between the monsoon and

break contrasts with the results of Keenan and Carbone (1992) who found that the two regimes had

very similar CAPE on average. However, in that study, Keenan and Carbone utilized a much

larger sample (an entire season of data) to compare the potential buoyant energy characteristics of.

the two regimes.

5.2 Partitioned radar reflectivity results

Composite profiles of partitioned volume average reflectivity for the monsoon and break

period MCSs are shown in Fig. 5.2. The monsoon convective and stratiform composites were

generated by averaging individual profiles from 406 radar volumes while the break period

composites were generated from 166 radar volumes. The large difference in the number of

volumes used is due to the fact that there were seven monsoon systems analyzed compared to six

break period systems in this study. Also, the monsoon systems were generally observed for longer

periods over the observational network compared to the break period MCSs.

In the convective region, both the monsoon and break period profiles show relatively high

reflectivities below the melting level with only a small vertical gradient (- -1 dB lan-1). The

123



DarwiD Composite CoDvective Reflectivity

19 \ 19
\

17
\ 17\

\
\
\

1515 \
\
\
\

1313 \
\--. \] \

1111 \- \--a. \
\

9:g 9 \
\

7 7

5

3 3

1 1

0 5 10 15 20 25 30 35 40 45 50

Reflectivity (dBZ)

(a)

DarwiD Composite Stratiform Reflectivity

19 19

17 17

15 15

13 13
--.

! 11 11

i
9

~
9

7 7

5 5

3 3

1 1

0 5 10 15 20 25 30 35 40 45 50

Reflectivity (dBZ)

(b)

Fig. 5.2. Composite radar reflectivity profiles (dBZ) for the convective (a) and stratiform (b)
regions of the break period (solid) and monsoon (dashed line) MeSs. The dashed horizontal lines
indicate the approximate location of the mixed phase (-20° - O°e) region. 166 (406) individual
profiles were used to generate the break (monsoon) composite profile.
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break composite is 3-4 dB higher than the monsoon reflectivity in this region, on average;

however, it is not clear to what extent the difference may reflect the much larger sample of

monsoon radar volumes compared to the break. Meteorologically, the monsoon (maritime)

environment might be expected to produce higher low-level reflectivities compared to the break

(continental) due to the larger and fewer CCN (Cloud Condensation Nuclei) in the maritime

regime and resulting higher rates of collision-coalescence growth. However, the larger low-level

updrafts in the break MCSs (presented in Ch. 4 and also discussed below in Sec. 5.3) are expected

to more than off-set the effect of smaller initial particle sizes, based on numerical simulation

results (Young 1993).

In the mixed phase region (approximately the region with temperatures of 00 to -20°C),

extending from the melting level to - 3 Ian above the 00 C isotherm, the monsoon and break

period convective composites show different gradients with the monsoon reflectivity decreasing

approximately 4 dB lan-I and the break period decreasing at about 3 dB lan-I (Fig. 5.2). The

higher reflectivity gradient in the monsoon convective profile is consistent with previous results

from Rutledge et aI. (1992), Williams et aI. (1992), and Zipser and Lutz (1994) for selected

convective cells in Darwin area convection. In the Zipser and Lutz smdy, the monsoon vertical

reflectivity gradient between 00 and -20°C was approximately double the corresponding break

period reflectivity gradient. The difference is easily explained due to the relatively smaIl number

of convective cells used in the Zipser and Lutz study (i.e., 41-44 individual cells) compared to this

analysis (166-406 radar volumes, each with numerous convective cells used in the compositing) as

well as differences in the partitioning of stratiform and convective features in volumes of radar

data.
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Independent of the actual vertical reflectivity gradients, the monsoon profile indicates a

relatively rapid reflectivity decrease above the melting layer compared to the break period

composite. The results are consistent with previous interpretations for nearly complete glaciation

and a paucity of large particles above the melting level in the majority oceanic convective cells

(Zipser et aI. 1981; Szoke et aI. 1986; Jorgensen and LeMone 1989; Rutledge et aI. 1992;

Williams et aI. 1992; Zipser and Lutz 1994). Moreover, in-siro microphysical observations in

hurricane convective clouds have documented high concentrations of small ice particles and the

near absence of large graupel or supercooled raindrops at temperamres as warm as -2° to -5°C

(Black and Hallett 1986).

These results are not surprising, given the relatively narrow region of virtual temperature

excess documented in the monsoon systems compared to the break period (Fig. 5.1) and the

corresponding weak (on average) vertical air motions sampled by the wind profiler in monsoon

convection (Fig. 4.29) in this smdy. The weak vertical air motions in the lower to middle

troposphere of tropical oceanic convection has been documented previously by LeMone and Zipser

(1980), Jorgensen and LeMone (1989), and Lucas and Zipser (1994) using aircraft penetration

data.

The monsoon and break period stratiform composites (Fig. 5.2) are similar, with maximum

reflectivity occurring in the region below the DOC isotherm and the profiles decreasing above and

below this region. Above the freezing level, the stratiform composite profiles are similar to their

convective counterpans (Fig. 5.2) and are consistent with ice particle growth by deposition and

aggregation occurring just above the melting layer (Leary and Houze 1979b; Rutledge and Houze

1987). Similar results were documented by Szoke et aI. (1986) for GATE MCSs and selected

hurricanes. Direct measurements in tropicaI MeSs from aircraft during MONEX at the 7-8 km
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level indicated ice particle growth by vapor deposition and minimal amounts of liquid water

(Churchill and Houze 1984; Houze and Churchill 1984). These results suggest that ice

predominates above the melting level in both the monsoon and break period stratiform regions.

5.3 Vertical air motion

Composite profiles of vertical air motion for the monsoon and break regimes are shown in

Fig. 5.3. Each profile was constructed by averaging all of the vertical air motion data from each

regime for the convective and stratiform regions. All of the composite profiles exhibit large

variance, with variability on the order of the mean values. The large variability reflects the small

scale variations that were sampled by the profiler in each of the MCSs.

In the convective region, large differences in the updraft profiles occur in the lower

troposphere near the melting level, where the break period composite shows about twice the ascent

compared to the monsoon, and in the upper troposphere where the monsoon composite is much

larger than the corresponding break period profile. The differences in the lower troposphere

reflect the presence of the low level updraft peak evident in the break regime squall lines (Fig.

4.14). The low-level peak was associated with convective elements forming along the leading

edge of the convective line in each case. This low-level upward motion evidently drove a warm

rain coalescence process which was responsible for brief, but yet heavy rain rates (e.g., Fig. 4.8).

In contrast, this low-level vertical motion peak was usually absent in the monsoon systems

sampled by the profiler (Fig. 4.29). The difference is consistent with the composite thermal

buoyancy profiles (Fig. 5.1) which indicate that the break period MCSs had a greater positive

lapse rate and larger magnitude of virtual temperature excess over their environment in the region
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Fig. 5.3. Composite venical air motion and standard deviation profiles (m S·l) for the break (solid
line) and monsoon (dashed line) panitioned into convective region net [(updraft and downdraft); a
and b], convective region updraft (c and d), convective region downdraft (e and t), and stratiform
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128



PRF COMPOSITE: MONSOON(102)-BREAK(S8)

CONVEC'J1VE REGION (DOWNDRAFl' ONLY) CONVECTIVE REGION (DOWNDRAfT ONLY)

7

7

-3 -2.5 -2 -1.5 -1 .0.5 0 0.5 1 1.5 2 2.5 3

Composite Downdraft Motion Std Dev (mls)

(I)

5

3

7

,
11

17 -JuWwiliw1wdwWwk~dlw1uu1uW.r4­

15

13

-3 -2.5 -2 -1.5 -I -0.5 0 0.5 1 1.5 2 2.5 3

Composite Downdraft Motion (mls)

(e)

5

3

13

17 ~lI1uuiI.u.uJwW.~~il.u.uJuul&iwJwiduu~

15

! 11

:= 'g...
=

PRF COMPOSITE: MONSOON(206)-BREAK(118)

STRAnFORM REGION tJ'OTAL) STRAnrORM REGION rroTAL)

17

15

13

I 11

-- ,-.c
OIl

Qj 7::

5

3

1

.0.5 .0.15 0 U5 0.5

17

15

13

11

,
7

5

3

1

.0.5 .0.15 0 0.25 0.5

Composite Vertical Air Motion (mls)

(g)

Composite Vertical Air Motion Std Dev (mls)

(b)

Fig. 5.3. (continuetI).

129



extending from 2 kIn to above the O°C isotherm, compared to the monsoon MCSs. As noted in

Ch.4, the reduced thermal buoyancy suggests that water loading would have a proportionally

greater impact on the total buoyancy of monsoon convective cells. Since total buoyancy is related

to the vertical acceleration of the wind, it is expected that parcels rising in the break period

environment would achieve larger vertical air motions in this region, all other factors being equal.

The differences between the monsoon and break period updraft composites are also consistent

with the radar reflectivity profiles presented in Fig. 5.2 which show smaller convective region

vertical reflectivity gradients in the mixed phase region of the break period MCSs compared to the

monsoon MeSs. The electrification results of Rutledge et al. (1992), Williams et al. (1992), and

Petersen (1992) documented increased electrical activity (Le., substantially greater lightning flash.

rates) in the break period compared to the monsoon. The increase in electrical activity is thought

to be a consequence of a precipitation-based non-indicative charging mechanism, whereby small

ice particles and graupel separate charge in the presence of supercooled liquid water. In order to

facilitate the charge separation, relatively large vertical drafts are necessary to carry supercooled

drops above the melting level into the mixed phase region of the cloud, aiding the onset of the ice

phase via drop freezing, and providing for supercooled cloud droplets via condensation.

In the middle to upper troposphere, the break period composite shows relatively constant

ascent, due to the variability in the vertical structure of trailing deep updraft cores sampled by the

wind profiler. The upper level ascent was associated with deep, mature convective elements

behind the leading edge of each squall line. Precipitation processes in these deep updrafts

evidently were associated with mixed phase processes, based on vertical radar reflectivity profiles.
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The composite monsoon convective updraft profile shows vertical air motion increasing from

the middle troposphere to the vicinity of the tropopause. The large magnitude of upper level

ascent in the monsoon composite is biased by the large drafts sampled in the 910109 and 901210

events; however, as noted in Ch. 4, many of the monsoon MCSs exhibited peak vertical motions

in the upper troposphere (Fig. 4.29). Similar profiles showing large vertical air motion well above

the freezing level have been observed in other tropical MCSs and Will be discussed in Ch. 6.

The differences in the convective region updraft composites in the upper troposphere are not

evident in the thermal buoyancy profiles (Figs. 5.1 and 5.3). As noted in Ch. 4, the results

suggest that the soundings may not have been entirely representative of the environment supporting

the sampled MCS convective activity, the sampling of the upper level peak updraft in the break

regime cases may have been biased by lifecycle effects, and/or that the resulting vertical air

motion structure is not a consequence of thermal buoyancy forcing alone.

In contrast to the coD,vective updraft profiles, the monsoon and break period convective

downdraft composites (Fig. 5.3) are similar with the largest downdrafts occurring near the

tropopause and relatively constant subsidence through the troposphere. As argued by Heymsfield

and Schotz (1985) and others and discussed in Ch. 4, the peak downward motion is consistent with

deep updrafts converging on the tropopause stable region and being forced to ascend through mass

balance constraints. Because of the similarities in the convective downdraft composites, the

differences in the total convective profiles is, to a large extent, determined by the differences in

the updraft profiles (Fig. 5.3).

In Fig. 5.4a and b, the composite vertical air motion results are presented in histogram

[CFAD(Contoured Frequency by Altitude Diagram; Yuter and Houze 1995)] format for the
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Fig. 5.4. Histogram (CFAD) of composite vertical air motion for the convective (a and b) and
stratiform (c and d) regions. These plots show the vertical air motion relative frequency of
occurrence (%) as a function of height. The left (right) column represents the break (monsoon).
Relative frequency of occurrence is contoured at intervals of 1,10,20,30,40, etc. with shading for
values ~ 10%.
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convective region of the break and monsoon MCSs. The contours in these plots represent the

relative frequency of occurrence of the vertical air motion estimates as a function of height. As

Fig. 5Aa and b show, the bulk of the vertical air motion distributions sampled by the profiler in

each regime are similar with most of the estimates centered at small negative values. The major

difference in the monsoon and break convective histograms is the vertical distribution of the

largest updrafts (Le., s; 1%frequency of occurrence). In the monsoon (Fig. 5Ab), updfafts

exceeding 3 m S·l occur only above 8 km whereas these drafts show a distinct low-level, as well as

a middle to upper troposphere peak, in the break regime

The monsoon and break period stratiform composite profiles are similar, with generally weak

motion through the troposphere (Fig. 5.3). The profiles show the characteristic superposition of

low-level downward motion and upper level ascent; however the crossover height is displaced

several kilometers above the melting level. The frequent occurrence of relatively deep downward

motion in the monsoon and break stratiform regions is revealed in the corresponding histogram

plots (Fig. SAc and d). As discussed in Ch. 6, the elevated crossover level is somewhat anomalous

compared to the results from many previous studies. Both profiles also show downward motion

above about 14.5 km. This subsidence in the vicinity of the tropopause has also been documented

in many previous studies of tropical and middle latitude events (Johnson and Young 1983; Balsley

et al. 1988; Carter 1991; Johnson et al. 1990; Gallus and Johnson 1991; Lin and Johnson 1994).

Houze (1989) suggested that the descent may be due to strong divergent outflow from the tops of

MeSs.
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5.4 Partitioned network rain trace results

Summaries of the rainfall statistics for each of the break period and monsoon MCSs are

provided in Tables 5.1 and 5.2, respectively. For the squall line MCSs examined herein, the

contribution of stratiform rain to the total MCS rainfall was small, ranging from 10-26% (18% on

average), indicating that the vast majority of the recorded rainfall was associated with the passage

of convective features over the rain gauges. These results are in agreement with Simpson et al.

(1993) who examined rainfall contributions from MeSs occurring over Melville and Bathurst

Islands (Le., "Hector") using a Z-R relationship in conjunction with a least-bias adjustment from a

network of rain gauges. The results are also similar to Rosenfeld et al. (1995a), who applied

objective criteria to scanning radar data in order to classify convective and stratiform precipitatioQ.

in different rain regimes over rain gauges near Darwin. In both studies, the majority of rainfall

was associated with convective features (92 % for island storms and 87% for continental squall

lines), similar to results presented herein.

Table 5.2 indicates that the relative fraction of stratiform rainfall in the monsoon events is

higher than the break period fraction and ranged from 18-37% (29% on average), in agreement

with the results ofRosenfeld et aI. (1995a) for monsoon convection as well as recent precipitation

estimates for the COARE domain (T. Rickenbach, personal communication); however, the

monsoon stratiform fraction is on the lower end of many previous estimates (30-50%) of tropical

oceanic stratiform precipitation (Houze 1977; Gamache and Houze 1983; Churchill and Houze

1984; Houze and Rappaport 1984; Leary 1984). Much of the difference may be explained by the

fact that these previous studies utilized a single Z-R relation for both the convective and stratiform

components.
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Table 5.1. Rainfall statistics for the six break period events using all available rain gauges from
the Darwin network. The rain traces were sub-divided into convective and stratiform components
using the partitioning algorithm described in Ch.2.

Convective Stratiform Maximum
Rain RaiD Rain

Event # Gauges Convective Stratiform Intensity Intensity Intensity
(yymmdd) Available Rain (%) Rain (%) (em «1"1) - (em «1"1) (mm hr°1t
891205 22 79 21 36.0 6.1 147.6

900118 20 84 16 47.5 19.9 194.4

900122 20 87 13 27.7 5.9 70.8

900128 24 74 26 34.1 6.5 153.6

901121 15 90 10 39.3 4.9 90.0

901215 18 79 21 17.7 6.1 54.0

Average 20 82 18 33.7 8.2 118.4

• Maximum for any reporting gauge during the observation period based on rainfall
accumulation over a 10 minute period

Table 5.2. Rainfall statistics for the seven monsoon events using all available rain gauges from the
Darwin network. The rain traces were sub-divided into convective and stratiform components
using the partitioning algorithm descn'bed in Ch.2.

CODvective Stratiform Maximum
Rain Rain Rain

Event # Gauges Convective Stratiform Intensity Intensity Intensity
(yymmdd) Available RaiD (%) Rain (%) (em «1"1) (em «1"1) (mm hr·1t
900110 24 82 18 24.0 7.2 81.6

900112 26 77 23 17.5 5.5 88.8

901210 21 70 30 20.1 7.6 98.4

901212 22 63 37 22.1 14.1 110.4

910109 19 65 35 25.3 13.6 100.8

910129 18 68 32 15.1 4.9 46.8

910130 17 75 25 22.5 8.5 64.8

Average 21 71 29 20.9 8.8 84.5
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• Maximum for any reporting gauge during the observation period based on rainfall
accumulation over a 10 minute period

Recent work by Short et ale (1993) and Rosenfeld (199Sb), using surface disdrometer and

scanning radar data respectively, have shown that the Z-R relationships for convective and

stratiform rain are quite different, such that a given reflectivity is matched to nearly half the rain

intensity in stratiform rain as compared to convective rainfall. Rosenfeld et ale suggest that the

previous studies of tropical oceanic MCSs may have overestimated the relative contribution of

stratiform rainfall volume by a factor of approximately two; In any case, the important point is

that, although monsoon MCSs occurring near Darwin are characterized by large areas of

stratiform cloud, the vast majority of rainfall in these systems appears to be associated with

convective bands embedded within those stratiform areas.

The maximum recorded rainfall intensity for the break period was quite variable, ranging

from - 50-200 mm hr-1 and about 40% larger than the corresponding monsoon maximum rainfall

intensity on average (Tabl~ 5.1 and 5.2). The results are consistent with the highly convective

nature of the squall lines within the break regime. The difference in monsoon and break period

rainfall intensities is more apparem when comparing the average convective and stratiform rain

intensities for each event (Tables 5.1 and 5.2) and plotting the results (Fig. 5.5). While

acknowledging the small number of samples used in this study (Le., 13 events), Fig. 5.5 would

seem to suggest that the break period and monsoon regimes are distinguishable in terms of rainfall

characteristics (e.g., rainfall intensity), similar to the results of Rosenfeld et ale (1993).

The rain gauge network data were also scrutinized in order to determine if the bi (multi)

modal precipitation peak sampled by the Berrimah gauge in the convective portions of the squall

line (break regime) MeSs was also presem at other locations along the same convective line. The
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Darwin MCS Rain Intensity Statistics
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Fig. 5.5. Average convective rain intensity as a function of average stratiform rain intensity (em
dyl)for each of the MCS events. The rainfall statistic data were derived from the Darwin area
rain gauge network and are summarized in Tables 5.1 and 5.2.
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results indicated that the vast majority of the gauges showed a distinct bi or multi-modal rainfall

peak(s) separated in time by 10-30 minutes (Appendix D). Moreover, in most cases the first peak

(in time) had the largest magnirode of rainfall intensity. The results support the notion that these

MCSs were multicellular and also suggest that warm rain coalescence processes, characteristic of

the first rainfall peak, played a significant role in contributing to the total surface rainfall (and

therefore latent heating) produced by the systems.

5.5 Apparent heat source and moisture sink

Composite profiles of the normalized apparent heat source (Q']) and moisture sink <Q'~

variables for the convective and stratiform components of the monsoon and break period regimes .

are shown in Fig. 5.63
• The composites were generated by averaging the individual profiles from

each event (not shown), based on the application ofEgs. 2.12 and 2.13. As discussed in Ch. 2,

this methodology assumes that the vertical advection terms in the budget equations produce the

dominant forcing (see Eqs. 1.1 and 1.2). Also, the results were normalized according to the

average rainfall characteristics for each regime (Tables 5.1 and 5.2) in order to facilitate

comparison with previous srodies (discussed in Ch.6).

In the convective region, the monsoon and break period profiles are off-set from each other

in the vertical due to the differences in their corresponding vertical air motion profiles (Fig. 5.3).

In the break period regime, the peak diabatic heating occurs in the vicinity of 2-3 km ( -4-4.5°C

dy·l I cm dy-l), reflecting the consistent low-level vertical air motion peak along the leading edge

in the squall line MCSs and emphasizing the important role of the collision coalescence

3 Transition zone Q] and Q2 profiles were not constructed since this storm region category was only
identified in 4 of the squall line MeSs.
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Fig. 5.6. Normalized composite profiles of (a) convective region apparent heat source (Q'1)' (b)
convective region moiswre sink (Q'~, (c) stratiform region apparent heat source (Q'1)' and (d)
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Units are normalized to °C em-I using the rainfall statistics in Tables 5.1 and 5.2.
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Stratiform Region Q1
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precipitation processes. A smaller heating peak is also present in the vicinity of 7 km

corresponding to the occurrence of deeper trailing updrafts in the convective line. The

corresponding break period Q'2 profile shows peak convective drying (-8°C dr-I / em dr-I)

occurring below 2 km. The off-set between the break period convective heating and drying

profiles is a consequence of the approximately linear decrease in dry static energy (s) with

pressure as opposed to the exponential decrease of specific humidity (q). When deep convection is

occurring, vertical eddy transports of s and q produce a separation between the Q'l and Q'2 budget

equations (Luo and Yanai 1984; Johnson 1984).

The monsoon convective 011 profile (Fig. 5.6) indicates peak diabatic heating between 5-7

kIn (-5°C dr-I / em dr-I), several kilometers higher than the corresponding break period profile.

The elevated position is a consequence of the higher peak vertical air motion in the monsoon

composite compared to the break period (Fig. 5.3). Also, there is no off-set between the monsoon

Q'l and Q'2 profiles as was observed in the break period composites. This is due to the fact that

the monsoon convective vertical air motions are small in the lower troposphere where the vertical

gradient of q is large (see Eq. 1.2 and Fig. 5.3). The resulting lack of off-set would seem to

suggest that the monsoon convective vertical air motion composite (Fig. 5.3) sampled by the wind

profiler is not representative of deep convection (Luo and Yanai 1984).

As expected, the stratiform Q'l and Q'2 profiles for the monsoon and break period composites

are in close agreement, reflecting the similar vertical air motion structure in the stratiform region

(Figs. 5.3 and 5.5). The profiles show relatively small cooling (~ 1°C dy-I / em dy-I) in the lower

troposphere, slightly off-setting the convective region heating, and in the vicinity of the

tropopause. Negligible heating occurs in the upper troposphere as a consequence of the weak,

shallow updrafts in the stratiform region. The corresponding stratiform Q'2 profiles show
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moistening below about 8 km with negligible drying in the upper troposphere. The results of Fig.

5.6 indicate that the stratiform portion of these Darwin MeSs plays a relatively minor role, except

possibly at the lowest levels, in the diabatic heating and moistening of the environment.
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Chapter VI

COMPARISON OF DARWIN RESULTS TO OTHER GEOGRAPffiCAL REGIONS

This chapter provides a comparison of the Darwin wind profiler composite results described

in Chapter 5 to previous analyses from other tropical and middle latitude regions. The results are

described in terms of similarities and differences of the MCS vertical air motion and diabatic

heating fields for the convective and stratiform regions. Because of the different observational

teehniques employed in the variety of previous studies, only qualitative comparisons can be made.

6.1 Vertical air motion

6.1.1 Multiple Doppler analyses in COARE

In this section, vertical air motion and radar reflectivity results are presented from a total of 4

COARE MCSs in which multiple Doppler radar data were analyzed. Three of the events were

sampled by the P-3 aircraft (930209, 930221, 930222) and one was sampled by the ship-based

radars (93020~). The P-3 and ship-based analyses on 930209 are hereafter referred to as

930209P and 930209S, respectively. The radar reflectivity and vertical air motion fields were

partitioned into convective and stratiform components based on the methodology described in Ch.

2.

4
The aircraft and sbip-based radars sampled separate MeSs on 930209.
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The COARE multiple Doppler data consists of 15 volumes of ship dual-Doppler analyses on

930209S and 4 volumes ofP-3 quad Doppler data for each of the 930209P, 930221, and 930222

events. Since a relatively large number of radar volumes were collected and processed on

930209S, a time-series of partitioned horizontal divergence, vertical air motion, and radar

reflectivity was constructed in order to show the evolution of this MCS during the approximately

2.5 hours it was sampled by both ship radars operating in dual-Doppler mode. The time height

cross sections are shown in Fig. 6.1.

The 930209S MCS formed southwest of the MIT radar from a series of small, linear

convective bands (Cifelli et a1. 1994a). The bands later consolidated into a single line of

convection oriented roughly parallel to the low-level shear. The system continued to grow in the

along-line direction during the observation period, reaching over 400 kIn in length by 12 UTC. A

trailing precipitation region was noted to develop in the latter stages of the dual-Doppler sampling

period. In Fig. 6.1, the convective portion of the 930209S MCS shows two pulses of activity,

with the first occurring near 1000 UTC and the second near 1130 UTC. Moreover, the peak

vertical air motions and upper level divergence shift from near 10 kIn in the first pulse to near 13

Ian in the second pulse (Fig. 6.1a and b). Throughout the observation period, the convective

region reflectivity profile showed the largest reflectivities restricted to the lower troposphere with

a sharp gradient near the oDe isotherm (Fig. 6.1c). The relatively weak vertical air motions and

reflectivity structure are consistent with previous investigations of tropical oceanic convection (as

discussed in Ch. 5) and with visual observations indicating a lack of lightning in this MCS

(petersen et a1. 1995). The divergence and vertical air motion patterns in Fig. 6.1a, b indicate that

a persistent mesoscale updraft-downdraft couplet in the stratiform region did not develop until late

in the observation period.
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COARE 930209S Partitioned Horizontal Convergence
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Fig. 6.1. Time-height cross section ofpanitioned horizontal divergence in S·I x 10-3 (a and b),
vertical air motion in m S-I(C and d), and radar reflectivity in dBZ (e and f) for the 9302095 MCS.
Dark (light) shading represents convergence (divergence) and upward (downward) motion. Gray
shading in (c) corresponds to reflectivity scale in the middle of the plot. Plots (a), (c), and (e) are
convective cross sections and (b), (d), and (f) are stratiform cross sections. The dashed horizontal
line in each plot indicates the approximate height of the O°C isotherm.
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COARE 9302098 Partitioned Vertical Air Motion
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Fig. 6.1. (continued).
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COARE 930209S Partitioned ReOectivity
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Composite vertical air motion results for each of the four COARE events analyzed with

multiple Doppler techniques are shown in Fig. 6.2. For 930209S, the convective updrafts are

rather weak with positive acceleration restricted to the lowest 4 km. The remaining 3 MCSs

sampled by the aircraft were apparently more intense with convective updrafts attaining maximum

values above 11 km, similar to many of the Darwin monsoon MCSs (Fig. 4.29), and exhibiting

higher on average convective reflectivity profiles (Fig. 6.3) than 930209S. However, dii-ect

comparison of the ship and aircraft multiple Doppler results are complicated by the fact that the

aircraft radar volumes were analyzed using the quad Doppler technique while the ship data

employed the dual-Doppler method. As discussed in Sec. 2.2.2.2 and Appendix C, the quad

Doppler technique should produce a more reliable estimate of the vertical wind since W;. is

measured directly at the top of the analysis domain.

The convective downdraft profiles in Fig. 6.2 show relatively good agreement among the

four events with subsidence generally maximized near the top of the profiles. The pattern is

consistent with dynamic induced convergence near the tropopause. Similar to the Darwin, the

differences in the COARE total convective region composites is principally due to the variability in

updraft structure. The stratiform region composite shows quite a bit of variability among the four

events in the depth and magnitude of upper level ascent.

Composite profiles of vertical air motion and radar reflectivity for all of the COARE multiple

Doppler analyses are shown, along with similar composite profiles from Darwin, in Figs. 6.4 and

6.5, respectively. Although detailed comparisons are hampered by the small number of COARE

samples relative to Darwin (27 COARE vs. 58 Darwin break and 102 Darwin monsoon in the

convective region and 27 COARE vS.118 Darwin break and 206 Darwin monsoon in the

stratiform region), it appears that the COARE profile composites seem to have characteristics

148



Convective Region: Net

17
16

14

12-] 10-i 8

~ 6

4

2

o~1""I"'I'~1""I"'I'~I""I"'I'+roI""l"'l'~I""I"'T"'I"T"r-rt­

·3.5 .2.5 ·1.5 -0.5 0.5 1.5 2.5 3.5

Vertical Air Velocity (mls)

(8)

Convective Region: Downdraft

Convective Region: Updraft

14

12

10

8

6

4

2

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

Vertical Air Velocity (mls)

(b)

Stratiform Region: Net

17
16

14

12-] 10-- 8
~
.~

6:r:
4

2

0

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

Vertical Air Velocity (mls)

(c:)

17 .....u.r.........L.LI..u..u.L.f-\..u..L..L.JU-L.J..L.1..L.I1.f­
16

14

12

10

8

6

4

2

o-+'l"T'T~rTT~rTT+r-rrr"TT"rT"I"TT"T'T"f­

·3.5 -2.5 -1.5 -0.5 0.5 1.S 2.5 3.5

Vertical Air Velocity (mls)

(d)

Fig. 6.2. Composite profiles of partitioned vertical air motion (m S·l) for the four COARE MCSs
analyzed with multiple radar data. Legend with line type corresponding to each MCS shown in
the left comer of each plot. (a) Net (up and down drafts) convective region profiles, (b)
convective updrafts, (c) convective downdrafts, and (d) net stratiform profiles.
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COARE Composite Convective ReOec:tivity
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Fig. 6.3. Composite radar reflectivity profiles (dBZ) for the convective (a) and stratiform (b)
regions of the four COARE MCS analyzed with multiple Doppler data. Legend with line type
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constructed by averaging all of the partitioned radar volumes data for each MCS.
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Composite Convective Reflectivity
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similar to those observed in the monsoon at Darwin. For convective updrafts (Fig 6.4b), the

COARE profile shows positive acceleration extending through most of the troposphere. Similar to

the Darwin monsoon composite, the magnitude of the COARE vertical air motion profile is less

than the Darwin break composite in the lowest few kilometers but is larger than the Darwin break

in the upper tropospheres. The smaller vertical drafts in the lower troposphere of the COARE and

Darwin monsoon composites are consistent with previous studies, indicating fundamental

differences in the updraft structures and electrification processes of oceanic (Le., COARE and

Darwin monsoon) versus continental (i.e., Darwin break) MCSs (e.g., Orville and Henderson

1986; Jorgensen et aI. 1989; Rutledge et aI. 1992; Williams et aI. 1992), as discussed in Ch. 5.

The convective downdraft composites (Fig. 6.4c) show qualitatively good agreement between

COARE, the Darwin monsoon, and the Darwin break profiles with the largest vertical air

velocities occurring near the tropopause. In the stratiform region, the pattern of all the profiles

are similar, with low-level descent and upper level ascent, except near the tropopause. However,

the COARE profile indicates much larger stratiform vertical air velocities compared to the Darwin

results. This difference in magnitude is likely a consequence of the fact that each of the Darwin

composites include -100-200 samples while the COARE profile includes only 27 as well as the

differences in analysis techniques used in these studies.

The COARE and Darwin radar reflectivity composites are shown in Fig. 6.5. Similar to the

vertical air motion results, the large differences in sample size among the profiles in Fig. 6.5 must

be considered when comparing the reflectivity structure. The low-level COARE convective

s The smaller magnitude of the COARE multiple Doppler composite compared to the Darwin break
profile in the lower troposphere may be partially due to the forced constraint employed at the lower
boundary in the multiple Doppler analyses (see Appendix C).
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reflectivity profile brackets the Darwin monsoon and break profiles, showing relatively intense

low-level structure with a small vertical gradient below the melting level. Above the melting

level, the COARE convective reflectivity profile appears "monsoon-like", with a relatively steep

reflectivity gradient through the mixed phase region (-4 dB kIn-t). The increase in the COARE

reflectivity profile above 15 Ian is due to the paucity of ship data above this point and the

subsequent bias by the relatively intense 930209P MCS. Consistent with previous studies of

tropical MCS radar reflectivity profiles (e.g., Szoke et al. 1986), the convective and stratiform

COARE and Darwin reflectivity profiles are virtually indistinguishable in the upper troposphere.

6.1.2 Single-Doppler analyses from COARE

Single-Doppler retrievals were performed on two MCSs during COARE (930210 and

930223) using the MIT ship-based radar data. In each case, radar volume scans tailored for

retrieval analyses were collected at 10 minute intervals for several hours as the MCS passed over

the ship allowing detailed $Ie-height cross sections of the kinematic fields to be constructed.

Figures 6.6 and 6.7 show cross sections of retrieved fields for the 930210 and 930223 MCSs,

respectively, using the EVAD and CEVAD analysis teChniques (see Appendix B for a discussion

of these methods). In both cases, the retrieved fields using the CEVAD and BVAD techniques are

virtually identical. The only significant difference occurs in the vertical air velocity cross sections,

where CEVAD generally diagnoses larger magnitudes of vertical air motion in the upper

troposphere and also commonly shows subsidence in this region. The reason for the discrepancy

is not obvious, especially when noting that the patterns of EVAD and CEVAD horizontal

divergence are almost indistinguishable; however, the difference is probably due to the different

boundary constraint as well as the solution methodology employed in the CEVAD technique

compared to BVAD (see Appendix B).
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Fig. 6.6. Time-height cross section of (a) vertical air motion (m S·l), (b) horizontal divergence
(S·l), (c) reflectivity (dBZ), and (d) particle fall speed (m 8"1) for the 930210 COARE MCS using
the EVAD (left column) and CEVAD (right column) single-Doppler retrieval techniques. Dark
(light) shading represents upward (downward) motion in (a), convergence (divergence) in (b) and
panicle fall speeds greater (less) than 3 m S·l in (d). Gray shading in (c) corresponds to
reflectivity scale in the top portion of the plot.
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In the 930210 MCS (Fig. 6.6), the retrievals reveal the transition from convective to

stratiform conditions as the MCS passed over the observational network. Early on, the retrievals

indicated low-level convergence with corresponding deep upward motion and relatively intense

low-level reflectivities followed by the development of a mid-level peak convergence pattern,

sandwiched between upper and lower level divergence. This latter signal is consistent with the

development of stratiform conditions. The occurrence of a radar bright band is rather ambiguous

in this case but is weakly indicated near 0440 UTC (Fig. 6.6). The particle fall speed cross

sections also indicate large hydrometeor vertical motions at this time, consistent with the melting

oflarge aggregates. The evolution of the 930223 MCS (Fig. 6.7) is similar to 930210, although

the transition from convective to stratiform conditions is not as pronounced, and 930223 shows a

more clearly defined bright band compared to 930210.

Figure 6.8 shows a comparison of the partitioned multiple Doppler (930209S, 930209P,

930221,930222: 4 events and 27 volumes of data) and single-Doppler (930210 and 930223: 2

events and 28 volumes of data) stratiform vertical air motions and horizontal divergence patterns

for COARE6
• Although the vertical air motion patterns in the single and multiple Doppler analysis

are similar with upper level ascent and lower level descent, the multiple Doppler composite

apparently sampled deeper, more intense systems as suggested by the offset to higher levels as

well as the larger magnitude of the multiple Doppler draft composite. The difference may also

reflect the fact that the multiple Doppler composite, which was derived from the partitioning of

radar reflectivity in each volume, can include.a wider range of features in the analysis (e.g.,

decaying convection or convection in the formative initial stages, as well as typical bright band

features) compared to the single-Doppler retrievals.

6 Horizontal divergence information was not available for all oftbe P-3 quad Doppler volumes and a
multiple Doppler composite was therefore not constJUcted.
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Fig. 6.8. Composite horizontal divergence (a) in S·l x 10-3 and vertical air motion (b) in m S·l for
the COARE 930210 and 930223 MCSs using the EVAD and CEVAD analysis retrievals_ Legend
in the lower right portion of each plot indicates the profile associated with each retrieval. In (b),
the partitioned stratiform profile (MDOP) from Fig. 6.4 has been added for comparison. The ODC
isotherm is indicated in the left portion of the plot.
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6.1.3 Comparison with other geographical regions

In this section, the partitioned Darwin wind profiler and COARE multiple Doppler

composites are compared to similar results from different geographic locations. The comparison

is limited to radar and wind profiler sOldies in order to minimize differences due to analysis

techniques. It should be noted that various methods are used to partition MCS substructures in

these sOldies and that the results represent a wide range of sample sizes and spatial and temporal

averaging.

Composite vertical air motion profiles from convective region MCSs, including the Darwin

and COARE results from this sOldy, are shown in Fig. 6.9. This figure includes profiles derived

from a West African tropical continental MCS using dual-Doppler radar analysis (Chong et al.

1983), a composite of tropical western Pacific island MCSs using wind profiler data (Balsley et al.

1988), and a middle latiOlde MCS using dual-Doppler radar analysis (Biggerstaff and Houze

1993).

All of the profiles in Fig. 6.9 show upward motion extending through the depth of the

troposphere. However, the location of peak ascent ranges from the lower (Darwin break) to the

upper troposphere (Darwin Monsoon, COARE, and tropical West Pacific island composites). The

vertical air motion profiles from both the tropical West Africa and middle latiOlde MCSs show an

upward motion peak in the middle troposphere with magniOldes on the order of 1-2 m S-l. The

peak ascent in these profiles is roughly sandwiched between the peak ascent in the Darwin break

composite (4 kIn) and the Darwin monsoon, COARE, and West Pacific island composites (12-13

kIn).
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Fig. 6.9. Comparison of convective region vertical motion profiles (m S·l). Symbols in legend
refer to the following: DWN-BRK for the Darwin break composite; and DWN-MON for the
Darwin monsoon composite; CH83 for Chong et al. (1983) [adapted from Houze 1989]; B88 for
Balsley et al. (1988); BH93 for Biggerstaff and Houze (1993); and COARE for the COARE
composite. Note that widely different sample sizes and temporal and spatial averaging go into the
various curves of this figure.
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The Darwin monsoon, COARE and Pohnpei Island profiles all show positive acceleration

extending from low-levels into the upper troposphere. It is not possible to compare the low-level

struCtt1I'e due to the restriction of sampling at Pohnpei Island above 3 lan. The Darwin break,

COARE, and West Pacific composites show a subsidence region in the vicinity of the tropopause

(17 km); however, the base of the subsidence region in the Darwin break occurred about 2 lan

(1.5 km) below the corresponding base in the Pohnpei (COARE) profile (Fig. 6.9). The Darwin

monsoon composite shows weak positive motion in this region.

In Fig. 6.10, the Darwin break transition zone composite is compared with similar results

from middle latitude MCSs using dual-Doppler radar (Smull and Houze 1987a; Biggerstaff and

Houze, 1993) and a West African tropical continental squall line using dual-Doppler radar (Chalon

et al. 1988). The results all show subsidence below the melting level; however, one of the middle

latitude profiles (Smull and Houze 1987a) shows ascending motion in the middle to upper

troposphere while the others, including the Darwin break composite, indicate descending motion

throughout this region. The reason for the discrepancy between the profiles above the melting

level is not readily apparent but, as mentioned in the beginning of this section, may be related to

the subjectivity involved in the techniques used to partition the MCSs into discrete substructures.

In Fig. 6.11, the COARE and Darwin monsoon and break stratiform composites are

compared to similar profiles from the western Pacific (pohnpei Island) using composited wind

profiler data (Balsley et al. 1988), a West African tropical continental MCS using the single­

Doppler radar (VAD) retrieval (Chong et al. 1987), and a middle latitude MCS using the single­

Doppler radar (BVAD) retrieval technique (Rutledge et al. 1988). The profiles all indicate

descent in the lower troposphere and ascent in the upper troposphere, with magnitudes ranging up

to 0.5 m S·l. The magnitude of the mesoscale downdraft is by far strongest in the middle latitude
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Fig. 6.10. Comparison of transition region vertical motion profiles (m S·l). Symbols in legend
refer to the following: DWN-BRK for the Darwin break composite; BH93 for Biggerstaff and
Houze (1993); CH88 for Chalon et al. (1988); and SH87 for Smull and Houze (1987). Note that
widely different sample sizes and temporal and spatial averaging go into the various curves of this
figure.
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refer to the following: DWN-BRK for the Darwin break composite; DWN-MON for the Darwin
monsoon composite; COARE for the COARE composite; B88 for Balsley et al. (1988); CH87 for
Chong et al. (1987); and R88 for Rutledge et al. (1988). Note that widely different sample sizes
and temporal and spatial averaging go into the various curves of this figure.
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case. The tropical West African profile also shows relatively strong low-level subsidence. Both

the middle latiwde and West African MCSs were land-based and the larger downdrafts in these

cases may be a result of enhanced evaporative cooling.

The major difference between the Darwin stratiform composites and the other profiles in Fig.

6.11 is that the mean crossover to upper level ascent is displaced upward several kilometers from

the melting level at Darwin. Also, the Darwin profiles have the weakest upper level ascent

compared to the other studies. While acknowledging the large variability in the wind profiler

vertical air estimates and the fact that the crossover level in the Darwin composites may be

affected by the potential bias due to spectra merging (Ch. 2), these results are nevertheless

consistent with the rain gauge network results discussed in Ch. 5 which indicated that only a small

fraction « 30% on average) of the rainfall in the Darwin monsoon and break MCSs were

associated with stratiform feawres. The elevated crossover location would effectively reduce the

region where hydrometeors could grow by vapor deposition, while at the same time increasing the

depth over which hydrometeors would either sublimate or evaporate. Both processes would act to

reduce the amount of stratiform precipitation reaching the surface.

There are at least two possible explanations for the displacement of the crossover in the

Darwin stratiform region composite to higher elevations above the ODC isotherm; however, as

discussed below, neither of these mechanisms are entirely consistent with the observational data.

One possibility is that the environmental shear profile was conducive to the development of a deep

region of storm relative rear inflow with a corresponding elevated crossover to storm relative front

to rear flow. However, the sounding data shown in Figs. 4.1 and 4.15 are not consistent with this

hypothesis in many cases. Also, cursory examination of radar cross sections perpendicular to the
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orientation of the convective line in the squall line MeSs revealed that the depth of rear inflow was

generally restricted to the lower troposphere.

Another hypothesis is that, for the squall line cases, the wind profiler preferentially sampled

the rearward portion of the stratiform region (with respect to the convective line) where the storm

relative front to rear flow was most elevated with respect to the ODC isotherm (as in the conceptual

model of Houze et al. 1989). This simation could have occurred if the MCS propagation speed

decreased after passing over the profiler. Although somewhat consistent with the pattern observed

in the 900128 and 901215 MCSs (Figs. 4.11 and 4.13), there is no evidence for the height of the

crossover level increasing with distance (time) in the other squall line cases. Moreover, neither of

these mechanisms explain the elevated crossover in the non-squall systems which occurred during

the active monsoon. Clearly, more research is needed to explain the storm relative flow patterns

in these Darwin systems.

In the upper troposphere (above 14 kIn), the Darwin wind profiler composites, as well as the

wind profiler composite from Pohnpei Island, show subsidence in the stratiform region extending

upward to the vicinity of the tropopause (Fig. 6.11). A similar subsidence layer has also been

diagnosed for a middle latitude MCS by Johnson et al. (1990). In their study, Johnson et at.

argued that the subsidence was due primarily to downward sloping isentropes to the rear of the

convective line and was independent of radiative effects. Although the Darwin profiles show near

tropopause subsidence in the mean, it should be noted that the vertical air motion retrieved from

the profiler was at times upward (see time-height cross sections in Ch. 4). The oscillatory nature

of the vertical drafts suggests that the motion may have been associated with gravity waves forced

by deep convection.
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6.2 Diabatic heating

In this section, the Darwin partitioned Q'] composites discussed in Ch. 5 are compared to

similar results from other geographical regions. A corresponding comparison is not made for Q'2

since similar arguments can be made for the differences among the profiles and because the

partitioned profiles for apparent moisture sink in the literature are somewhat limited compared to

the apparent heat source profiles. In Fig. 6.12, vertical profiles of the convective region apparent

heat source (Q']) are shown for a rawinsonde budget study using data from both the Marshall

Islands as well as the South China Sea in the tropical western Pacific where the convective region

profile was calculated as a residual (Johnson 1984), a rawinsonde and radar budget study from the

tropical West Pacific COARE domain where the convective region profile was calculated as a

residual (Carey et al. 1994), a West African continental tropical squall line (COPT 81) using dual­

Doppler data and a thermodynamic retrieval (Chong and Hauser 1990), an eastern Atlantic

tropical oceanic squall line (GATE) using rawinsonde and aircraft data (Gamache and Houze

1985), an idealized cloud cluster with an assumed vertical air motion profile (Houze 1982), a

composite of tropical western Pacific island MCSs using wind profiler data (BaIsley et al. 1988),

and a middle latitude MCS using dual-Doppler radar analysis (Smull and Houze 1987a).

The convective Q'] profiles for the GATE, western Pacific Island, and middle latitude MCSs

were all calculated using the corresponding vertical air motion profiles as input to a one­

dimensional entraining jet model (Houze 1989). Note that neither the Houze (1982), Johnson

(1984), or Carey et al. (1994) heating profiles are based on actual observations of convective

region vertical air motions. Differences in the vertical position of the primary Q'] peak in these

studies have been attributed to the inclusion of shallow convective clouds in the Johnson (1984) and
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Carey et al. (1994) heat budget analyses while only the effects of deep convective clouds were

considered in the Houze (1982) study.

Almost all of the convective region Q'J profiles in Fig. 6.12 show positive heating throughout

the depth of the troposphere; however, consistent with the variability in the vertical air motion

profiles (Fig. 6.9), the peak diabatic heating ranges over a considerable depth (i.e., 3-6 kIn in

elevation). The Darwin break regime convective profile (Fig. 6.12) is similar in shape and

magnitude to several of the other tropical and middle latitude convective profiles including GATE

(Gamache and Houze 1985), the Marshall Islands-South China Sea (Johnson 1984), COPT 81

(Chong and Hauser 1990), and the middle latitude study (Smull and Houze 1987a7
). All of these

profiles show peak heating centered in the lower troposphere (3-4 Jan). These results suggest that

shallow convective clouds, with peak vertical air motion and collision coalescence precipitation

production in the lower troposphere, can make a significant contribution to the convective region

heat budget profile.

The Darwin monsoon composite, on the other hand, appears quite similar in shape and

magnitude (especially above 4 kIn) to the idealized profile of Houze (1982) as well as the tropical

West Pacific Island composite using data from Balsley et al. (1988) and Houze's one-dimensional

cumulus model. The profiles reflect the shift of peak vertical air motion to greater heights in the

convective region and indicate the importance of ice phase processes in determining the structure

of diabatic heating in these MeSs.

7 2-D cloud model results for a different middle latitude squall line MCS also showed peak diabatic
heating in the convective region centered just below 4 kIn (fao et al. 1993).
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A comparison of the Darwin monsoon and break composite stratiform Q'] profiles with

similar results from other geographic regions is shown in Fig. 6.13. The profiles in Fig. 6.13

include a rawinsonde analysis of a mesoscale anvil during Winter MONEX in the South China Sea

(Johnson 1984), radar and microphysical retrieval data for a West African squall line (Chong and

Hauser 1990), an idealized model of the stratiform portion of a tropical cloud cluster with an

assumed vertical air motion profile (Houze 1982), and the same idealized model using the

stratiform vertical air motion profile from Houze and Rappaport (1984) for a GATE eastern

Atlantic tropical squall line (Houze 1989).

All of the profiles in Fig. 6.13 indicate cooling in the lower troposphere on the order of 1­

3°C dy-l I em dy·l (at least partially off-setting the low-level convective region heating) and heating

in the upper troposphere which supplements the convective heating in this region (Fig. 6.12). The

major difference between the Darwin composites and the other profiles is that positive heating in

the stratiform portion of the Darwin MCSs appears to be substantially smaller and restricted to a

shallower layer. To the extent that the vertical advection term in the Q'] budget (Le., Eq. 1.1)

adequately represents the apparent heat source term, the results in Figs. 6.12 and 6.13 show that

the stratiform region of both the Darwin monsoon and break MCSs plays a relatively minor role in

the diabatic heat production compared to MCS stratiform regions from other geographical regions.
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Chapter VII

SUMMARY AND CONCLUSIONS

VHF wind profiler data were used to determine the vertical draft strucnrre within 13 tropical

Mesoscale Convective Systems (MCSs) near Darwin, Australia during the wet seasons of 1989­

1990 and 1990-1991. Approximately 500 averaged spectra from the wind profiler, representing

83 hours of coverage, were examined using a combination of an objective algorithm and manual

editing in order to retrieve the vertical air motions from the MCSs. Single-Doppler radar and

surface rainfall data were also utilized in order to correlate the reflectivity and surface rainfall

patterns with the struen.tre of the vertical air motion sensed by the wind profiler during the passage

of each system. Because of Darwin's unique location at the southern tip of the Maritime

Continent, the wind profiler was able to observe vertical drafts in both the monsoon (maritime)

and monsoon break: (continental) convective regimes.

The break regime MCSs (6 total) were all squall lines, characterized by a leading line of

convection with intense precipitation and sharp horizontal reflectivity gradients (radar echo tops

ranging from 15 to > 20 kIn) and a trailing stratiform region with relatively small horizontal

reflectivity gradients, light rainfall, and a characteristic radar bright band, similar to many

previous swdies of tropical and middle latitude squall systems. A reflectivity trough (transition

zone) with very light precipitation was also observed between the convective line and trailing

stratiform region in most cases. Most of the break: MCSs formed over higher terrain east of
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Darwin (Oenpelli escarpment) during the late morning to early afternoon hours and propagated

toward the coast roughly perpendicular to the low level shear vector, reaching Darwin during the

evening hours. AIl of the break MCSs studied were in their ma.ttlre to dissipating stages when they

were sampled by the wind profiler.

In contrast, the monsoon systems (7 total) were characterized as relatively unorganized

regions of areally extensive stratiform cloud with embedded convective bands which moved on­

shore in the west to northwesterly monsoon flow. There was a tendency for the bands to be

oriented approximately parallel to the 850 mb wind; however, several of the monsoon events were

observed with more than one band orientation. Radar cross sections and the rain gauge network

indicated that the intensity of the monsoon MCSs generally decreased as the precipitation regions

moved onshore. The largest reflectivities in these systems were observed below the O°C isotherm,

similar to previous swdies of oceanic convection.

The wind profiler, scanning radar, and rain gauge network data were partitioned into

convective and stratiform components using an objective algorithm and composited for each

regime (monsoon and break). Results from the rain gauge network indicated that the vast majority

of the total rainfall was associated with the convective portion of the monsoon and break MCSs (71

and 82% on average, respectively). These results are consistent with other studies of Darwin area

precipitation but are on the high end of many previous studies of MCS precipitation patterns in

other tropical locations.

The break regime MCSs were all characterized by relatively shallow convective cells along

the leading edge of the squall line with an updraft peak near 4 lan, trailed by deeper updrafts in the

middle to upper troposphere. The height of the updraft peak associated with these deeper
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convective clouds was quite variable, ranging from -8.5-15 kIn, probably as a consequence of

lifecycle effects as each system crossed over the profiler as well as the small spatial scale of

convective features sampled by the profiler in each case. Thus, in a composite sense, the break

MeSs showed a pronounced updraft peak in the lower troposphere, with secondary peaks at upper

levels. A significant fraction of the convective rainfall was associated with the low-level updraft

indicating that warm rain collision-coalescence processes were often as important to precipitation

production as mixed phase processes involving both ice and supercooled liquid water (associated

with the upper level peak updraft).

In the monsoon regime, the convective region vertical air motions were typically less than the

break squall lines in the lower troposphere but larger in the upper troposphere. The low-level

differences are consistent with the smaller virtual temperature excess observed in the monsoon

soundings compared to the break soundings. All other factors being equal, the reduced virtual

temperature excess available to air parcels rising in monsoon convective cells allows water loading

resulting from precipitation production to playa proportionally larger role in reducing the total

buoyancy forcing of upward momenmm compared to break period convective cells.

In a composite sense, the monsoon convective region vertical air motion pattern showed

positive acceleration extending from low-levels into the upper troposphere. The pattern is

consistent with buoyancy recovery of air parcels after unloading significant amounts of liquid

precipitation below the DOC isotherm; however, the correlation between the virtual temperanrre

excess (Le., thermal buoyancy) and the vertical draft structure in the upper troposphere was not

always clear, suggesting that the soundings were not entirely representative of the monsoon

environment and/or additional forcing mechanisms are required to explain the upper level vertical

air motion pattern.
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The convective downdraft profiles within both the monsoon and break MCSs were similar,

with the largest subsidence occurring in the vicinity of the tropopause and relatively constant

downward motion below. Thus, the majority of the variability in the net monsoon and break

convective profiles was a consequence of the differences in the updraft struewre. The stratiform

profiles of the monsoon and break were also similar with a small region of upward motion

generally restricted to the upper troposphere. Although the structure is consistent with the

observed small contribution of stratiform rain to the total MCS rainfall, the pattern is dissimilar to

other studies of stratiform vertical air motions which indicate a deeper mesoscale updraft region

with a crossover at or near the aoc level. Several mechanisms were proposed in order to explain

the apparent anomalous structure in the Darwin composites; however, neither mechanism was

entirely consistent with the observations.

A relatively large number of radar volumes (572) were partitioned into convective and

stratiform components in order to examine the radar reflectivity structure of the Darwin MCSs.

In a composite sense, the convective regions of both the monsoon and break systems were

characterized by relatively large reflectivities in the lower troposphere with only a small vertical

gradient below the aoc isotherm. The major difference in the profiles occurred in the mixed

phase region where the monsoon convective composite had a larger vertical gradient compared to

the break. The results are consistent with the larger, on average, vertical drafts observed by the

wind profiler in the break MCSs compared to the monsoon as well as previously documented

electrification differences between MCSs occurring in the continental and maritime regimes.

A relatively small number of multiple Doppler volumes (27) from four MCSs in COARE

were partitioned and composited in order to compare the vertical air motion and radar reflectivity

structure to the Darwin systems. Although the comparison was hampered by the small amount of
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COARE vertical air motion and radar reflectivity data relative to Darwin, the results showed that

the COARE convective vertical air motion profile was, on average, similar to the Darwin

monsoon composite with relatively weak drafts in the lower troposphere and positive acceleration

extending into the upper troposphere. The COARE convective reflectivity structure was also

similar to the Darwin monsoon with a characteristic large reflectivity gradient in the mixed phase

region.

Based on the Darwin composite vertical air motion results, profiles of apparent heat source

(Ql) and moisture sink (Q~ variables were constructed for the break and monsoon regimes and

normalized based on the fraction of convective and stratiform rainfall. Consistent with the vertical

air motion patterns, diabatic heating and moistening profiles in the convective region showed that

the break MCSs were characterized by lower level heating and drying peaks compared to the

monsoon. To the extent that the normalized Ql and Q2 budgets can be accurately determined by

the vertical advection of dry static energy and specific humidity, respectively, the profiles

emphasize the important role of shallow cumulus, with inherent liquid phase precipitation

production, to the break MCS diabatic heating structure. In contrast, the higher level of peak

vertical air motion in the monsoon produced corresponding elevated heating and drying profiles

(relative to the break), suggesting a significant contribution from ice processes in these systems.

Moreover, the magnitude of the normalized stratiform Ql and Q2 profiles was relatively small so

that the total diabatic heating and moistening (excluding radiative effects) was dominated by the

convective region profile. The results have important implications for cumulus parameterizations

in numerical models since previous studies have shown that the large scale circulation is sensitive

to the vertical profile of diabatic heating in tropical MeSs.
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Appendix A

COMPARISON OF VHF WIND PROFILER AND MICROWAVE RADAR:

SCATIERING MECHANISMS AND SAMPLING GEOMETRY

Ai Review of scattering from clear air and precipitation

In general, the echoing mechanism for the wind profiler and scanning radar depends 0 I the

wavelength of the observing system. The reflectivity associated with clear air wrbulence sc ltter

(i.e., Bragg scatter) has a weak dependence on wavelength compared to Rayleigh scattering from

precipitation targets as shown below in (AI).

Ala)
Alb)

In AI, fla is the reflectivity associated with clear air, 11, is the reflectivity associated with

precipitation, i.. is wavelength, C,,2 is the refractive index strucmre parameter, IKI 2 is the di :leetric

constant for water, and Ze is the effective radar reflectivity factor. (AI) shows that Rayleig 1

scattering is enhanced at shorter wavelengths compared to Bragg scattering.

Echoing from clear air arises from irregularities in the radio refractive index associatt d with

small scale turbulence of a scale size equal to half the wavelength of the radar (Gage 1990) Thus,

a 50 MHz VHF radar is most sensitive to 3 m size irregularities. In the troposphere, gradi mts in
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the refractive index are dominated by water vapor and atmospheric pressure as well as

temperature changes. Gossard et al. (1984) has shown that in order to observe atmospheric

nrrbulence, the clear air sensing radar must have a half wavelength greater than - 4.2 10 , where 10

is the inner scale of turbulence. 10 is proportional to the Kolmogorov microscale 110 = (v3/e)1/4

where v is the kinematic viscosity and e is the eddy dissipation rate. Since v increases with

height, longer wavelength radars are needed to observed turbulence in the middle atmosphere

(Balsley and Gage 1980).

The wavelength dependence of scattering is commonly combined into an expression which

shows the amount of Rayleigh scattering (expressed as the radar reflectivity factor Z in mm6 m·3)

that would produce the same amount of backscattered power as a specified variability in the clear

air refractive index (C1l
2 in m'W ) as

(A2)

where dBZ = 10 log1oZ is the reflectivity (Gossard 1988; Rogers et al. 1993; Ralph 1995). Figure

AI, taken from Ralph (1995,) shows a plot of Cn2 versus dBZ and identifies typical ranges of radar

reflectivity factor Z for which Rayleigh scattering will likely dominate clear air echo returns for

different wavelength radars. For Cn
2 values of 10'15_10'13 (representative of moderate to severe

nrrbulence in thunderstorms; Chilson et al. 1993), a VHF profiler will have a contribution from

both Bragg (clear air) and Rayleigh (precipitation) scattering for reflectivity values ranging from

3D-50 (typical of heavy rainfall in a thunderstorm). In contrast, a 5-em radar is sensitive to

Rayleigh scattering from cloud and precipitation targets only for all dBZ values above - -28. It is

this property of wavelength dependence in scattering that makes VHF profilers an appropriate

frequency to retrieve vertical air motions in the presence of precipitation.
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Fig. Ai. Diagram for Rayleigh scattering from precipitation targets (expressed in dBZ) vel SUS

Bragg scattering from clear air (expressed as log10CIIZ) for weather and clear air radars. Lines for
clear air (heavy bold) and weather (bold) radars show the amount of Rayleigh scattering that is
equivalent to a given amount of Bragg scattering for each radar frequency (wavelength), ba:ied on
Eq. (A2). The shaded region represents the transition from conditions for which Bragg scaaering
usually dominates (i.e., weak Rayleigh scattering) to those for which Rayleigh scattering wi II
almost always dominate under normal atmospheric conditions observed outside the convecti .,e
boundary layer and mantle echoes. Z-R relationships for stratiform rain and snow are alsoihown
(from Ralph 1995).
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A2 Sampling geometry of scanning radar and wind prorller platforms

In order to place wind profiler and scanning Doppler radar retrieval results in proper context,

it is necessary to examine the sampling dimensions of each instrument. For a vertically pointing

wind profiler in a region of relatively small vertical wind shear, the volume of atmosphere

sampled by the profiler beam is conical with horizontal dimensions proportional to the profiIer

beamwidth. Because of the dwell time and averaging process described in Ch. 2, the geometry of

the profiler sampling region at any given height becomes elliptical, with increasing eccentricity as

the length of the averaging interval increases and/or the convective system advection speed

increases. The major axis of the ellipse is parallel to the direction of storm motion (see Fig. A2

and Table AI). Note that the orientation of the ellipse can vary with height in regions containing

large vertical shear of the horizontal wind (e.g. in an MCS with intense stonn relative flow).

In contrast, the 5-cm radars collected data by scanning the beam through 3600 of azimuth

over a range of elevation angles. Assuming nearly continuous radar echo coverage around the

radar, the sampling volume for any of the single Doppler retrieval techniques is cylindrical, so that

at any given height, the sampling area is approximately constant (circular)8. For a cylinder with

radius 30 lan, the total sampling area is - 2800 lan2• In contrast, the wind profiler samples only a

small fraction of this area at any given height (Table AI). The results in Table Al indicate that

any comparison of kinematic structures between the two platforms will have to account for the

large differences in spatial sampling. In this SWdy, the sampling time scales have at least been

made similar; nevertheless it must be emphasized that the atmospheric volume sampled by each

8 During the time required to collect a complete volume of radar data (8-10 minutes), the radar
sampling region is modified as described above for the wind profiler. However, in the case of the
scanning radar, the change in sampling geometry during data conection is relatively small, due to
the large region of atmosphere sampled by the radar relative to the storm advection speed (Matejka
and Srivastava 1991).
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Fig. A2. Schematic diagram. showing the sampling geometry and area oftbe 50 MHz wind
profiler (top) and the S-em Doppler radars (bottom; from Cifelli et al. 1995).
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Table AI. Sampling area calculations for the wind profiler compared to the single Doppler radar.
The calculations are performed for an arbitrary height of 10 kIn and assume a storm speed of 10
IDS'! over the profiler [parallel to the major axis (a)]. Note that the profiler area is an ellipse with
increasing eccentricity (major axis length) as the averaging time increases (see Fig. A2). It is
assumed that the single Doppler sampling domain is approximately cylindrical with a radius of 30
kIn so that the area at any height is constant (Cifelli et al. 1995).

Profiler Radar
Sampling Sampling

Avg. Area Area Fraction of
Interval Major Axis Minor Axis [1t*a*b] [1t'¥] Radar Area
(min) [a] (kIn) [b] (kIn) (kIn2) (kIn2) (%)

5 4.6 0.6 8.7 2827 -0.3

10 7.6 0.6 14.3 2827 -0.5

15 10.6 0.6 20.0 2827 -0.7

30 19.6 0.6 36.9 2827 -1.3

100 61.6 0.6 116.1 2827 -4.1

platform is quite distinct, even when the profiler data are averaged over a relatively long sampling

period.

For a volume of annosphere that is sampled by the wind profiler and radar at the same time

but different spatial scales, differences in the diagnosed fields may be attributed to some

combination of the following:

a. biases in the wind profiler data resulting from contamination of the precipitation component

of the Doppler spectra with the turbulence component of the spectra (contamination by

precipitation will introduce a negative (downward) bias in the profiler vertical velocity

estimates);

b. errors due to the evolution of the divergence and vertical velocity fields during the sampling

period;
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c. application of an inappropriate top boundary condition for single Doppler retrieval analysis;

and

d. non-homogeneities in the horizontal divergence and vertical velocity fields across the analysis

domain (differences in the region sampled by the profiler and the single Doppler radars)- the

meteorologically significant variability.

As discussed in Ch. 2, clear air Doppler spectra obtained in the MCSs studied herein were

susceptible to precipitation contamination in the elevation range of 3.5 to 6.5 kIn of each MeS. In

this altitude range, air motion estimates were shifted over 2 m S·l on average to correct for the

effects of precipitation (Cifelli and Rutledge, 1994b). Although the wind profiler vertical motion

estimates were adjusted to account for precipitation bias, the possibility that the vertical velocity

estimates have considerable error in some of the range gates cannot be entirely ruled out.

In regard to potential errors resulting from the evolution of divergence and vertical motion

fields during sampling (see b above), Cifelli and Rutledge (1994b) showed that the wind profiler

vertical motion (divergence) fields in the stratiform portions of the convective systems they studied

were relatively stable for averaging periods of 5-15 minutes. It was not possible to perform a

similar sensitivity study for the scanning radar data since the sampling period was fixed.

However, retrievals that could be performed at consecutive (10 minute) intervals showed little

difference in the diagnosed profiles, suggesting that the kinematic fields did not evolve appreciably

during sampling (at least at spatial scales measured by the radar: 0.5-1.0 kIn).

Potential error source (c) and the scale-difference effect (d) above are discussed in

Appendices B and C and in Cifelli et al. (1995). It is simply noted here that it is difficult to

directly compare the kinematic structures diagnosed from each observation platform, not only due
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to potential errors in the analysis methods, but also due to the large variability in the wind profiler

estimates of vertical motion resulting from small-scale turbulence features.
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AppendixB

COMPARISON OF HORIZONTAL DIVERGENCE AND VERTICAL MOTION

RETRIEVALS FROM SCANNING RADAR AND WIND PROFILER

In this Appendix, a comparison of two single-Doppler teehniques and the wind profiler

retrieval to analyze venica1 motions and horizontal divergence patterns in the stratiform ponions

of MCSs is provided. The scanning Doppler radar teehniques are:

• EVAD (Extended Velocity Azimuth Display; Srivastava et al. 1986; Matejka and Srivastava

1991); and

• CEVAD (Concurrent Extended Velocity Display; Matejka 1993).

In these single-Doppler teehniques, the kinematics of the mesoscale velocity field is analyzed.

The wind profiler teehnique, on the other hand, makes a direct measurement of venica1 motion

(Cifelli and Rutledge 1994b). Both the Doppler radar and the wind profiler techniques require

removing the effects of hydrometeor fall speeds. For the Doppler radar methods, these must be

separated from the horizontal divergence, which can be integrated to produce an estimate of

vertical air motion. For the wind profiler teehnique, it must be separated from the deteeted

vertical velocity itself (Carter et al. 1991).
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Each analysis technique has its strengths and weaknesses. The scanning Doppler radars

provide an estimate of the mesoscale wind field within a relatively large volume and in short time.

Because the scanning radar techniques are designed to analyze mesoscale flow patterns, the

resulting horizontal divergence and vertical air velocity profiles appear smooth compared to those

obtained from the wind profiler. However, for the scanning radar analyses to be performed,

relatively large volumes filled with echo are required, limiting the situations in which the methods

can be applied. The wind profiler, on the other hand, makes measurements over a relatively small

spatial domain, enabling this technique to resolve small-scale variations in the vertical motion

pattern. Unlike the microwave scanning radars, the profiler technique is also able to obtain these

measurements in clear air. The resulting detailed vertical velocity structure is often rather

complicated (and possibly noisy if the hydrometeor velocity signal is not easy to remove).

Individual profiles may not be representative of the mesoscale flow. However, the mesoscale

vertical velocity pattern can be reclaimed by time averaging the wind profiler retrievals (Cifelli et

al. 1995). Thus, the wind profiler and scanning radar techniques are complimentary.

Another disadvantage of the scanning radar techniques is that, since they retrieve vertical

profiles of horizontal divergence, one or more boundary conditions must be specified before the

mass continuity equation can be integrated to produce a profile of vertical air velocity (w). These

boundary condition assumptions can introduce error, especially in situations where data collection

does not extend to a w=O level at the top of the cloud system. Such an effect would result when,

for example, Doppler radar data are subject to significant attenuation or when upward motion

extends beyond the minimum-deteetable echo boundary. The profiler technique, by measuring w

directly, avoids the need for specified boundary conditions.
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To compare and contrast the EVAD, CEVAD, and profiler teehniques, vertical profiles of

horizontal divergence and vertical air velocity in several tropical MCSs near Darwin, N.T. ,

Australia that were observed dwing the DUNDEE were examined and the results interpreted in

light of the strengths and weaknesses of the four teehniques used (Cifelli et al. 1995). Herein, a

brief description of each of the single-Doppler analysis teehniques is provided.

B1. EVAD analysis

The EVAD algorithm consists of two steps:

1) Traditional VAD (Browing and Wexler 1968) analysis, which analyzes horizontal rings of

radial velocity data for each elevation cone within a specified vertical cylinder of radar data

to determine the mean horizontal wind field; and

2) EVAD analysis which separates the combined effect of divergence and precipitation fall

speed from the VAD derived horizontal wind field and calculates divergence, hydrometeor

fall speed, hydrometeor terminal fall speed, and vertical velocity as a function of altitude

within a specified volume of VAD data.

In VAD, the radar data are divided into horizontal rings centered on the radar and a

truncated Fourier series is used to model the radial velocity field vr according to:

198



7

V =~a.f(~) + €,. L.,; I I
i-I

(Bl)

where!] =l,h = sine,h = cose,j., = sin2e,fs = cos2e,j6 = sin3e'!7 = cos3e, e = azimuth

angle, ai represents the particular Fourier coefficient, and e is the departure of the regression

model from the actual observations (Matejka and Srivastava 1991). It is important to note that in

the VAD analysis, reliable solutions for the Fourier coefficients (aj) are typically obtained in

situations where the wind field is relatively uniform (stratiform as opposed to convective portions

of precipitating regions) and nearly complete echo coverage surrounds the radar9
• In the ideal

situation, the wind data are approximately evenly spaced around the radar so that the basis

functions/; in (Bl) form an orthogonal set and the regression is not particularly sensitive to

departures from the model assumptions (Matejka and Srivastava 1991).

Radar volume scans were scrutinized to determine the suitability of the EVAD technique for

each volume of data. A total of 37 retrievals were generated from radar volumes collected in the

four MeSs. Within a specific volume of data, radar elevation angles ranged from 1-45 0 (most of

the time) or 1-600 (occasionally). The time required for the radar to complete an individual VAD

volume scan was approximately 8-10 minutes.

In order to apply EVAD, it is assumed that both hydrometeor fall speed and divergence are

horizontally uniform within a specified vertical layer. The depth of each layer is determined from

the radar gate spacing (usually 500 m for the particular radar data used in this study) and is

9 Matejka and Srivastava (1991) recommend that the EVAD technique be applied in situations where the
largest aziuDltbaJ gap in radar echo coverage surrounding the radar is - .$. 300.
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constant throughout the EVAD volume. Moreover, it is assumed that there are no significant

temporal variations in the wind field during the radar volume sampling period.

For a given height interval containing multiple rings, both particle fall speed and divergence

may be determined from a weighted least squares fit independently in each layer (Srivastava et al.

1986; Matejka and Srivastava 1991; Matejka 1993) according to:

2ao
r cos(a;)

= D + W 2sin(a;)
P r cos(a;)

(B2)

where D = horizontal divergence, Wp = hydrometeor vertical velocity (w - Vt; 'V: is the

hydrometeor terminal fall speed), ao = the VAD estimated zeroth Fourier coefficient, a; is the

elevation angle of the radar beam, and r is the radius of the analysis domain.

Vertical velocity within the EVAD analysis domain is calculated by integrating the anelastic

form of the mass continuity equation. In order to account for errors accumulated in the

integration, a variational method similar to that employed by O'Brien (1970) is used to obtain a

modified profile of divergence (see equations (21) and (22) of Matejka and Srivastava 1991).

The altitude of the highest echo from one of the three steepest elevation scans analyzed in

VAD was utilized as the location of the EVAD top boundary and it was assumed that the vertical

velocity at this point was zero. It was also assumed that the vertical velocity was zero at the

altitude of the radar (essentially sea level). For the MeSs studied, the EVAD analysis domain

radius was set at 30 km, which allowed for considerable overlap in data coverage between the

MIT and TOGA radars when both systems were collecting simultaneous data (Fig. 2.1).
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B2 CEVAD analysis

CEVAD is identical to EVAD except for two important aspects. In CEVAD, the solution is

obtained by an optimization of (B2) throughout all the layers concurrently, not independently as

for EVAD. In addition, the top boundary condition is formulated in terms of hydrometeor

terminal fall speed. As we shall see, using terminal fall speed as the top boundary condition can

be useful in situations where radar echo does not extend high enough to reliably set a vertical air

motion boundary condition at the upper boundary. Because the CEVAD method is formulated

with linked adjusnnents in all the layers, the sensitivity of the solution to the top boundary

condition is reduced (Matejka, 1993). The variational adjusnnent of the divergence profile in

CEVAD is incorporated into the concurrent optimization of (B2) rather than imposed subsequently

as in EVAD.

Sensitivity analyses were performed on the selection of terminal fall speed values at the upper

boundary in all radar volumes using the CEVAD technique. Fall speeds were varied from 0.5 to

2.0 m S-1 and, in general, the results were not particularly sensitive to the value selected.

Therefore, for comparison purposes, a terminal fall speed value of 1.0 m S·1 was chosen as the

upper boundary condition in all of the radar volumes analyzed with CEVAD.
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AppendixC

DESCRIYI10N OF TWO EQUAnON AND THREE (OR FOUR) EQUAnON

SYNTHESIS OF MULTIPLE DOPPLER DATA

Cl Dual-Doppler synthesis from ship data

Dual-Doppler synthesis was performed on one convective system that was sampled by the

MIT and TOGA ship radars. A total of 15 volumes were collected over about a 2.5 hour period

and analyzed with the two equation solution (Ray et al. 1980) using the CEDRIC (Custom Editing

and Display of Reduced Information in Cartesian space; Mohr and Miller 1983) software to

recover the three-dimensional wind field properties. The radar data were first interpolated onto a

Cartesian grid using a Cressman weighting scheme with a 1.5 Ian radius of influence in the

horizontal and 1.0 kIn in the vertical (Ray et al. 1980). The grid spacing was specified to be 1 kIn

in the horizontal and 0.5 Ian in the vertical. In CEDRIC, an iterative procedure is used to retrieve

the horizontal wind and diagnose vertical motion as follows:

1) the U and V components of the wind are calculated from the radial wind estimates assuming

there is no vertical motion (w);

2) horizontal divergence is calculated from the initial U and V estimates;

3) an initial estimate of w is then diagnosed using the anelastic form of the continuity equation;

4) the horizontal wind components (U, V) are re-eomputed;

5) steps 2-5 are performed until the change in U, V is less than the expected measurement error.

202



For each CEDRIC run, a one-step Leise filter and patching function were applied to the

horizontal winds one time after the initial synthesis in order to remove "spikey" data and smooth

the resulting wind field. The vertical velocity was set to zero at a distance of 500 m above the

highest measured divergence in each grid column. Vertical air motion was calculated by

integrating the anelastic form of the mass continuity equation downward from the top boundary

condition in order to take advantage of the density weighting and to minimize errors. The

convergence criteria was usually achieved in less than four iterations. In the final step of the

analysis, a variational adjustment scheme following O'Brien (1970) was used and mass was

redistributed through the grid column to account for uncertainties in the divergence estimates.

C2 QuadwDoppler synthesis from P-3 data

A total of 12 radar volumes collected by the NOAA P-3 radars from three convective events

were provided, courtesy of Brad Smull, Dave Jorgensen, and Sharon Lewis of

NOAAlNSSLIMRD (Mesoscale Research and Applications Division, National Severe Storms

Lab). All of the volumes used in this study were analyzed using the Quad-Doppler technique

described by Jorgensen et al. (1996). Briefly, this method takes advantage of the FAST (Fore/Aft

Scanning Technique) strategy employed by both P-3 radar aircraft flying along parallel flight

tracks. Each data point in the analysis domain is sampled four times by the two radars since the

tail-mounted radars scan for and aft of a line perpendicular to the aircraft heading. A linear

interpolation was used to transform the radar data from polar to Cartesian coordinates with a

horizontal spacing of 1.5 kIn and a vertical spacing of 1.0 kIn. A combination of the

overdetermined dual and overdetermined triple Doppler solution syntheses were then applied to

each data point to calculate the horizontal wind, depending on which method produced the least

error (Jorgensen et al. 1996). The triple solution was applied at echo top to calculate the echo-top
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particle motion Wp , which was then used to derive the echo top vertical air motion w (= ~ + Wp).

In principle, the fourth radial velocity measurement is not needed in the analysis; however, it was

found to reduce errors in the estimate of Wp- The major advantage to this sort of scanning strategy

and the resulting synthesis of radar data is that Wp can be measured directly, allowing for a more

reliable estimate ofw at radar echo top compared to assuming w =0 (Jorgensen et aI. 1996).

Jorgensen et at (1996) noted that the overdetermined synthesis procedure (e.g., quad-Doppler

sampling) can produce vertical air motions that are over 50% larger compared to the dual-Doppler

sampling produced from one radar alone due to the better estimate of w at the radar echo top (as

opposed to assigning w = 0). The effect was most noticeable in the upper regions of the cloud,

since both the two equation and four equation solutions apply a w = 0 constraint at the bottom

boundary. LeMone and Jorgensen (1991) and Cifelli et al. (1995) have observed similar situations

where the diagnosed vertical air motion field has been underestimated due to inadequate

measurements of upper level divergence and assuming w = 0 at the radar echo top.
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AppendixD

DARWIN RAINFALL STATISTICS

Dl Rain gauge results for each MCS

This appendix lists rainfall statistics from each reporting gauge for each MCS event. The

location of the Darwin rain gauge network relative to the TOGA radar for the 1989-1990 and

1990-1991 wet seasons is provided in Table D1. Summaries of the partitioned rainfall fraction

from each gauge are shown in Tables D2-DI4. Individual rain traces for each event analyzed in

this swdy are shown in Figs. DI-D13.

Table Dl. Location of AWS Rain Gauge Network Relative to TOGA Radar.

Station In Distance (kID) Azimuth CO) x (km east) y (km north)

ANN 96 122 81 -51

BATC 67 171 10 66

BATH 83 336 -34 76

BEL 34 188 -5 -34

BER 0 0 0 0

CPF 124 308 -98 76

CHAN 118 228 -88 -79

CHA 33 278 -33 5

DWA 7 304 -6 4
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DWD 42 173 5 -42

DUM 63 251 -60 -21

GAR 130 335 -55 118

GOO 97 150 48 -84

GUNC 35 17 10 33

GUNP 27 28 13 24

HUM 43 113 40 -17

KOO 28 75 27 7

LAB 87 213 -47 -73

LEP 13 344 -4 12

LIT 119 204 -48 -109

MAN 18 275 -18 2

McM 19 119 17 -9

MtB 89 165 23 -86

NOD 22 138 15 -16

PIC 77 356 -5 77

PTS 91 99 90 -14

SNA 118 346 -29 114

SOU 32 176 2 -32

SCP 97 83 96 12

WOO 59 81 58 9

Table D2. Partitioned rainfall summaries for the 891205 MCS.

Station ID Convective Rain Stratiform Rain Ratio: Convective I
(mm) (mm) Stratiform Rain

ANN 10.4 0.2 0.98

BATe 1.0 2.2 0.31

BATH 8.8 0.6 0.94
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BEL 11.4 21.8 0.34

BER 22.2 2.8 0.89

CPF

CHAN

CHA 16.8 0.6 0.97

DWA 10.8 1.2 0.90

DWD 2.0 2.8 0.42

DUM

GAR

GOO

GUNC 10.6 0.4 0.96

GUNP 4.8 0.4 0.92

HUM 22.8 4.6 0.83

KOO 5.4 0.6 0.90

LAB 4.6 7.8 0.37

LEP 16.4 5.6 0.75

LIT

MAN 7.2 1.4 0.84

McM 36.0 5.8 0.86

MtB 0.0 0.2 0.00

NOO 57.6 11.4 0.83

PIC

PTS 7.6 0.6 0.93

SNA

SOU 32.6 8.2 0.80

SCP 0.8 0.4 0.67

WOO 8.4 0.0 1.00
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Table D3. Partitioned rainfall summaries for the 900110 MCS.

Station ID Convective Rain Stratiform Rain Ratio: Convective /
(nun) (mm) Stratiform Rain

ANN 4.2 2.6 0.62

BATC 6.2 5.4 0.53

BATH 40.6 1.8 0.96

BEL 25.6 5.8 0.82

BER 13.6 0.4 0.97

CPF

CHAN 2.6 5.8 0.31

CHA 0.2 0.8 0.20

DWA 11.4 0.8 0.93

DWD 29.8 7.0 0.81

DUM

GAR 6.8 0.2 0.97

GOO 51.4 9.8 0.84

GUNC 39.6 1.6 0.96

GUNP 19.8 0.6 0.97

HUM 0.0 0.2 0.00

KOO 37.2 5.8 0.87

LAB 3.6 3.4 0.51

LEP

UT

MAN 1.6 1.0 0.62

McM 34.8 2.0 0.95

MtB

NOO 25.0 9.8 0.72

PIC 2.8 1.0 0.74
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PTS 2.0 2.6 0.43

SNA

SOU 50.0 24.6 0.67

SCP 4.4 0.8 0.85

WOO 23.0 5.2 0.82

Table D4. Partitioned rainfall summaries for the 900112 MCS.

Station ID Convective Rain Stratiform Rain Ratio: Convective I
(mm) (mm) Stratiform Rain

ANN 0.2 0.4 0.33

BATC 23.4 6.4 0.79

BATH 11.8 4.2 0.74

BEL 6.0 6.0 0.50

BER

CPF

CHAN 0.0 1.2 0.00

CRA 6.6 1.4 0.83

DWA 1.6 7.4 0.18

DWD 4.6 4.8 0.49

DUM

GAR 43.6 2.4 0.95

GOO 21.4 2.0 0.91

GUNC 9.8 2.0 0.83

GUNP 28.4 2.2 0.93

HUM 9.2 5.6 0.62

KOO 8.8 3.2 0.73

LAB 6.8 5.2 0.57

LEP 11.2 2.6 0.81
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UT 1.2 0.8 0.60

MAN 3.8 2.4 0.61

McM 4.6 4.8 0.49

MtB

NOD 3.0 5.2 0.37

PIC 38.2 1.6 0.96

PTS 1.6 2.8 0.36

SNA

SOU 0.4 0.4 0.50

SCP 0.4 3.0 0.12

WOO 26.8 0.8 0.97

Table 05. Partitioned rainfall summaries for the 900118 MCS.

Station ID Convective Rain Stratiform Rain Ratio: Convective I
(nun) (nun) Stratiform Rain

ANN

BATC 7.8 0.0 1.00

BATH 0.4 0.0 1.00

BEL 0.2 6.2 0.03

BER 15.8 0.2 0.99

CPF

CHAN

CHA 39.0 2.6 0.94

OWA 5.0 5.4 0.48

DWD 5.8 0.4 0.94

DUM 13.6 17.8 0.43

GAR

GOO 11.0 0.0 1.00
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GUNC 35.2 1.8 0.95

GUNP 45.2 3.4 0.93

HUM 6.0 0.0 1.00

KOO 23.2 0.8 0.97

LAB

LEP 6.2 0.0 1.00

UT

MAN 28.0 0.0 1.00

McM 20.8 1.2 0.95

MtB

NOO 0.2 0.0 1.00

PIC 1.8 0.0 1.00

PTS

SNA

SOU 13.6 2.2 0.86

SCP

WOO 10.4 13.8 0.43

Table D6. Partitioned rainfall summaries for the 900122 MCS.

Station ID Convective Rain Stratiform Rain Ratio: Convective I
(nun) (nun) Stratiform Rain

ANN 0 0.2 0.00

BATC 24.2 0.0 1.00

BATH 5.6 0.8 0.88

BEL 19.6 1.0 0.95

BER 13.2 1.8 0.88

CPF

CHAN
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CHA 8.0 1.2 0.87

DWA 29.0 2.2 0.93

DWD 13.8 4.0 0.78

DUM 1.6 0.4 0.80

GAR

GOO 0.0 0.8 0.00

GUNC 2.0 5.2 0.28

GUNP

HUM 25.6 2.2 0.92

KOO 3.8 1.8 0.68

LAB 0.0 0.2 0.00

LEP

LIT

MAN 19.2 0.6 0.97

McM

MtB

NOD 8.8 1.2 0.88

PIC 0.8 1.0 0.44

PTS

SNA

SOU 25.4 0.6 0.98

SCP 19.4 7.4 0.72

WOO 31.6 4.0 0.89

Table D7. Partitioned rainfall summaries for the 900128 MCS.

Station ID Convective Rain Stratiform Rain Ratio: Convective I
(nun) (nun) Stratiform Rain

ANN 28.4 0.2 0.99
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BATC 10.0 2.6 0.79

BATH 0.4 2.0 0.17

BEL 13.0 2.8 0.82

BER 1.4 4.8 0.23

CPF 5.0 0.4 0.93

CHAN 0.0 0.2 0.00

CHA 5.0 2.6 0.66

DWA 0.0 4.2 0.00

DWD 10.0 3.2 0.76

DUM 15.0 3.4 0.82

GAR

GOO 2.4 0.8 0.75

GUNC 5.6 6.0 0.48

GUNP 6.8 4.8 0.59

HUM 31.2 7.8 0.80

KOO 2.2 4.2 0.34

LAB 22.2 0.0 1.00

LEP

liT

MAN 0.4 3.0 0.12

McM

MtB 2.0 2.2 0.48

NOO 3.8 5.4 0.41

PIC 3.4 8.2 0.29

PTS 8.8 7.2 0.55

SNA

SOU

SCP 26.6 1.8 0.94

WOO 34.6 3.8 0.90
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Table D8. Partitioned rainfall summaries for the 901121 MeS.

Station ID Convective Rain Stratiform Rain Ratio: Convective I
(mm) (mm) Stratiform Rain

ANN 47.2 4.0 0.92

BATC 30.4 0.6 0.98

BATH 0.0 0.2 0.00

BEL 25.4 1.0 0.96

BER 20.0 0.6 0.97

CPF

CHAN 0.4 0.8 0.33

CRA

DWA

DWD 11.0 1.8 0.86

DUM

GAR

GOO 14.0 2.2 0.86

GUNC

GUNP

HUM 10.0 4.0 0.71

KOO 9.6 1.4 0.87

LAB

LEP

UT 1.2 3.2 0.27

MAN 11.6 0.0 1.00

McM 3.2 0.6 0.84

MtB

NOO

PIC
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PTS

SNA

SOU

SCP 20.6 1.4 0.94

WOO 0.8 2.2 0.27

Table D9. Partitioned rainfall summaries for the 901210 MCS.

Station ID Convective Rain Stratifonn Rain Ratio: Convective I
(mm) (mm) Stratiform Rain

ANN

BATC 3.8 1.2 0.76

BATH 8.8 7.8 0.53

BEL 13.6 9.0 0.60

BER 41.6 2.4 0.95

CPF

CHAN 8.0 17.2 0.32

CHA 2.4 4.2 0.36

DWA

DWD 2.2 3.6 0.38

DUM 33.4 15.8 0.68

GAR 6.2 3.4 0.65

GOO 3.0 0.2 0.94

GUNC

GUNP 10.6 504 0.66

HUM 8.0 1.0 0.89

KOO 11.4 2.0 0.85

LAB 31.6 lOA 0.75

LEP
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LIT 3.8 13.2 0.22

MAN 43.0 4.8 0.90

McM 6.6 2.8 0.70

MtB

NOO

PIC 18.4 5.4 0.77

PTS

SNA 24.0 7.4 0.76

SOU

SCP 0.0 0.4 0.00

WOO 0.6 0.4 0.60

Table DlO. Partitioned rainfall summaries for the 901212 MCS.

Station ID Convective Rain Stratiform Rain Ratio: Convective I
(nun) (nun) Stratiform Rain

ANN 1.6 0.4 0.80

BATC 18.0 7.6 0.70

BATH 3.2 7.0 0.31

BEL 28.8 24.8 0.54

BER 13.0 2.6 0.83

CPF

CHAN 37.6 21.2 0.64

CHA 3.2 18.4 0.15

DWA

DWD 26.4 6.0 0.81

DUM 24.2 12.2 0.66

GAR 100.0 29.6 0.77

GOO 2.4 1.6 0.60
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GUNC

GUNP 8.0 3.6 0.69

HUM 5.0 1.2 0.81

KOO 7.2 3.6 0.67

LAB 31.8 54.0 0.37

LEP 30.8 27.2 0.53

LIT

MAN 23.8 1.6 0.94

McM 11.0 0.4 0.96

MtB

NOO

PIC 8.8 5.0 0.64

PTS

SNA 34.4 11.2 0.75

SOU

SCP 6.4 1.8 0.78

WOO 0.6 4.8 0.11

Table D11. Partitioned rainfall summaries for the 901215 MCS.

Station ID Convective Rain Stratiform Rain Ratio: Convective I
(nun) (nun) Stratiform Rain

ANN 2 3.6 0.36
,

BATC 14.2 6.4 0.69

BATH

BEL 9.4 4.8 0.66

BER 21.2 3.2 0.87

CPF

CHAN 4.2 0.4 0.91

217



CRA 7.4 0.2 0.97

DWA

DWD 9.2 3.6 0.72

DUM

GAR

GOO 2.4 1.2 0.67

GUNC

GUNP 1.4 1.8 0.44

HUM 19.2 4.6 0.81

KOO 5.6 3.0 0.65

LAB 0.2 0.8 0.20

LEP

LIT 11.8 0.0 1.00

MAN 12.2 0.4 0.97

McM 25.0 5.0 0.83

MtB

NOO

PIC

PTS

SNA 0.2 0.0 1.00

SOU

SCP 6.6 2.4 0.73

WOO 15.4 2.4 0.87

Table D12. Partitioned rainfall summaries for the 910109 MeS.

Station In Convective Rain Stratiform Rain Ratio: Convective I
(mm) (mm) Stratiform Rain

ANN 15 6.4 0.70

218



BATe 14.2 3.0 0.83

BATH 3.2 1.6 0.67

BEL 63.4 16.2 0.80

BER 71.6 17.0 0.81

CPF

CHAN 1.2 16.4 0.07

CRA 52.6 16.0 0.77

DWA

DWD 13.6 17.4 0.44

DUM 64.6 49.4 0.57

GAR 16.6 7.2 0.70

GOO 15.8 25.4 0.38

GUNC

GUNP 29.8 10.4 0.74

HUM

KOO

LAB 64.2 5.0 0.93

LEP

LIT 0.2 18.6 0.01

MAN

McM 16.0 17.4 0.48

MtB 42.2 28.6 0.60

NOO

PIC 3.8 1.6 0.70

PTS

SNA

SOU

SCP 6.4 6.4 0.50

WOO 27.4 13.2 0.67
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Table 013. Partitioned rainfall summaries for the 910129 MCS.

Station ID Convective Rain Stratiform Rain Ratio: Convective I
(nun) (nun) Stratiform Rain

ANN 0 0.6 0.00

BATC 20.4 4.6 0.82

BATH 5.8 8.2 0.41

BEL 10.0 4.4 0.69

BER 16.4 3.4 0.83

CPF

CHAN

CHA 5.8 13.0 0.31

DWA

DWD 4.2 4.8 0.47

DUM 16.0 2.8 0.85

GAR 10.4 2.0 0.84

GOO 2.2 1.8 0.55

GUNC

GUNP 9.6 4.4 0.69

HUM 5.8 6.8 0.46

KOO

LAB

LEP

LIT 13.4 1.6 0.89

MAN

McM 15.2 7.0 0.68

MtB 1.2 3.2 0.27

NOD

PIC 8.2 4.6 0.64
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PTS

SNA

SOU

SCP 7.8 2.0 0.80

WOO 10.0 1.4 0.88

Table D14. Partitioned rainfall summaries for the 910130 MCS.

Station In Convective Rain Stratiform Rain Ratio: Convective I
(mm) (mm) Stratifonn Rain

ANN 6.6 2.2 0.75

BATC 3.0 1.4 0.68

BATH 12.4 1.0 0.93

BEL 14.8 7.2 0.67

BER

CPF

CHAN

CHA 0.8 . 24.6 0.03

DWA

DWD 15.4 3.6 0.81

DUM 35.4 8.6 0.80

GAR 34.6 9.6 0.78

GOO 6.0 1.4 0.81

GUNC

GUNP 15.6 1.8 0.90

HUM 6.6 6.0 0.52

KOO

LAB

LEP
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LIT 16.0 2.8 0.85

MAN

McM 21.8 2.4 0.90

MtB 9.6 7.8 0.55

NOO

PIC 19.2 3.0 0.86

PTS

SNA

SOU

SCP 21.8 1.0 0.96

WOO 20.8 2.2 0.90
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