
Studies in Low-Order Spectral Systems 

BY 
F. Baer 

Department of Atmospheric Science 
Colorado State University 

Fort Collins, Colorado 

Technical report to The National Science Foundation 
Grant No. GA-76 1 

August, 1968 





I 
I 

F .  Baer 

'Technical Report to  

The National Science Foundation 

Grant No. GA-761 

Department o f  Atmospheric Science 
Colorado State University 
Fort Collins, Colorado 

August 1968 

Atmospheric Science Paper No. 129 





CONTENTS 

Abstract 

1. Introduction 

2. The Low-Order Equations 

3. Exact Solutions 

4. Initial Conditions and Truncation 

5. Energy Consideration 

6. Linear Analysis 

7. Phase Characteristics and Other Flow Properties 

8. Some Barotropic Calculations 

9. Conclusions 

Acknowledgements 

References 

Appendix A 

Appendix B 





Studies i n  Low-Order Spectral  Systems 

ABSTRACT 

A low-order system of spectr&equatians--representing-in Ge measure 

the * s ~ ~ o ~ ~ r ~ e ~ ~ ~ s > f t h e - ~ a t m o s p h e r e -  -has been shown t o  apply t o  both 

ba ro t rop ic  and barocl in ic  flows. The system allows f o r  an a r b i t r a r y  zonal 

flow and one planetary wave with no approximations f o r  spher ica l  geometry. 

The ana ly t i c  solut ions  i n  t e r m  of e l l i p t i c  functions have been desc r ibed  

and t h e  required i n i t i a l  conditions have been c l a r i f i e d .  The e n e r g e t i c s  of 

both barot ropic  and barocl in ic  flows f o r  t h e  low-order t runcat ion h a v e  been 

discussed and a P jo r to f t  (1953) type theorem f o r  barocl in ic  energy exchange 

has been developed. The app l i cab i l i t y  of l i n e a r  analys is  t o  the  non l inea r  

equations has been shown and correspondence t o  the  t rue  solut ion e s t a b l i s h e d .  

Some barot ropic  ca lcula t ions  a re  described and show a remarkable v a r i e t y  of 

energy exchanges, depending on i n i t i a l  conditions and t runcat ion.  





1. Introduction 

Over t he  l a s t  two decades, developments i n  t he  predlc t lon  of atmospheric 

events on the  planetary s c a l e  have followed two t rends  of thought whlch a re  by 

no means mutually exclus ive .  On t h e  one hand, t h e  more pragmatic view toward 

prediction--which i s  u l t imate ly  the  purpose of  sclence--has s t imula ted  the  devel- 

opment of modeIs, t h e i r  numerical i n t eg ra t ion ,  and the  determination of t h e l r  

success  r e l a t i v e  t o  observation.  On t h e  o the r  hand, de t a i l ed  inves t iga t ions  of 
---- 

t h e  individual  c h a r a c t e r i s t i c s  of t he  atmosphere which determine t h e  observed 

flw --~IUMEFX~'J~- -p;Gipal- &ongiwhich i s  t he  

method of l i nea r i za t ion .  There i s  indeed no ques t ion  t h a t  s tudies  of t h e  l a t t e r  

type  w i l l  provide valuable information f o r  t he  d i r ec t ion  i n  which the  former 

modelling developments should proceed. 

The present study is designed t o  provide both a method whereby the  d e t a i l s  

of  t h e  nbnlinear e ~ c h & ~ e - ~ r o c e s s  which occurs i n  t he  atmosphere may be con- 

s ide red  i n  a s impl i f ied  form, and a l so  t o  i nd ica t e  from some calcula t ions  t he  

complexity of those exchanges. Thus t h l s  study f a l l s  i n t o  the  second category 

described above; however, s ince  i t  deals  wlth nonlinear proper t ies ,  t h e  l i nea r -  

i z a t i o n  procedure is c l ea r ly  inappl icable .  The nonl inear  exchange under con- 

s i d e r a t i o n  i s  t h e  physical  process whereby atmospheric var iables  (momentum, heat ,  

e tc . )  a r e  t r ans fe r r ed  from one s c a l e  t o  another by the  flow f i e l d ,  and is des- 

cr ibed mathematically by t h e  so-called "advection terms" i n  the  equations of 

motion. The exchange process is envisioned more c l e a r l y  ( a t  l ea s t  by  t h e  wr i t e r )  

from a wave space representa t ion;  i . e . ,  by allowing t h e  space dependence of  t h e  

dependent var iables  involved t o  be expressed i n  a s e r i e s  of  orthogonal poly- 

nomials. Such a representa t ion ,  which a l s o  n e c e s s i t a t e s  a s e t  of t ime  dependent 

expansion coe f f i c i en t s ,  w i l l  r e s u l t  i n  t h e  u l t ima te  expression f o r  t h e  "advective" 

exchange terms as a sum of quadra t ic  products of t h e  expansion c o e f f i c i e n t s .  

The number of such products ~ l l  .be established by -the s e r r e s  t runca t ion ,  i n  

e f f e c t  t h e  number of degrees of freedom des i red  f o r  representing any space 

dependent va r i ab l e  i n  s e r i e s  f o r m . - ~ - e ~ g ~ p 1 ~ t y s f : s u c h  products ,  however, _ _̂ ___I__ - - -..--- - 
again obscures the  exchange process.  

I t  was Lorenz (1960a) who f i r s t  recognized t h a t  t h e  equations represent ing  

t h e  motion, when expressed i n  terms of a s e r i e s  expansiont, could be s i g n i f i -  

can t ly  s imp l i f i ed  and ye t  r e t a i n  t h e i r  nonl inear i ty .  The s impl i fy ing procedure 

was t o  t runca t e  the  expansion s e r i e s  t o  a few terms. Remarkably, Lorenz found 

t h a t  with only three  ac t ive  components (expansion coe f f i c i en t s )  t h e  exchange 

p rope r t i e s  derived showed c h a r a c t e r i s t i c s  i n  common with atmospheric events; 

' ~ ~ u a t i o n s  i n  t h i s  form a r e  now commonly ca l l ed  "spect ra l  equations" and 
t h i s  terminology w i l l  be u t i l i z e d  i n  t h e  sequel.  



moreover, the  time dependent solut ions  t o  the  truncated (herein ca l l ed  "low- 

order") equations were given ana ly t i ca l ly .  Unfortunately, Lorenz' system was 

expressed i n  ca r t e s i an  geometry and had l imited app l i cab i l i t y  t o  the geometry 

o f  t he  atmosphere. He had, furthermore, applied the  analys is  only t o  baro- 

t r o p i c  flow. + 
An expansion which has more general app l i cab i l i t y  t o  the geometry of the  

earth-atmosphere involves the  s o l i d  spher ica l  harmonics, and had been u t i l i z e d  

even before  Lorenzl e f f o r t  t o  represent  t he  barot ropic  v o r t i c i t y  equation i n  1 

spsctxal 4expanzi94 form by Silberman (1954). Following fu r the r  s tud ie s  - - -  
whLrein t h i s  method was applied t o  the  barot ropic  v o r t i c i t y  equation (BVE) with 

many degrees of freedom, (Platzman, 1960; Baer and Platzman, 1961), Platzman 

(1962), i n  common with Lorenz, discussed the  varlous low-order systems which 

could be solved analytically In spher ica l  coordinates.  The advantage of these  

systems--the lob-order expression of the  BVE--1s the  accurate inclusion of the  

curvature of the  geopotential  surfaces  and the  exact incorporation of the  

Cor io l i s  e f f e c t .  I t  1s one such system, categorized by Platzman a s  "Class L3" 

and involving in teract ions  between an a rb i t r a ry  zonal f i e l d  and %plane ta ry  

wave, whlch w l l l  be discussed i n  d e t a l l  i n  t h i s  study. 

Although both Lorenz and Platzman considered the  low-order systems with 

reference  t o  the  BYE, i t  i s  a simple matter t o  extend the  systems t o  a quasi-  

geostrophic,  ba roc l in i c  model with f ixed s t a t i c  s t a b i l i t y  and applicable t o  

two l aye r s  (or  l eve l s ) .  In t h i s  event,  one may represent the  flow by a v e r t i -  

c a l  mean and shear (following Lorenz, 1960b) wherein the  in t e rac t ing  zonal 

flow w i l l  describe the  shear  flow (the zonal mean flow w i l l  be seen t o  be in-  

ac t ive )  and the  wave flow w i l l  be a combination of both mean and shear.  

We s h a l l  present ,  then, a s e t  o f  low-order equations which w i l l  be appl i -  

cable  t o  both barot ropic  o r  ba roc l in i c  flow, depending on the  de f in i t i on  of 

t h e  var iables .  The solut ions  t o  these  equations w i l l  be given i n  d e t a i l  and 

t h e i r  e l l i p t i c  cha rac te r i s t i c s  made evident.  Since we deal  here with an i n i t i a l  

value problem, the spec i f i ca t ion  of i n i t i a l  conditions and i t s  poss ible  va r i -  

a t i o n  over atmospheric extremes w i l l  be discussed. Furthermore, because of 

t h e  profound t runcat ion applied,  t runcat ion must a l s o  be considered as a per- 

t i n e n t  va r i ab le  i n  the  solut ions .  One of the  pr incipal  exchange character- 

i s t i c s ,  and one which cannot be determined from l inear ized equations,  i s  the  

energy exchange between t h e  zonal flow and the  planetary wave. As the  solu-  

t i o n s  t o  the  low-order systems are  per iodic ,  the  energy exchange proper t ies  

over  any nonlinear period may be--and are--discussed in  d e t a i l .  A par t icu-  

l a r l y  i n t e r e s t i n g  f ea tu re  of t h i s  energy exchange i s  the observation t h a t  an 

exchange theorem as s t a t e d  by F jo r to f t  (1953) fo r  barot ropic  motion involving 

t h e  exchange between di f ferent  s c a l e  components i s  a l s o  applicable t o  the  

b a r o c l i n i c  model here in  considered. 



Although i t  has been emphasized tha t  thc  e s sen t i a l  proper t ies  t o  be des- 

cribed hy the  low-order systems a r e  nonlinear,  l i nea r  analysis does give some 

indica t ion  of t he  behavior of t h e  systems when the i n i t i a l  wave energy i s  o f  

per turbat ion  amplitude, and s t a b l e  so lu t ions  p reva i l .  The p o t e n t i a l i t i e s  of 

l i n e a r  analys is  t o  t h e  problem a t  hand a r e  therefore  inves t iga ted  both with 

regard t o  t he  information concerning the  motions which may be forthcoming, and 

a l s o  as  a check on the  nonlinear so lu t ions .  F inal ly ,  a number of ca lcula t ions  

with t he  barot ropic  v o r t i c i t y  equation a re  described and indica te  the  var ie ty  

of  energy pxchange which t h e  low-order systems a re  capable of representing.  

2 .  The Low-Order Equations 

From the  viewpoint of  t he  e a r t h ' s  atmosphere, perhaps the most i n t e r e s t i ng  

energy exchange process i s  between the  planetary waves arid the zonal flow, both 

i n  t he  v e r t i c a l  mean and shear  flow which a r e  frequently defined t o  describe 

barot ropic  and ba roc l in i c  e f f e c t s  respect ive ly .  Inves t iga t ions  of tlicse ex- 

changes by analys is  of  r e a l  da ta  leave s t rong indica t ions  as t o  the  d i rec t ion  

and magnitude of  such atmospheric processes; see ,  f o r  example, Saltzman (19581, 

Kung (1966a, b) and Wiin-Nielsen (1967). From a theo re t i ca l  outlook, such ex- 

changes may be conveniently i so l a t ed  (but c l ea r ly  not completely described) by 

t h e  low-order systems and the  correspondingexact  so lu t ions  obtained therefrom. 

Furthermore, by proper s e l ec t ion  of  t h e  modelling equations,  t he  "barotropic" 

and "baroclinic" e f f e c t s  may be completely i s o l a t e d .  The low-order system 

obtained f o r  exchange between the  zonal flow and one planetary wave over a 

spher ica l  su r f ace  is denoted a s  the  "Class L3" by Platzman (1962) i n  h i s  d i s -  

cussion of t h e  s p e c t r a l  v o r t i c i t y  equation.  

In t h e  following development, a l l  equations w i l l  be represented i n  t h e i r  

s p e c t r a l  form. Since we a re  i n t e r e s t ed  i n  t he  exchange between t h e  zonal flow 

and a p lanetary  wave, we s h a l l  a l s o  break the  dependent var iables  i n t o  t h e i r  

zonal and wave components. This may be e a s i l y  accomplished by the  de f in i t i on ,  

where i s  any dependent va r i ab l e ,  X i s  longitude,  and the  bar  operator denotes 

longi tudinal  averaging. A l l  var iables  w i l l  be non-diinencionaiized, i n  space 

by the  mean radius  of  t he  ea r th  and i n  time by t h e  e a r t h ' s   tation ion r a t e  The 

Cor io l i s  parameter w i l l  be defined by t h e  va r i ab l e  f which j . ~  p,:oportiona.' t o  

u s i n  4 ,  t h e  s i n  of  l a t i t u d e .  



The procedure whereby the  physical  equations a r e  converted t o  spec t r a l  

form has been discussed in  d e t a i l  by Platzman (1960) and Baer and Platzman 

(1961) and w i l l  not be repeated.  Very b r l e f l y ,  t he  technique IS as  follows: 

each dependent var iable  i s  expanded i n  a s e r l e s  of s o l i d  harmonics wlth tlme 

dependent coefficients. Because o f  the  or thogonal i ty  of  t he  harmonics over 

a sphe r i ca l  surTace; a s e t  o f  ordinary ,  nonlinear d i f f e r e n t i a l  equations may 

be developed with Elmeas  +-he ~Jtdependent v a r ~ a b l e ,  and w i t h  t h e  expansion 
- . 

c o e f f i c i e n t s  as t h e  dependent va r i ab l e s .  Although both t h e  barot ropic  and 
J 

-b.m- b y u ~ ~ i ~ l  - - - -- 

s p e c t r a l  form, (see Baer and King, 1967), we s h a l l  expand somewhat on the  

development f o r  added c l a r i t y .  

Barotropic exchange: 

The barot roplc  processes may be determined from the  barot ropic  v o r t i c i t y  

equation (BVE) which s t a t e s  t h a t  i n  any hor izonta l  (or  pressure) surface ,  t he  

absolute  v o r t i c i t y  associa ted  with a p a r t i c l e  i s  consemed; 

In t h i s  equation,  9 represents  t h e  stream funct ion  and the  Jacobian opera tor  

is taken with regard t o  A and u respect ive ly .  The spec t r a l  form of t he  equa- 

t i o n  f o r  t he  time r a t e  of change of  t he  expansion coe f f i c i en t s  o f  t he  stream 

func t ion  may be wr i t t en  immediately (Baer, 1964) a s ,  

where y ranges over a l l  allowed index values.  The indices  (y,a,B) may be con- 

s ide red  a s  vectors o r  complex numbers describing the  o rd ina l  and planetary  

number of  any component; thus ,  f o r  example, 

For t h e  problem under considera t ion  here,  we choose an a r b i t r a r y  zonal current .  



and two components i n  one jllanetary wave fo r  which we s h a l l  u.zc t l ~ c  ~ n d c x  

where a ,  6 have t h e  unique values,  

- _ _______I____F_-_ "-----I- - -  - 
I t  must be recognized t h a t  $' 1s  a r e a l  functlon whcgeas t he  cxpanslon co- 

e f f i c i e n t s  ($,,$ ) a r e  complex; therefore  In t he  expansion (2 .5) ,  the  conJuga R 
values of  t he  expansion terms must a l so  be included. 

Given t h e  representa t ions  (2.4) and ( 2 . 5 ) ,  r e  may ex t r ac t  the  requlred 

equations from t h e  more complete s e t  expressed by ( 2 . 3 ) .  These havc been 

wri t ten  by Platzman (1962) and Baer (19641, and a re ,  

The first of  Eqs. (2.7) represents  a s e t  of  equations and the re  a r e  as  many 

as t he re  a r e  elements i n  t he  sum spec i f i ed  by (2 .4 ) .  The so lu t ion  of these  

equations w i l l  be discussed i n  t h e  next s ec t ion ,  and t h e  coe f f i c i en t s  (constant 

i n  time and space) w i l l  be defined subsequently.  

Baroclinic exchange: 

The simplest  model which w i l l  descr ibe  ba roc l in i c  energy exchange i s  a 

representa t ion  of t he  v e r t i c a l  s t r u c t u r e  of the  atmosphere by two layers  with 

constant s t a b i l i t y .  Such a model, i n  which the  quasi-geostrophic approximation 

has been made, and i n  which the  product of  t h e  divergence times v o r t i c i t y  as  it 

appears i n  t h e  v o r t i c i t y  equation is approximated by a mean v o r t i c i t y  (Coriolis  

parameter) has been given by Lorenz (1960b) i n  terms of  t he  v e r t i c a l  mean wind 

and shear wind (ac tual ly  stream functions) and is represented as follows; 



In these  equations, J, represents  t h e  mean s t e a m  f i e l d  and r the  shear  f i e l d ,  
d 

both of which may be determined from t h e  stream f i e l d s  i n  t h e  two layers  by - - --- - 
addi t ion and subtract ion reWEtivel:ly.-lXe Sacwbian?r%dor i s  the same as 

f o r  t h e  BVE and r2 i s  a parameter which depends on the  mean Coriol is  parameter 

and stability In  the  form, 

where 7 i s  a s t ab i1 i t ) -  parameter and maintained constant.  I t  is an easy matter 

t r .  show t h a t  i n  t h e  model described by (2.8). t he  mean po ten t i a l  temperature 

i s  l i n e a r l y  proportional t o  t h e  shear (T) by v i r t u e  of t he  thermal wind equa-' 

t i o n .  

As i n  (2.1) we again consider the  flow t o  be given 

averaged flow and i n  one planetary wave component. Rather than allowing two 

components in  one wave a s  was done f o r  t h e  BVE, Eq. (2.5), we allow only one 

wave component f o r  the mean flow (pressure averaged) and one component f o r  t he  

s h e a r  flow. The zonal d i s t r ibu t ions  o f  both t h e  mean and shear  flow may still 

be a r b i t r a r y .  The dependent var iables  a r e  thus expressed as follows: 

The space dependent functions,  Y, a r e  t h e  same a s  those used i n  t h e  expansions 

f o r  t he  BVE, but t he  time dependent expansion coe f f i c i en t s  c l ea r ly  have a 

d i f f e r e n t  meaning, although they have in t en t iona l ly  been represented by iden- 

t i c a l  symbols; t h e  s ignif icance of t h i s  choice w i l l  soon become apparent. 

Subst i tu t ion of Eqs. (2.9) i n t o  (2.8), mult ip l ica t ion by an a r b i t r a r y  

polynomial Y and in t eg ra t ing  over t h e  u n i t  spher ica l  surface  y i e lds  t h e  s e t  

of equations f o r  t he  expansion coe f f i c i en t s  Yy, +y, ear eg. 



Let us f i r s t  consider the  equations f o r  the  coeff ic ients  Y . Any change 
Y 

of  such a component must a r i s e  from the  in t e r ac t ion  of  the  wave components. 

However, from the  de f in i t i on  of the  wave components ( k q .  2 . 9 ) ,  t he  Jacobian 

of t he  wave components vanishes;  i . e . ,  

by v i r t u e  o f  t h e  f a c t  t h a t  (see f o r  example blobson, 1955) 

where c i s  a constant t o  be defined subsequently. This r e s u l t  implies t ha t  

t h e  zonal components of t he  v e r t i c a l  mean flow w i l l  remain constant with time; 

Y = constant 
Y 

The time va r i a t i on  of t he  zonal components of the  shear  flow w i l l  a l s o  he 

determined by t h e  wave component i n t e r ac t ions ;  but i t  can be seen from (2.8) 

t h a t  these  i n t e r ac t ions  involve Jacobians of the  form J(V~T',$') which do not 

necessar i ly  vanish. The r e su l t i ng  equations f o r  the  zonal shear  flow a re ,  

from (2.8) and ( 2 . 9 ) ,  

The s i m i l a r i t y  between t h i s  equation and the  f i r s t  of (2.7) should ind ica t e  

the  i n t e n t  i n  t h e  choice o f  symbol nota t ion .  

The time r a t e  of change of  t he  components +, and +B w i l l  depend on the  

nonlinear i n t e r ac t ion  between the  components themselves and the  coe f f i c i en t s  

of t he  zonal mean and shear flows. Since the  zonal mean coe f f i c i en t s  a r e  

constants (2.10 above), i n t e r ac t ions  with them w i l l  have only a l i n e a r  e f f e c t .  

Moreover, because of  t he  e a r t h ' s  r o t a t i o n ,  l i n e a r  e f f e c t s  o f  t he  Kossby- 

Haurwitz type a r e  allowed. We may therefore  consol ida te  these  i n t e r ac t ions  

and wri te  t h e  following p red ic t ive  equations:  



Again we note  the  s i m i l a r i t y  o f  Eqs. (2.12) with t h e  corresponding Eqs- 42.7). 
<f The coe f f i c i en t s  o f  these  equations,  a s  those of (2.7) w i l l  be l i s t e d  below. 

-- -- - -___ _ _ _  - 
In  summary, then, we seG-Erom -[2.7), p . 1 r )  -and f £.+2) - t h e  %he equations - 

governing the  motion of a low-order ba ro tmpic  o r  barocl in ic  system, with 

va r i ab le s  defined respect ively  by (2.4-2.5) and (2.9) ,  may be wr i t t en  formally 

by i d e n t i c a l  expressions which a re ,  

Ga = -iauo,JIa + I g J, + 1 f y ~ y ~ 8  
Y 

Y Y "  

The dot nota t ion has been used t o  ind ica t e  time d i f f e ren t i a t ion  and the  a s t e r i sk  

r ep resen t s  conjugation. Since $a and JIB a r e  complex numbers, two addi t ional  

equations can be generated from (2.13) by taking the  conjugates o f  t he  l a s t  two 

equations.  The s ignif icance of the  dependent var iables  and the  de f in i t i ons  of 

t h e  coe f f i c i en t s  a r e  l i s t e d  i n  Table 1. Some of t h e  quan t i t i e s  l i s t e d  i n  

Table 1 require  de f in i t i on .  The eigenvalues of t he  s o l i d  harmonics described 

above Eq. (2.10) and defined a s  ca a r e  ca lcula ted  as follows: 

In  t h e  ba roc l in i c  equations which involve divergence, t he  appropriate eigen- 

value is given by da where 

The quan t i ty  Q represents  the  mean angular ve loc i ty  of t he  model atmosphere 

above t h a t  imparted by the  ear+Afs  ro t a t ion .  The parameters wa, ug describe,  

f o r  t h e  barot ropic  atmosphere, t h e  Rossby-Haurwitz wave speed. Similar ex- 

press ions  could be developed f o r  the  ba roc l in i c  model, but the  term represent- 

i ng  has not been extracted from sum of  the  constant Y components. 
Y 



Table 1. Def in i t ion  of var iables  i n  Eqs. (2 .13)  
-- -m---=S--Y - - - -  - -.-------A2=---. -- 

Parameter Barotroplc Baroclinlc 

n + in. 

Zonal expansion coefs.  

Wave expansion coef.  

Wave expansion coef.  

- 

Same 

Same 

n + i a (n  = or  f n )  
i! 6 

Zonal shear expansion coefs.  

Zonal mean expansion coefs.  

blean wave expansion coef.  

Shear wave expansion coef. 

Same 

Since we deal with complex numbers, i = /-1, and the  constants K a r e  pro- 
a6-i 

por t iona l  t o  t h e  i n t e r ac t ion  coe f f i c i en t s  I (Eq. 2 . 3 )  and have been termed 
 BY 

"coupling i n t e g r a l s w  by Baer and Platzman (1961). The in t eg ra l s  have the  form 

where t h e  funct ions  P (P) a r e  t h e  normalized Legendre polynomials defined by 

Platzman (1960). I t  should be noted t h a t  although the  indices  nu, n, may be 

chosen a r b i t r a r i l y  subjec t  t o  t h e  const ra in t  t h a t  n +I be odd, they should 



never theless  be so  chosen t h a t  Jt, and Jig a r e  time dependent; o therwise ,  t he  

so lu t ions  become t r i v i a l .  The b a s i s  f o r  t h i s  choice i s  t h a t  t h e  appropr ia te  

coupling i n t e g r a l s  do not vanish.  The conditions f o r  non-vanishing of t he  

coupling i n t e g r a l s  are d e t a i l e d  by Baer and Platzman (1961). 

B e  formal i d e n t i t y  of t h e  equations represent ing  the  two models under 

evaluat ion  i n  t h i s  inves t iga t ion  i s  not a unique occurrence. Many physical  

systems may b e e p r e s e n t e d  i n  t h i s  way (see Bacr and K i n g ,  1967) and thus t h e  

so lu t ion  f o r  one will be appl icable  t o  a l l  with a simple r e i n t e r p r e t a t i o n  of  

t h e  va r i ab l e s .  

Before proceeding t o  d iscuss  t he  so lu t ions  of  t h e  system (2.13), it w i l l  

be of i n t e r e s t  t o  see  how the  divergence i n  t h e  ba roc l in i c  system i s  r e l a t e d  

t o  t h e  mean and shear  var iables  of t h e  flow. The Eqs. (2.8) have been wr i t t en  

i n  t h e l r  rnmpacrfarm by the.-elimination of  divergence from t h e  thermodynamic 

equatlon fo r  convenience In  a r r iv lng  a t  t h e  so lu t ion  (2.13). I n  expanded form, 

t h e  equation fo r  shear v o r t i c i t y  and po ten t i a l  temperature (wr i t t en  i n  terms 

of  shea r j  a r e ,  respect ive ly ,  

where x represents  the  ve loc i ty  po ten t i a l  of  t h e  lower layer .  Since X occurs 

l i n e a r l y  i n  (2 .14)  as does T ,  we may assume t h e  spec t r a l  expansion, 

The s imples t  procedure f o r  e s t ab l i sh ing  t h e  values o f  X and X a r e  t o  sub- 
Y 6 

s t i t u t e  t he  expansions (2.9) i n t o  (2.14), mul t ip ly  (2.14) by a given Yo and 

i n t e g r a t e  both equations over t he  u n i t  sphere.  The r e s u l t i n g  equations w i l l  
a T 

then determine the  time va r i a t i on  of a given shea r  coeff ic ient  (s ince  

e x i s t s  l i nea r ly )  which may be eliminated between the  two equat ions ,  y ie ld ing 

an equation i n  a coeff ic ient  of X .  l h i s  procedure, using t h e  or thogonal i ty  

p rope r t i e s  previously discussed and the  p rope r t i e s  of t h e  Jacobians ,  y i e ld s  

t h e  following r e su l t s :  



,-d 

I t  w i l l  become apparent i n  €he next s ec t ion ,  wherein we s h a l l  determine t h e  

so lu t ion  of system (2.13), how (2.15) rnay.b-e__s~jveJ as a funcam uf time. - _ ---- -- 

3 .  Exact Solutions 

The general so lu t ion  t o  t h e  "Class L3" 3-component system has been shown 

by Platzman (1962) t o  be given i n  terms of e l l i p t i c  i n t e g r a l s .  In our d i s -  

cussian,&he system has been somewhat expanded i n  terms of degrees of freedom 

by allowing f o r  an a r b i t r a r y  zonal f l e l d .  Thus, s ince  the  wave components 

( u , B )  a r e  both complex, they y i e ld  four  real dependent var iables ,  whereas t h e  

zonal f i e l d  (represented by (2 .4 )  o r  (2 .9 ) )  y i e ld s  N dependent va r i ab l e s .  A l l  

t he  N zonal var iables  need not be ac t ive ,  however, a f ac t  which depends on the  

non-zero character  of  a as may be seen from the f i r s t  of Eqs. (2.13). On t h e  
Y 

assumption t h a t  t he re  a r e  R ! N va r i ab l e  zonal coe f f i c i en t s ,  we see  t h a t  t he  

system under consideration has R + 4 degrees of  freedom. We s h a l l  show t h a t  

by a simple i n t eg ra t ion  o f  t h e  zonal equations,  t h i s  system can be reduced t o  

a 3-component system s i m i l a r  t o  t h a t  described by Platzman. 

A so lu t ion  of system (2.13) may be determined through the  use o f  r e a l  

va r i ab l e s  by descr ib ing t h e  complex wave coe f f i c i en t s  using amplitude and 

phase. Noting t h a t  t h e  zonal coe f f i c i en t s  a r e  r e a l  and thus a r e  represented 

by amplitude only, we may make the  following de f in i t i ons :  

Using t h e  var iables  Ggp as defined i n  Table 2 and the  de f in i t i ons  (3.1),  we 

may r ewr i t e  t he  system (2.13),  a f t e r  taking r e a l  and imaginary p a r t s ,  i n  t e n s  

of  r e a l  var iables  alone.  



i) = -G B s i n  8 

- -  - 
6 Ba a 

i = G  B s i n e  
a a8 6 

It 1s interesting t o  note t h a t  the  solu t ion  does not depend on t h e  individual  

phase of  each wave, but only on the  phase d i f ference  of  t he  two waves. Ihus,  

t h e  degrees of freedom i n  t h e  system a r e  ac tua l ly  one l e s s  than previous ly  

s p e c i f i e d ,  - or  Z - + - 5 .  - - 
- - -  - - 

Table 2 .  Evaluation of  t he  var iables  G6,, g6,, h6, 

. . .: - - G ~ c  g6 E 

Consider now the  zonal component with t h e  smal les t  index y (because the  

zonal coe f f i c i en t s  a r e  r e a l ,  t he  indices  y a r e  a l s o  r e a l )  f o r  which ayf 0, 

and denote  t h i s  value of y by n.  This choice i s  completely a r b i t r a r y ,  but 

a s  w i l l  b e  seen i n  t h e  sequel ,  it i s  a l so  completely general .  We t h e n  note 

from t h e  f i r s t  of Eqs. (3.2) t h a t  each y-equation can be r e l a t e d  t o  t h e  n- 

equat ion  by the  d i f f e r e n t i a l  equation, 



o r ,  on in t eg ra t ion ,  

?he quan t i t i e s  s  depend on the  l n l t i a l  values of the  var iables .  Since al l  
Y 

amplitudes and phases a r e  known initially, the constants o f  In tegra t ion  may 

be uniquely determined; we s h a l l  de fe r  the  de t a l l ed  dependence of these  con- 

s t a n t s  on t h e  i n i t i a l  conditions u n t i l  the  end of t h i s  sec t ion .  

'Worn 13.3) we note t he  l i n e a r  dependence of B on En .  Subst l tu t lng  t h i s  
1 

r e l a t i onsh ip  i n t o  t h e  equations f o r  GdE (Table 21, we have the l l n e a r  depen- 

dence of  GAE on B a s  follows: 

where t h e  dependence of g6€ and h*,, on the  physical  parameters of the system 

have been defined i n  Table 2 .  For a complete evaluation of these  parameters, 

reference  must be made t o  Table 1. 

Subs t i t u t ion  of  (3 .4)  and t h e  r e l a t i ons  i n  Table 2 i n t o  ( 3 . 2 )  y ie lds  t h e  

, closed system of  first o rde r  d i f f e r e n t i a l  equations i n  time in  t he  four  var i -  

ables  Bn, Ba, B and 6 as follows: 0 

Bn = a B B s i n  6 
n a 6 

. - -  B6 Bu 
= -v+g ( (heg+gas~n)  r a - (h5a+gga~n) ) cos B 

where 

If t h i s  system is soluble ,  we should be able ,  i n  p r inc ip l e ,  t o  reduce it 

t o  a d i f f e r e n t i a l  equation i n  one dependent va r i ab l e  alone.  Thus, without l o s s  

o f  genera l i ty ,  we may say t h a t  



We then note,  f o r  example, 

- 6.B -= B'a B B s i n  0 ----.-~-L&JL-- B n a 0 _- _--- . - -  - 

- -  - - 

where the  prime aenotes d i f f e ren t i a t ion  with respect  t o  B,, a n h v e  have sub- + 

c t i t u t e d f r o m s t  of k s .  (3.5). Applying a s imi l a r  d i f f e ren t i a t ion  - -. t o  - -. -- - 
Ba,  s u b s t i t u t i n g  i n t o  the  second and t h i r d  of Eqs. (3.5) and i n t e g r a t i n g  with 
- 

respect  t o  Bn, we have the quadrat ic  dependence of Ba, BB on Bn as follows; 

In (3.6) the  quan t i t i e s  D;, Do a re  constants o f  i n t eg ra t ion  depending on i n i t i a l  

values and *.ill be evaluated subsequently. I f  we can now es t ab l i sh  9(Bn) ex- 

p l i c i t l y ,  iie may der ive  a d i f f e r e n t i a l  equation i n  Bn alone from the f i r s t  of 

( 3 .  !tultiplying the  last of (3.5) by s i n  8, and subs t i tu t ing  from the  second 

and t h i r d  of these equations we get ,  

Using t h e  f i r s t  of (3.5) and combining terms, we a r r ive  a t  t he  equation, 

which may be in tegra ted t o  y i e ld  a so lu t ion  f o r  0 i n  terms of B,, as f o l l o w ~ ;  

anBoBO cos 8 = G(9n) 

where K is  a constant of in tegra t ion.  

I f  we now square the  first of Eqs. (3.5),  replace  sin28=1-cos20 and sub- 

s t i t u t e  f o r  cos e from ( 3 . 7 ) ,  we a r r i v e  a t  t he  d i f f e r e n t i a l  equat ion f o r  Bn(t) 

i n  t h e  form, 



Since the  right-hand s i d e  of (3.8) is a q u a r t i c  function i n  Bn, t he  solu-  

t i o n  may be determined i n  terms o f  e l l i p t i c  funct ions .  With t h e  use of 

(3.6) and ( 3 . 7 ) ,  t h e  coe f f i c i en t s  bi may be defined a s  follows: 

The constants of i n t eg ra t ion  necessary f o r  evaluat ion  of  t h e  above co- 

e f f i c i e n t s  a r e  deteqnined from t h e  problem constants  (Tables 1 and 2) and 

i n i t i a l  values of t h e  dependent var iables  denoted by zero subsc r ip t s ,  and 

a r e  l i s t e d  below: 

G = a B  B c o s B  o n cro 60 o 

?he general  so lu t ion  of (3.8) depends on the  values of  t he  coe f f i c i en t s  given 

i n  (3.9). The complete so lu t ion  i s  presented i n  Appendix A .  For purposes of 

t h e  t e x t ,  it is  only necessary t o  know t h a t  t h e  so lu t ion  Bn(t) may be wr i t t en  



The constants A ,  u, w depend on the  problem cha rac te r i s t i c s  and t h e  i n i t i a l  

condi t ions  and are defined i n  Appendix A; w represents the  nonl inear  frequency 

of the  per iodic  e l l i p t i c  s ine  functions (sn) whose proper t ies  a r e  described 

i n  many t ex t s  (see, f o r  example, Caley, 1961). The solut ion t o  Eqs. (3.5) i s  

completed by solving (3.7) f o r  0, 
L 

.- -- 
3 = t an - '  (3.12) 

G 

I t  may be in t e re s t ing ,  however, t o  see  the  solut ion t o  the  ind iv idua l  

phase angles t i)., respect ively .  Since 8 i s  known, only one o f  t h e s e  solu- 
3' ; 

t l o n s  i s  necessary. wri t ing the  imaginary pa r t  of the  second of Eqs. (2.13) 

a f t e r  substitution of (3 . l ) ,  we have f o r  0 
6 '  

Since both G and B- a re  known functions o f  Bn, and Bri i s  given by (3.11) as a 
P 

funct ion of time, t h i s  equation may be in tegra ted formally. However, t he  in-  

t e g r a t i o n  involves e l l i p t i c  i n t eg ra l s  of the  t h i r d  kind and a d e t a i l e d  d i s -  

cussion i s  therefore  deferred t o  Appendix B;  the  solut ion may be w r i t t e n ,  

s i ( t )  = G B C + A L +  1 (c  . F ( c  wt) + c H j ~ ( c j , w t ) )  (3.14) 
j= l  FJ j' 

In (3.14), t he  coeff ic ients  a r e  described i n  Appendix B i n  terms o f  i n i t i a l  

values and problem constants ,  the  functions F a re  elementary i n t e g r a l s ,  and 

t h e  funct ions  H a r e  e l l i p t i c  i n t eg ra l s  of the t h i r d  kind (see Caley, 1961). 

I t  is of p a r t i c u l a r  i n t e r e s t  t o  note  from (3.14) t h a t  t he  phase ang les  Ba, 

Og, do no t  necessar i ly  have t h e  same period a s  the  amplitude o s c i l l a t i o n s  

(character ized by the  frequency w) bu t  merely have t h i s  o s c i l l a t i o n  super- 

imposed on them. If we denote the  cha rac te r i s t i c  period o f  the  amplitude 

f l u c t u a t i o n  as T, where 

and K i s  t h e  complete e l l i p t i c  i n t e g r a l  of the  f i r s t  kind, then F (wT) and 

H (wT) do not  necessar i ly  vanish,  and the  phase periods may be c a l c u l a t e d  from 

t h e s e  va lues  and Al. Furthermore, because of t he  probable d i s p a r i t y  between 



these  periods and T, t he  spac i a l  d i s t r i bu t ion  of  the  flow f i e l d  need never be 

repeated although the  energy in  each component i s  repeated with period T. This 

point  w i l l  be discussed i n  fu r the r  d e t a i l  subsequently. 

For reference t o  the ensuing d iscuss ion,  we now r e i t e r a t e  t h a t  t he  complete 

so lu t ion  t o  Eqs. (2.13) f o r  e i t h e r  the  barot ropic  o r  barocl in ic  model a r e  given 

by (3.11), (3 .3 ) ,  (3 .6) ,  (3.12) and (3.14). 

4.  I n i t i a l  conditions and Truncation 

Characteristic.properties o f  t h e  m l u t i a n  (3.11) and consequently t he  

behavior of the  system (2.13) as it r e f l e c t s  the  t r u e  atmosphere w i l l  be des- 

cribed i n  terms of t he  i n i t i a l  configuration of  t he  system t o  be s tudied ,  s ince  

(2.13) i s  represented a s  an i n i t i a l  value problem. However, since we a r e  deal -  

i ng  with a h ighly  truncated system, t he  character  of the t runcat ion  applied w i l l  

a l s o  a f f e c t  t he  so lu t ion .  We may therefore  s t a t e  t ha t  the  following parameters 

a r e  necessary as i n i t i a l  conditions f o r  so lu t ion  of  (2.13). 

(a) Total  avai lable  k i n e t i c  energy 

(b) Kinetic energy i n  t h e  wave 

(c) Lat i tudinal  d i s t r i b u t i o n  of zonal flow 

(d) Wave number and p r o f i l e  

These parameters may be var ied ,  thereby yie ld ing solu t ions  t o  (2 .13)  f o r  d i f f e r -  

e n t  atmospheric conditions.  Aside from the  spec i f i ca t ion  of  these  i n i t i a l  

parameters, however, it is necessary--as indica ted  above--to e s t a b l i s h  t run -  

ca t ion  by determining t h e  wave vectors a, P and the  allowed range of y. For 

consistency i n  e s t ab l i sh ing  d i f f e r e n t  so lu t ions ,  we s h a l l  always use f o r  t run-  

ca t ion  t h e  wave vectors  given by the  i n i t i a l  representa t ion  together  with a 

zero  i n i t i a l  phase angle f o r  both wave components cr and U. The l a t t e r  con- 

d i t i o n  may be made completely general  i f  t he  i n i t i a l  spec i f i ca t ion  of  t h e  zonal 

f i e l d  includes components which may be ac t ive  but begin with zero amplitude. 

The wave t runcat ion  i s  d i r e c t l y  r e l a t e d  t o  t he  i n i t i a l  spec i f i ca t ion ,  parameter 

(dl,  and cannot be  a l t e r ed .  

Let us now consider the  i n i t i a l  representa t ion  i n  somewhat more d e t a i l .  

Following the  presenta t ion  used by t h e  w r i t e r  (1964), we w i l l  def ine  the  stream 

f i e l d  as ,  

$ = g F ( u )  cos IIh II I I k  



where gL represents  an amplitude f a c t o r  f o r  t he  zonal motion o r  t he  wave, and 

F (p) descr ibes  t he  i n i t i a l  l a t i t u d i n a l  d i s t r i b u t i o n .  The stream coe f f i c i en t s  e 
i n  (4.1) may be determined by applying the  or thogonal i ty  condition f o r  t he  

Legendre Polynomials and r e s u l t  i n  t h e  values,  

where v w i l l  represent a ,  i f o r  efO. The k i n e t i c  energy i n  t he  zonal f i e l d  and 

t h e  wave may be i i r i t t e n  

The d e t a i l s  of the energet ics  a r e  discussed i n  Section 5. Final ly ,  i f  t h e  

energy and t runca t ion  a r e  spec i f i ed ,  t he  amplitude f ac to r s  may be computed 

as fo l lows:  

I t  should be noted t h a t  t h e  zonal energy represents  t h e  shear  flow and the  a 

and [3 coe f f i c i en t s  represent  mean and shear  i n  t he  wave f o r  t h e  ba roc l in i c  

problem, whereas t he  a and 8 coe f f i c i en t s  represent two sepa ra t e  wave compo- 

nents  f o r  ba ro t rop ic  flow. 

In terms of  (4.1) - (4.4),  we may now discuss  t h e  d e t a i l s  of  t h e  i n i t i a l i -  

z a t ion .  The process out l ined i s  chosen so t h a t  sys temat ic  v a r i a t i o n  of para- 

meters i s  e a s i l y  achieved. I t  should be noted,  however, t h a t  t h e  numerical 

s p e c i f i c a t i o n  of a l l  t he  required stream coe f f i c i en t s  is s u f f i c i e n t  a s  i n i t i a l  

condi t ions .  

(a) Total  ava i l ab l e  energy 

We have chosen t o  represent  t h e  t o t a l  avai lable  energy t o  t he  system by 

assuming t h a t  a l l  t he  i n i t i a l  energy r e s ides  i n  t he  zonal flow described by a 



spec i f i ed  p r o f i l e  and an amplitude such t h a t  

The d i s t r i b u t i o n  G i n  e f f ec t  determines the  f ac to r s  A from the  r e l a t i onsh ip  
Y 

between t h e  stream f i e l d  and t h e  zonal wind 

and t h e  second of  Eqs. ( 4 . 2 ) .  If we no* s e t  

we nay compute the  i n i t i a l  zonal stream coe f f i c i en t s  from the  f i r s t  of (4 .2 )  

and the  zonal k i n e t i c  enezgy (here t h e  t o t a l  energy) from the  f i r s t  of ( 4 . 3 ) .  

Thus we s t a t e  t h a t  t he  k i n e t i c  energy of  t he  system w i l l  be given a s ,  

following the  ca l cu l a t ion  procedure out l ined above. For t he  ba roc l in i c  prob- 

lem, t h e  p r o f i l e  and amplitude spec i f i ed  by (4.5)  a r e  f o r  t h e  shear  flow, and 

t h e  zonal mean flow (not a c t i v e  i n  time) may be a r b i t r a r i l y  spec i f i ed .  Uepend- 

i n g  on t h e  funct ion  G,  some of  t he  energy computed from (4.6) may not  be ava i l -  

ab l e  f o r  energy exchange, as may be seen from (2.13) when a = O .  Thus we may 
Y 

de f ine  t h e  i n i t i a l  ava i l ab l e  k i n e t i c  energy, 

K = K-K 

(4 - 7) 

KU = 1 cY$$ y only f o r  a =O 
Y Y --a I 

For t h e  ba roc l in i c  problem, it would be more appropr ia te  t o  include the  avail- 

ab le  p o t e n t i a l  energy a l so ,  s ince  t h e  ava i l ab l e  k i n e t i c  energy may change by 

t r a n s f e r  of p o t e n t i a l  energy (see Section 5 ) .  Such a computation may be e a s i l y  I 
achieved with t h e  information presented above. I 

(b) Kinetic energy i n  t h e  wave 

With the  determination of  t h e  t o t a l  ava i l ab l e  energy coaputed f ro% the  

s p e c i f i c a t i o n  of  the  zonal wind amplitude Go and p r o f i l e  G ,  we may descr ibe  the  

k i n e t i c  energy i n  t he  wave r e l a t i v e  t o  t he  t c t a l  encrgy by the parameter p ,  



For f ixed  K the  energy may be pa r t i t i oned  i n i t i a l l y  between the zonal flow j 
and t h e  wave, d i f f e ren t ly  f o r  d i f f e ren t  values o f  p .  Once p i s  spec i f i ed ,  K, 

i s  e a s i l y  ca lcula ted  f ~ o m  (4.8). Given t h e  wave p r o f i l e  (A,,A 0 ) we may then 

c a l c u l a t e  the  wave amplitude from (4.4) and f i n a l l y  the  wave stream coe f f i -  

c i e n t s  from (4.2). Furthermore, s ince  the  zonal k i n e t i c  energy is given from i 

t h e  tGTa1 - e t ~ e r g p m + - U - i n S h e  axee ,  _ - 
- -- 

t h e  zonal amplitude go(p)  and the  zonal stream coe f f i c i en t s  a re  computed i n  a 

manner iden t i ca l  t o  the  ca lcula t ion of the  wave coeff ic ients ,  using t h e  known 

values o f  the  A . 
Y 

(c) Lat i tudinal  d i s t r ibu t ion  of zonal flow 

The l a t i t u d i n a l  d i s t r i b u t i o n  of zonal flow implies a spec i f i ca t ion  of the  

funct ion G(v] as may be seen from (4.5).  There a r e  a number o f  ways i n  which 

t h i s  may be accomplished, but perhaps the  most general form would be a poly- 

nomial i n  p=sin 0.  Since, however, we wish the  zonal f i e l d  t o  be  symmetric 

about the  equator (an even function) and s ince  we furthermore wish t o  have a 

s e r i e s  which is e a s i l y  represented by a f i n i t e  s e r i e s  of Legendre Polynomials, 

we choose the  form, 

The coe f f i c i en t s  ii may be chosen s o  t h a t  t he  s e r i e s  represents  t h e  des i red  

zonal flow data. In tegra t ing G a s  indicated i n  the  equation following (4.51, 
-. 

we f i n d  

Now s i n c e  1iZi+l  may be represented i n  terms of a s e r i e s  of normalized Legendre 

Polynomials (see Platzman, 19601, 



t h e  function Fo may a l s o  be represented as  a s e r i e s  of Legeridre Polynomials 

o f  t he  form 

F ina l ly  we have from (4.2) t h a t  t h e  parameters which specify p r o f i l e ,  a r e  

given a s  

Two zonal p r o f i l e s  have been s tudied  and both apply f o r  the  ba ro t rop ic  

problem. One has been designed t o  conform t o  t he  observed, normal wind p r o f i l e  

f o r  January a t  500 mb and t h e  o the r  represents  a s p l i t - j e t .  The observed j e t  

and the representa t ions  used a r e  presented on Figure 1. To e s t a b l i s h  t h e  ob- 

served j e t ,  it has been more convenient t o  use a l e s s  general  r ep re sen ta t ion  o f  

t h e  form, 

t where t h e  conversion of (4.12) from (4.9) may be achieved by d i r e c t  expansion . 
The d i s t r i b u t i o n  (4.12) allows f o r  a j e t  with maximum around 30°N, and a choice 

of  a=0.2  w i l l  e s t a b l i s h  t h e  equator ia l  e a s t e r l y  with magnitude one - f i f t h  t h a t  

of t h e  m a ~ i ~ ~ e s f e g l ~ ,  j-eE*. ramparable-*-+he vbserved prof  i I 8 .  T h e  coeff i- 

c i e n t s  %. f o r  t h i s  p r o f i l e  (denoted A-3) a r e  l i s t e d  i n  Table 3 .  

The double j e t  ( D - J )  p ro f i l e  has been chosen from the  r ep re sen ta t ion  

G ( L I ) , , ~ =  (sin24@ + 2sin2@) cos @ 

and is descr ibed i n  Figure 1. ?he coe f f i c i en t s  9 .  f o r  t h i s  p r o f i l e  a r e  l i s t e d  
J 

i n  Table 3 .  

tTite w r i t e r  has developed a general  formula f o r  conversion of involved 
t r igonometr ic  formulas t o  s e r i e s  of  t h e  form (4.9), bu t  t h e  d e t a i l s  of t h i s  con- 
vers ion a r e  i r r e l e v a n t  here.  



ZONAL PROFILES 

Fig. 1 Zonal wind profiles for a 500 mb distribution and two 
distributions selected for computation, plotted on a relative 

scale vs. latitude. 

Table 3. Coefficients &. I for the atmospheric-jet and split-jet profiles. 

A-J D-J j 

(d) Wave number and profile 

The constraint imposed by the low-order system allows interaction between 

only one planetary wave and a zonal flow. However, the selection of planetary 

wave number is arbitrary and must be set as an initial condition. We must 



furthermore speci fy  the  prok'ilc par:inlctcr> .I arid :\ c i t h ~ s r  J ~ r ~ , c t  l y  01% t l~ roug l~  
i5 

a  p r o f i l c  function I:;(g); t h e i r  in tcr j l rc ta t iun  wit11 rcgard t o  t l ~ r  I ~ a r o t r o ~ ~ i c  o r  

ba roc l in i c  problem has already been mad? cvidcnt .  ?he p r o f i l e  fu r>c t i c~~ l  I I I ; ~ ~  I I V  

i n t e rp re t ed  physica l ly  a s  the  l a t i t u d i n a l  d i s t r i b u t i o n  of thu mcr id ionnl  wind 

component a t - t h e  longitude where the  wavc zonal wind conlponcnt van i s l i c s .  

I t  is .immediately apparent t h a t  t h c  wave reprcscnta t ion  is considerably 

more const ra ined than t h a t .  f o r t h c  m n a l  wind f i e l d .  Moreover, s i n c e  the  com- 

ponents f o r  t h e  ba roc l in i c  problem a r e  e s s e n t i a l l y  independent, o n c  needs only 
. , 

- 
t o  -theLd. m l c n  a 
a -- r c  t o  be inves t i -  

gated.  A somewhat g rea t e r  degree of  freedom i s  ava i l ab l e  f o r  the  b a r o t r o p i c  

problem, wherein one may ad jus t  p r o f i l e s  by a  combination of the a and 6 con- 

t r i b u t i o n s .  Consider, f o r  example, t h e  p r o f i l e  

a  r ep re sen ta t ion  used by the  w r i t e r  i n  a  previous s tudy (Baer, 1964) .  Such a  

p r o f i l e ,  with spec i f i ca t ion  of  re and q,, may be e a s i l y  var ied  f o r  d i f f e r e n t  

p l ane t a ry  wave numbers. On the  assumption t h a t  we wish t o  i n v e s t i g a t e  t h e  non- 

l i n e a r  i n t e r a c t i o n  of t h e  longest  allowed waves i n  t h e  l a t i t u d i n a l  d i r e c t i o n  

(given t h e  p lanetary  wave number i ) ,  t h a t  t he  wave should i n t e r a c t  w i t h  t h e  

lowest a c t i v e  component o f  t he  zonal f i e l d  (y=3) ,  and t h a t ,  fur thermore ,  (4.14) 

can indeed be  represented by no more o r  l e s s  than two associa ted  Legendre 

Polynomials, we f i n d  from the  de f in i t i on  of t he  polynomials (Jahnke and Emde, 

1945) t h a t  t h e  following r e s t r i c t i o n s  must be imposed; 

where s a  may take  on t h e  values 0 o r  1 as  des i red  -- ---- " --..__- ,---__3---~*~i=far qg 
fmm (4.-15) i n  terms of t h e  known quan t i t i e s  sn. and a ,  we f ind  f o r  t h e  p r o f i l e  

funct ion ,  

Expressing (4.16) i n  terms of P and P and s u b s t i t u t i n g  i n t o  t he  s econd  of 
6 

(4 .2) ,  t h e  i n t e g r a t i o n  y i e ld s  I 



WAVE PROFILES 

Fig. 2 Wave profiles for wave ~ = 3  including different combina- 
tions of the polynomials P&, P!, presented on a relative scale 

vs. latitude. 



To understand the  l imi t a t ions  placed on the  p r o f i l e  (4.16), severa l  o the r  

p ro f i l e s  have been t e s t e d  by barot ropic  ca lcula t ion.  Figure 2 descr ibes  va r i -  

ous p r o f i l e s  f o r  wave t = 3  including FQ (4.16) f o r  s Q = O ,  and var iable  coe f f i -  

c i en t s  f o r  n =4, n =8. The amplitudes of t he  coe f f i c i en t s  a r e  l i s t e d  on the  
a 8 

f igu re  and need not be duplicated i n  the  t e x t .  I t  is noteworthy, however, t h a t  

(4.16) describes t h e  longest wave--as intended--and t h a t  o the r  allowed p r o f i l e s  

can be remarkably d i f f e r e n t ,  poss ibly  leading t o  d i f f e r e n t  solut ions  o f  (2.13). 

Other p r o f i l e s  have a l so  been used f o r  ca lcula t ion and w i l l  be discussed sub- 

Si3q"mtfy. - 

5. Energy Considerations 

We have seen from Section 3 t h a t  the  e n t i r e  solut ion i s  dependent only on 

the  time var i a t ion  of t h e  lowest ac t ive  zonal coqonen t ,  Bn. Thus it should be 

poss ible  t o  descr ibe  the  energy (both k i n e t i c  and po ten t i a l )  a s  well a s  the  

energy changes and the  t r a n s f e r  processes i n  terms o f  t h i s  var iable  a l so ,  and 

consequently i n  terms o f  time. 

'Ihe k i n e t i c  energy pe r  un i t  mass f o r  t he  models considered herein and 

described by (2.2) and (2.8) may be wr i t t en  a s ,  

where dA represents  an element o f  a rea  on the  un i t  sphere.  Although T ,  which 

describes the shear  stream f i e l d  f o r  t he  ba roc l in i c  problem (see a l s o  2.9), i s  

undefined f o r  t he  barnt ropic  problem, we may redef ine  the  barot ropic  var iables  

s o  t h a t  (5.1) w i l l  be applicable t o  both cases.  With reference t o  (2.4) and 

(2.5), l e t  $ i n  (5.1) represent t he  a-wave and the  inac t ive  zonal components 

(those components f o r  which a =O). If we now l e t  T represent  t h e  8-wave 
Y 

t h e  remaining (active) zonal components, (5.1) w i l l  descr ibe  a l s o  the  energy 

i n  the  ba ro tmpic  case except f o r  n =n a disallowed t runcat ion (see Table 1) 
a 6 '  

l h e  avai lable  po ten t i a l  energy necessary t o  s a t i s f y  t h e  energy conserva- 

t i on  conditions appl icable  t o  (2.8) is given a s  

where r2 has been defined i n  Section 2. Since the re  i s  no ava i l ab le  potent ia l  

energy i n  t h e  barot ropic  case ,  we def ine  r2 (barotropic) = 0. 

Not only i s  t h e  energy d i s t r ibu ted  between po ten t i a l  and k ine t i c ,  but i n  

each of these  ca tegor ies  some of the energy i s  i n  the  zonal flow and some i n  
. . 

t he  p lanetary  wave. The d i s t r ibu t ion  o f  the  energy i n  a l l  ca tegor ies  may be 

determined by introducing the  expansions f o r  t h e  stream f i e l d ,  given by (2.4), 



(2.5) o r  (2 .9 )  i n t o  (5.1) and (5.2) and performing the  in tegra t ion.  The 

r e s u l t s  are  a s  follows: 

In (5.3), i( represents  the  k i n e t i c  energy i n  the  zonal flow which does not 

change with time (the mean zonal flow fo r  the  barocl in ic  case) ,  K Z  represents  

the  KE of the  changing zonal flow ( the  zonal shear  flow f o r  the  ba roc l in i c  

case ) ,  K and K represent the  Kt,  i n  t he  a- and 6-waves respect ively ,  PZ repre- 
t 

sen t s  the  P t  i n  the  zonal shear  flow and P is the PE i n  the  6-wave (shear flow]. 
B 

Clear ly  the  l a s t  two quan t i t i e s  do not e x i s t  f o r  t he  ba ro tmpic  case.  Apply- 

ing the  relations fo r  amplitude dependence on Bn from (3.3) and (3.6), we have, 

R = ly2 (y 's  f o r  which a =0, t h e  barot ropic  case) ; Y Y  

'the coc f f i c i cn t s  used i n  (5.4) wlrich depend on the  t runcat ion and i n i t i a l  con- 

d i t i o n s  a rc  l i s t c d  in  'l'ablc 4. 

We note,  in~mediatcly, t h a t  t he  po ten t i a l  and k i n e t i c  energies i n  the  8-wave 

(wave cllcrgy i n  thc  shear flow) a r c  r e l a t ed  t o  each o the r  by a f ixed constant ,  
r%c- 1 , f o r  a l l  time. Similar ly ,  by def in ing a mean eigenvalue f o r  the  tonal  

flow, c ( t ) ,  wc may show t h a t  t he re  i s  a r e l a t ionsh ip  between t h e  zonal k i n e t i c  

and po ten t i a l  encrgics.  Although t h i s  r e l a t ionsh ip  i s  time dependent, we may 

e s t a b l i s h  l imi t s  on the  r a t i o .  From the  d e f i n i t i o n  of the  eigenvalues C Y 



(Section 2 ) ,  we note t h a t  they a re  posi t ive  and monotonically increasing f o r  

increasing n . Thus c i s  bounded by :,LC values 
Y Y 

c (min) < S (t) ( c (max) 
Y Y Y 

which i s  r ead i ly  v e r i f i e d  from (5.4) .  Thus the  po ten t i a l  energy i n  the  zonal 

shear flow is confined by the  k i n e t i c  energy in  the  shear flow. We s h a l l  d i s -  

cuss the  s ignif icance o f  t h i s  r e s u l t  l a t e r  i n  t h i s  sect ion.  

Table 4. Evaluation of the coe f f l c l en t s  k S E  
-?-_ _ _ .__ -__ -  _ _ - -  _ - - = _ _ - _ _ ?  - -- -- -- - -- - - - 

2 1 0 

I f  we a r e  in t e re s t ed  i n  t h e  combined energy i n  d i f f e r e n t  components (zonal 

o r  wave) it is simply necessary t o  replace the  eigenvalue cy by dy.  Thus, f o r  

example, 

The formulas f o r  t he  energy components (5.4) a l l  depend on the  dependent 

var iable  B which i n  t u r n  has been described i n  Section 3 as a per iodic  function 

of time. I t  can be seen t h a t  the  energy components have t h e i r  maxima and minima 

a t  t he  same times as the  function Bn. They have, moreover, o ther  possible ex- 

tremes which a r e  l i s t e d  i n  Table 5. 

For i n i t i a l  conditions appropriate t o  the  ea r th ' s  atmosphere, the  extremes 

l i s t e d  i n  Table 5 do not seem t o  be a t t a inab le .  Tnerefore, i n  t h e  following 

discussion, we s h a l l  conceritrate our a t t en t ion  on the  energy extremes which 

correspond t o  t h e  extremes of Bn. Since we s h a l l  suggest i n  Sectiori i, t h a t  

the  i n i t i a l  phase angle between the  a- and b-wave may be c h ~ s c n  as t -O=O v i th -  

out l o s s  of genera l i ty ,  f o r  t h i s  condition the  f i r s t  of { ~ . 2 ;  silgws tLdt B 



must have an extreme a t  t = O  and, s ince  it i s  per iodic  with period 4K/w=T, 

i t  w i l l  a l s o  have an extreme a t  t=T/2 (see Appendix A f o r  a d e t a i l e d  d i s -  

cussion o f  the  constants) .  

Table 5.  Extremes of energy components. 
-- - - - - -- - --- __--._I - 

C~mponent Bn f o r  Extreme 

The unlque property of t h e  nonl inear  so lu t ion  ava i l ab l e  here is the  time 

v a r i a t i o n  of t he  amplitudes of  t he  individual  components (or ,  equ iva l en t ly ,  

energy components), a property not  ava i l ab l e  from the  l i nea r i zed  equa t ions .  

The maximum changes of these  amplitudes may be found by ca l cu l a t ing  t h e  d i f -  

ference  between t h e i r  maximum and minimum points .  With reference  to energy 

components, such a ca lcula t ion  w i l l  s pec i fy  t he  amount of  energy which any 

component can exchange with t he  o the r  ac t ive  components. For p r e c i s i o n  we 

s h a l l  def ine  energy range of any component a s  t h e  value a t  i t s  first extreme 

minus t h e  value a t  i t s  second extreme. Since we have a l ready seen t h a t  t h e  

energy components have t h e i r  extremes a t  t h e  same times as Bn, and furthermore 

t h a t  Bn has  extremes a t  t=O and t=T/2,  we have f o r  any energy component E,  

Let u s  now define t h e  mean and di f ference  of  t h e  va r i ab l e  Bn a t  its extremes, 

a s  wel l  a s  s i m i l a r  quan t i t i e s  f o r  t he  time dependent eigenvalue c Y (t) as  



The l a t t e r  two de f in i t i ons  a r e  necessary t o  descr ibe  the  range of the  zonal 

k ine t i c  energy. I f  we now apply t h e  range operator  (5.5) t o  the  d i f f e ren t  

energy components ( 5 .4 ) ,  we may express the  maximum energy exchange i n  each 

component i n  terms of the  mean and di f ference  of the  bas i c  var iable  Bn 

(5.6) a s  follows: 

Since the  maximum exchange o f  energy described by (5.7) depends on the  coe f f i -  

c i e n t s  k defined i n  Table 4,  we see  t h a t  the  i n i t i a l  values and t h e  system 
6~ 

t runcat ion a r e  o f  primary importance i n  determining what these exchanges w i l l  

a c tua l ly  be. Furthermore, one may normalize t h e  exchange values l i s t e d  above 

by t h e  i n i t i a l  value of the  time-dependent energy, thereby determining t h e  per- 

cent  of a c t i v i t y  o f  each component. Because of t h e  r e l a t i v e l y  d i f f e r e n t  magni- 

tudes o f  the  k i n e t i c  and po ten t i a l  energies,  it i s  preferable  t o  normalize the  

k i n e t i c  energies by the  t o t a l  i n i t i a l  KE and the  po ten t i a l  energies by t h e  

t o t a l  i n i t i a l  PE. The interchange between t h e  d i f f e r e n t  components of energy 

and i t s  magnitude may then be r ead i ly  s tudied a s  a function of the  i n i t i a l  

values  and the  s p e c t r a l  t runcat ion.  

As an example, a s  AB approaches zero, we see  t h a t  t he  energy ranges approach 

zero  (except f o r  the zonal k ine t i c )  and thus t h e  system under which t h i s  con- 

d i t i o n  p reva i l s  (AB -+ 0) may be described by l i n e a r  procezses. The non-vanish- 

i n g  of t h e  zonal  k i n e t i c  en~r^gy-implies a naal inear  t r a n s f e r  amongst t he  ind i -  

v idual  zonal components. I f ,  however, only one zonal component i s  allowed t o  

e x i s t ,  Ac w i l l  vanish and AK w i l l  be proportional t o  AB.  Furthermore, under z 
t h i s  l a s t  assumption, t he  k i n e t i c  and po ten t i a l  energies  of t he  zonal flow w i l l  

b e  propor t ional  by a time independent constant s ince  c ( t ) = c  =constant.  
Y Y 

By using standard atmosphere temperature values ,  one f inds  t h a t  t he  non- 

dimensional constant r2 = 200. To measure the  r e l a t ionsh ip  o f  k i n e t i c  t o  

p o t e n t i a l  energy, we must compare r2 with c f o r  t h e  wave energy and with c 
6 Y 

f o r  t h e  zonal energy. Recalling t h a t  t he  eigenvalues (c ) arc  given approxi- 
Y 

mately by the  square o f  t h e  l a t i t u d i n a l  index of t h e  s o l i d  h~rmonics  (n ) ,  we 
Y 

s e e  t h a t  t he  two forms of energy a r e  roughly equivaler!t f o r  indice, n r  13-14.  



Charac te r i s t i c  zonal p r o f i l e s  of t h e  atmosphere including j e t s  a re  well 

represented by coe f f i c i en t s  with eigenvalues l e s s  than cr=nr(nr+l) and hence 

we may conclude t h a t  s ince  c <c  the  zonal po ten t i a l  energy w i l l  always have 
Y r' 

more energy than t h e  zonal k i n e t i c .  More s p e c i f i c a l l y ,  i t  is  ra re ly  necessary 

t o  include zonal indices  n >9. %us we may say t h a t  i n  the  models considered 
Y 

i n  t h i s  paper, 

KZ < iPZ 
- - 

which i s  a l so  observed i n  t h e  atmosphere (Wiin-Nielsen, 1967) and i n  l e s s  

t runcated general c i r cu la t ion  models (Ph i l l i p s ,  1956; Snagorinsky, 1965, e t c . ) .  

For the p lanetary  waves, we see  t h a t  t he  po ten t i a l  energy o f  the  longest 

waves w i l l  be considerably g rea te r  than the  k ine t i c ,  whereas f o r  sho r t e r  waves, 

11>12, t he  k ine t i c  energy w i l l  exceed the  po ten t i a l .  For very shor t  waves, t he  

k i n e t i c  energy w i l l  dominate, but  t he  approximations made i n  der iv ing t h i s  

system (Section 2) may not  be appropriate t o  such small s ca l e s .  

The average proper t ies  of t h e  energy exchange a r e  described by (5.7). 

However, s ince  we know the  so lu t ion  f o r  a l l  time, it is poss ible  t o  describe 

t h e  instantaneous exchange a t  any time. For convenience of nota t ion,  we s h a l l  

def ine  a time dependent va r i ab le ,  R such t h a t  
Y 

2 K a ~ y  R 2 K  B B B  s i n e = -  
Y  BY a B Y a n 'y'n 

-28, d a 2  d a s  
= -  

n 

where t h e  dependence of R on Bn has been e s t ab l i shed  by use of (3.3). On 
Y 

summation over a l l  y we have t h a t  

where B represents  the  value o f  Bn a t  t h e  time when the  t o t a l  zonal energy zex 
(PE p lus  KE) would have an extreme value,  not including the  points  i n = O .  This 

extreme value,  



has alrradv been discub t (see Tablc of cncrgy catremes.  

7I.c functlon A(t)  L S  c l e a r l j  3 T L T I O C  f unc t~o l l  of ~ I K L  w ~ t h  period I 

and changes s lgn  where 6 = O .  From llmltcii c o m ~ > u ~ ~ t i o n . z  whlch zliok that  the  n 
energy does not rcach extrcmts o the r  :I> 11 ~t cxtrcrnes of Bn , we may a b b ~ ~ f i ~ ~  fo r  

t he  subsecj'JmT d ~ s c u s s i o n  tha t  T doc. not g~neid1:\f takc on thc V J I  le 1 
: C1X 

and hencr t h a t  A ( € )  changes aign only once durlng : perlod (provided t h ~ t  

6,(0)=0). Je t  us f u r t h c r  def inc  thc  u n l ,  

where c* ( t )  i s  an averaged value of  the  c weightcil by tlic K and i s  riot 
Y Y Y 

necessar i ly  bounded. We s h a l l ,  however, conceri  ourselves pr imar i ly  with 

times a t  which 
- .. - -  - - - 

I c * ( t )  < c Cy min y max 

To discuss the instantaneous energy excharigc, we now wri te  t h c  tirnc r a t c  

o f  change of t he  energy components l i s t e d  in  ( 5 . 4 ) :  

These equations a r e  derived by d i f f e r e n t i a t i o n  of (5.4) and s u b s t i t u t i o n  of 

( 3 . 2 ) .  The barot rupic  exchanges may be seen c l ea r ly  simply by s e t t i n g  r=O. 

The contr ibut ions  from divergence l i s t e d  a s  t h e  l a s t  terms in  (5 .12)  and 

descr ib ing t h e  exchange between po ten t i a l  and k i n e t i c  energies i n  t h e  zonal 

and wave separa te ly ,  may be ca lcula ted  from the  v o r t i c i t y  equation and  thermo- 

dynamic equation as represented by (2.14). I f  t he  f i r s t  of (2.14) i s  multi-  

p l i e d  by r ,  t he  second by r 2 ~ ,  both in tegra ted  over t h e  un i t  sphere and (2.15) 

s u b s t i t u t e d  f o r  the  divergence coe f f i c i en t s ,  t he  divergence terms o f  (5.12) 



become apparent.  1.0 cxaminc the  nature  of t h i s  exchange in  more d e t a i l ,  l e t  

us assume tha t  

based on our e a r l i e r  observation tha t  we may t runca t e  y with reasonable f i d e l i t y  

t o  atmospheric zonal wlnd p r o f i l e s  such t h a t  c < r2 /2 .  Recall ing the  con- 
y max 

s t r a n t  on ac t lye  ,-comyonents given by Baer and Platzman (1961), 

Inl-n_ i - n . n +n 
y -  a 6 

tiicrcby e s t ab l i sh ing  the  n~asimum and minimum values of  n as 
Y 

n - n +n . mas ., : 

) i  + f o r  n >n 
C. -c. - - - -(C.i max Cv min cc B - f o r  na<n 0 

c . + c , = z ( c .  +c 1 
A - i max y min 

Subst i tu t ion  of (5.14) and (5.13) i n t o  t he  divergence terms of (5.12) 

now al lovs  us t o  e s t ab l i sh  the  exchange of energy within t he  zonal and wave 

sepa ra t e ly .  Subject t o  t he  condition t h a t  c*>O (considerably weaker than 
Y 

5.11) and X ( t ) , O  which occurs during hal f  t he  time period,  Table 6 describes 

t h e  d i r ec t ion  of t h i s  energy flow. Clear ly  f o r  t h e  o the r  h a l f  period when 

A(t)  <O, these  d i r ec t ions  a r e  reversed.  

We note from t h i s  t a b l e  t h a t  if the  shear  wave i s  longer than the  mean 

wave (n >n ) ,  t he  d i r ec t ion  of  flow does not depend on the  magnitude of  c*, 
2 b Y 

bu t  only on the  s ign  of  A( t ) .  If ,  however, t h e  shear  wave is  shor ter ,  we see  

t h a t  t he  d i r ec t ion  of  flow from PE t o  KE i s  t h e  same for t he  zonal and wave 

except f o r  t he  r e s t r i c t e d  range where 

< C* < t (cy maX+Cy "y min max Y 



Table 6 .  Energy flow within zonal and wave f o r  d i f f e r en t  values of 
c*>O and A(t)>U 

Y 
. 

- - - ^ - . l _ . i = i _ i 2  : =.il : . . - .  -=i - ii_=-iiiili=.ii=~Y.=_i .=i__ . 

Range Zonal 8-wave 

n >n 
u ii n > n  P a 

The e n t i r e  energy flow diagram, l i s t i n g  a l l  f i v e  energy terms defined i n  

(5.4) may be seen from Fig. 3.' The di rec t ion  of flow shown i n  the  f i gu re  i s  

based on the  condition t h a t  A(t)>O, c*>O, and the  choice of t r a n s f e r  within 
Y 

t h e  zonal and wave can be es tabl ished from Table 6 .  The barot ropic  exchange 

i s  described by simply ignoring the  boxes f o r  ava i l ab l e  po ten t i a l  energy. 

Fig. 3 Energy t r a n s f e r  diagram f o r  a l l  poss ib le  energy forms 
based on t h e  conditions t h a t  A(t) > 0 and c* > 0 (see t e x t ) .  

Y 



Applying the following replacements t o  Fig. 3, 

- _ 
the lower th ree  boxes w i l l  a l s o  descr ibe  t h e  exchange of t o t a l  energy wi thout  

&%- o r  k ine t i c .  - - - 
When approximation (5.13) i s  subs t i tu t ed  i n t o  (5.12) and one cons ide r s  the  

sycle  dur ing which A(t)>O, it is e a s i l y  seen t h a t  t he  zonal k ine t i c  ene rgy  de- 

creases  whereas the  shear wave k ine t i c  energy (Kg) increases.  By combining the  

k i n e t i c  and po ten t i a l  energies,  t he  following equations r e s u l t :  
*- - . . k K + p = (c* - cg)A : (c;) z z z  a 

The q u a n t i t i e s  i n  parentheses a f t e r  t he  colon i n  (5.16) may be considered as 

"modified eigenvalues" associa ted  with the  energy function which each follows. 

Equations (5.16) then s t a t e  t h a t  energy w i l l  flow i n t o  o r  out o f  the  component 

whose "modified eigenvalue" is of intermediate value, a t  the  expense of the  

o t h e r  two components. This r e s u l t  is iden t i ca l  t o  one derived by F j o r t o f t  

(1953) f o r  t h e  two dimensional barot ropic  model and compares here  t o  t h e  case 

where r = O  and c*=c . Certain observations may be drawn from t h i s  r e s u l t .  
a a 

(a) When *he enere-of t h e  wave mean flow is i n  a long wave, i . e . , 
ca<r2,  C; w i l l  be negative and on the  assumption t h a t  c*>O, the  mean wave 

Y 
energy rilJ. .neysx be t h e s o  l e  r e c i ~ i ~ t ~ ~ ~ ~ ~ _ f : r ~ m - t ~ ~ - o _ t ~ h ~  2; (shear 

energy) sources,  o r  v ice  versa .  

(b) I f  t he  shear  wave energy res ides  i n  a wave shor t e r  than o r  equa l  t o  

the  mean wave energy, the  "modified eigenvalue" of t he  shear  wave w i l l  always 

be g r e a t e r  than t h a t  of t he  mean wave, c B >c* a' 

(c) In  appl ica t ion t o  typ ica l  atmospheric zonal wind p r o f i l e s ,  i f  t h e  

energy i n  t h e  shear  wave i s  not  i n  too long a wave, both the  mean wave and the  

shea r  wave w i l l  feed the  zonal energy and vice  versa;  i - e . ,  c*<c*<c a y 6 '  

The above r e s u l t s ,  e spec ia l ly  with regard t o  maximum energy t r a n s f e r  dur- 

ing a ha l f  period between extremes of B(t) ,  may a l so  be derived by invoking 

the  concept of conservation of po ten t i a l  v o r t i c i t y  appropriate t o  t h e  baro- 



clinic model discussed herein and following the technique utilized by 

Fjortoft (1953). 

6. Linear Analysis 

One means of linearizing system (2.13) which has real physical signif- 

icance, and whereby some of the characteristics of the system may be simpli- 

fied, is to assume that the energy in the wave components (a,U) is of per- 

turbation amplitude in comparison with the zonal energy. Since we have shown 

in Section 5 that the potential energy is roughly proportional to the kinetic " 

energy, no loss of generality will ensue if we confine our discussion to 

kinetic energy. In symbolic form, we may say that 

where the barred zonal coefficients may be represented by the initial con- 

figuration and the primed quantities will be considered perturbations. It is 

important to note that the perturbation wave coefficients are small with regard 

to any of the zonal coefficients allowed by the truncation (see Section 4). 

Following customary linearizing procedures, we shall neglect all second order 

or higher terms (products of primed quantities) on substitution of (6.1) into 

(2.13). It is immediately evident that the perturbation changes of the zonal 

coefficients cannot be calculated directly from the differential equations, 

since the change is of second order, but we shall see that the first order 

changes (implied) can be established from the energy relations. The wave per- 

turbation equation may be written 

nB z vB-GBB, etc. 

The barred quantities, CBB, etc. can be established from Table 2 by substi- 

tuting the initial values of the zonal coefficients and holding the terms 

constant. 



System (6.2) is a l i n e a r  homogeneous s e t  having two frequencies 

$ a eiot) which s a t i s f y  the  quadrat ic  equation, 

he two frequencies a r e  the re fo re  

fe f i r s t  observe t h a t  t h i s  system is capable of i n s t a b i l i t y  which depends on 

:he i n i t i a l  zonal configuration a n d t h e  wave number and wave p ro f i l e .  'Ihe 

:ondition i n  terms of the  problem parameters is 

s t a b l e  
4Ea6Ega -(na-nB)2 unstable 

:or t h e  barot ropic  problem, t h i s  s t a b i l i t y  c r i t e r i a  should be contrasted t o  

:hat given by Kuo (1949), which may be wr i t t en  i n  terms o f  spher ica l  geometry 

1s 

there F( represents  the  i n i t i a l  zonal wind d i s t r ibu t ion .  Ihe  d i s p a r i t y  be- 

:ween t h e  two conditions is apparent i n  t h a t  Kuols condition depends only on 

:he zonal configuration and not  on t h e  wave. 

The condition f o r  i n s t a b i l i t y  with regard t o  t h e  ba roc l in i c  problem may 

be  compared with t h a t  es tabl ished by P h i l l i p s  (1954) f o r  a 2-layer mode; and 

w r i t t e n  

where V represents  zero-order value of t he  zonal wind shear  and cc i s  a char- 

a c t e r i s t i c  wave vector  a s  defined i n  Table 1 (Ph i l l i p s  deals  with only one 

wave number i n  each o f  the  two hor izonta l  dimensions) .' The s t a b i l i t y  

'Ihe a s t e r i s k  denotes conjugation throughout t h i s  manuscript unless  
otherwise defined. 



properties of the low-order systems (both linear and nonlinear) are currently 

under investigation and will be discussed in a subsequent report. 

We shall, for the remainder of this section consider only stable solu- 

tions with the implied condition that 02 is real. The complete solutions for 

the wave components 9,. 9 require a specification of their initial values B 
and must depend on both frequencies; they may be written as 

Substituting these equations into (6.2) and evaluating the equations at t=O 

when $,= $,o, $%= JIBO, we find that the coefficients q do not depend on the 

initial values of the dependent variables, 

whereas the amplitude factors A and B depend on the initial values as follows; 

l'he latter definitions for A and B imply that the initial phase angles need 

lot vanish. More specifically, 

Imlql+ao- 
tan e,, = 

Re(ql+ao- +Bo) 

?t us now use (6.5) to establish the energy variations with time for the 

.nearized system. We have for the a-component, 



K = 2 c $ g *  a a a w  

If we now create  a new time var iable  which i s  l i nea r ly  r e l a t ed  t o  t by the  

equation 

we f ind  the  equation f o r  the  energy i n  the  a-wave, 

Ka = ~ c ~ ( I A / ~ + I B ~ ~ + ~ ~ A I  I B I  Cos 202te) 

Since the  frequency (2u2) i s  t he  sarre i n  both (6.8) and ( 6 . 8 7 ,  and s ince  

(6.8) has an iden t i ca l  form t o  (6.9) f o r  zero i n i t i a l  phase angles,  we must 

conclude t h a t  except f o r  a s h i f t  i n  time of the  maximum and minimum of the  

a-energy, t he  se lec t ion of non-zero phase angles does not  contribute infor- 

mation t o  the  solut ion of (6.2) d i f f e ren t  from t h e  aore  simple condition of 

zero i n i t i a l  phase angles.  We s h a l l  see  subsequently t h a t  the  o ther  energy 

components (5,y) have the  sane time dependence a s  (6.8) and thus need not be 

considered i n  d e t a i l  i n  t h i s  discussion. Our se l ec t ion  of zero i n i t i a l  

phase angles as i n i t i a l  conditions t o  t h e  nonl inear  problem (Section 4) and 

our  confidence i n  the  general i ty  of those conditions is based on the  above 

r e s u l t s  from the  l i nea r  solut ion.  A complete proof would, of course, re-  

q u i r e  d i r e c t  analys is  of t he  nonlinear equations. 

Returning t o  the  discussion of energy va r i a t ions ,  we note from the  def i -  

n i t i o n  of the  8-wave energy i n  terms of $g, Eqs. (5.4) and ( b . S ) ,  t h a t  t he  

time dependence i s  i den t i ca l  t o  (6.8) which descr ibes  the  a-wave energy. For 

the  zonal energy, multiplying the  f i r s t  of (2.13) by 2Jly, ignoring the  va r i -  

ab le  pa r t  on the  right-hand s i d e  ($ +$ ), and in tegra t ing,  the  var ia t ion may 
Y Y 

be given as 

K = 4c a $ / 1 m  qa$;dt + const.  
Y Y Y Y  

which is  a second order var ia t ion.  Assuming now t h a t  A and B are real--based 

on our  observation t h a t  zero i n i t i a l  phase angles a r e  completely general--and 

s u b s t i t u t i n g  (6.5), (6.6) and (6.7) i n t o  (6.9), we f ind  

K~ = 41 c a $ %cos  2a2t + const .  
Y Ga5 



with t h i s  presenta t ion  of  t he  ' d i f f e r en t  energy components, we may inves t iga t e  

t h e  rallge o f  energy va r i a t i on  (maximum energy exchange) as defined by (5.5) 

Since the  extremes occur a t  t = O  and t=n/2o?,  we have from [ 6 . 8 ) ,  (6.10) and 

t h e  6-energy r e l a t i on ,  
1111 

AKZ = -8 
-- -,- I 

l h e  dependence o f  t h e  exchange on t h e  l eve l  o f  t o t a l  energy (Go) and the  r e l -  

a t i v e  energy i n  t h e  wave ( p )  may now be es tabl ished from the  product A B .  The 

i n i t i a l  stream coe f f i c i en t s  used i n  A and B  may be represented i n  terms of an 

amplitude gQ and p r o f i l e  parameters A A as  seen from (4.2). Combining t h i s  
a' 6 

form with t h e  d e f i n i t i o n  of  p ,  Eq .  (4.8), and the  dependence of  Kk on gk from 

(4.4), we f ind  

such t h a t  

In [6.12), K represents  t he  zero order  energy i n i t i a l l y  placed i n t o  t he  system 

and does no t  change f o r  v a r i a t i o n  i n  p .  Therefore we see  t h a t  t h e  maxi~num 

energy exchange among t h e  components i s  l i n e a r l y  proportional t o  t he  r e l a t i v e  

amount of  energy i n  t h e  wave components. In t he  l imi t ing  case  of no i n i t i a l  

snergy i n  t h e  wave--i.e., p=0--no motion would occur,  a r e s u l t  which i s  ev i -  

lent  a l s o  from Eqs . (2.13). 

Whereas t h e  energy range ( A K )  is  l i n e a r l y  propor t ional  t o  P with zero 

i 
n te rcep t ,  t he  s lope  of  t he  l i n e  is dependent on the  amplitude Go. Noting 

r o m  (4.2) t h a t  t h e  i n i t i a l  zonal coe f f i c i en t s  (5 ) a r e  proportional t o  Go 
Y 

nd t h e  p r o f i l e  parameters Ay, and from Table 2 t h a t  eaB, Gga a r e  propor- 

ional  t o  t h e  $ we may observe from (6.11) t h a t  the  va r i a t i on  o f  s lope  with 
Y' 

i s  incorporated e n t i r e l y  i n  t h e  function S (Eq. 6.12).  The d e f i n i t i o n s  of 



q l  and q2 from (6.6) y ie ld  required coeff ic ients  i n  the  function S, (6.12). 

i n  t e r m  of known quan t i t i e s  a s  follows: 

Ke consider \ ,  as defined b\- (3.1),  t o  be independent of Go because it does 

not depend on the energy avai lable  f o r  exchange. Subst i tu t ing the r e s u l t s  of 

(6.13) i n t o  (6.12)  , the  ua dependence of S i s  shown t o  be 

This is not  a simple formula. We may, however, note  t h a t  s ince  we have 
2 

chosen t o  consider only s t a b l e  solut ions ,  u2 w i l l  not change s ign  and there- 

fo re  the  denominator w i l l  a l so  be of one s ign f o r  a l l  allowed values o f  uo. 
Ihe  slope w i l l  change s ign,  however, about the  c r i t i c a l  value of Go, 

When uo=co (c) , the  l i n e a r  system i s  inact ive ,  independent of t he  value of p . 
Such i n i t i a l  conditions have been observed i n  ca lcula t ions  o f  the  nonlinear 

system and w i l l  be discussed i n  t h e  sequel. 

To describe the comparison between l i n e a r  and nonlinear solut ions ,  Table 

7 has been prepared, based on calcula t ions  with a given i n i t i a l  s t a t e  but  

va r i ab le  p .  ?he i n i t i a l  configuration applies t o  the  barot ropic  problem with 





t he  atmospheric jc,t described in  Fig. 1, f o r  wave '=3 and p r o f i l e  given by 

f i .  l ? j  r r l t ! ,  . ,-(I. 'Ihree amplitude values (uo)+ have been chosen t o  show thc  

\'.li.rlt~i.~: O I  .elutions both with p and Go.  We have chosen t o  describe the  - 
urrcrgy rliFge i n  t h e  a-component; t he  ranges of  the  o the r  components a r e  ava i l -  

i L l c  , . I I , I~  computable from 6.11) and show s imi l a r  va r i a t i ons .  The l i n e a r  

, . '3j)i'  d ~ s c r i b ~ d  i n  t he  Table i s  propor t ional  t o  S and i s  given as 

8caS 
Linear Slope = - 

1'11e e r r o r  i n  t he  l i n e a r  so lu t ion ,  described a s  t h e  d i f ference  betwee; the  

exact and l i n e a r  values normalized by the  exact value and represented as  a 

percent ,  follorrs an expected pa t t e rn .  For increas ing values of  p ,  t he  l i n -  

ea r i za t ion  h!.~othesis becomes l e s s  and l e s s  v a l i d .  Although the  a c t i v i t y  of 

t n e  i- \<arc i n c r e a s e s  f o r  increased energy i n  t h e  system--larger 6 --the e r r o r s  

decrease s l i g h t l y .  lle may conclude, t he re fo re ,  t h a t  f o r  ~ < < 1 ,  l i n e a r  calcu- 

l a t i o n s  give a reasonable approximation t o  t he  nonl inear  so lu t ions .  

7 .  Phase Cha rac t e r i s t i c s  and Other Flow Proper t ies  

The phase angles,  3 and G3, may be ca l cu l a t ed  a s  functions of  time, as  

descr ibed i n  Appendix B. These solu t ions  i nd ica t e  t h a t  the  angles need not  be 

pe r iod ic  with period T, although we can see  from (3.12) t h a t  t h e i r  d i f ference  

( 3 )  must. I f  we assume t h a t  t he  phase angle periods d i f f e r  from T ( the  non- 

l i n e a r  energy exchange pe r iod ) ,  then a s  already proposed, t he  s p a t i a l  d i s t r i -  

but ion  of a wave component added t o  t h e  zonal f i e l d  need not show a repeating 

p a t t e r n  u n t i l  a modulation cycle between the  energy per iod and the  wave period 

i s  completed. This i s  e spec i a l ly  t r u e  i n  t he  bamt rop ic  problem where the  

wave conf igura t ion  may be more complicated. 

For t h e  ba roc l in i c  problem, t he  wave tilt with height is immediately 

ca l cu l a t ed  from the  phase angle of  t h e  shear  wave, 08. I f ,  moreover, one 

assumes t h a t  t h e  wave vectors  a and 8 a r e  equal--which does =imply t h a t  

6 and 0 a re  equal--then the  wave has only one component, Pa = PB, and no 
6 

hor i zon ta l  exchanges w i l l  e x i s t .  Such a condi t ion  applied t o  t he  barot ropic  

problem would y i e l d  t r i v i a l  so lu t ions .  

Although t h e  equations f o r  t he  individual  phase angles a r e  reasonably 

complex, we may draw ce r t a in  conclusions from 13, t h e i r  d i f ference .  For con- 

venience we repeat  here  t h e  va r i a t i on  of  e with time, 

'~11 var i ab l e s  i n  t h i s  repor t  have been nondimensionalized us ing the  
e a r t h ' s  ro t a t i on  r a t e  f o r  time and t h e  mean radius  of  t he  ea r th  f o r  space 



'n t an  0 = - G 

The va r i a t ion  of Bn has already been es tabl ished,  and s ince  it i s  per iodic  

with period T, i t  has a l imi ted  range. There a r e  th ree  p o s s i b i l i t i e s  f o r  t he  
t var i a t ion  o f  G(Bn) i n  t h e  range mT 5 t 5 (m+l)T and they depend on whether 

G has zero, one, o r  two roots  i n  the  allowed range of Bn. Since we have 

se l ec t ed  0 = 0 at t = mT, it w i l l  a l s o  be zero a t  t = (m+i)T. The range of 

0 may be summarized i n  terms of the  number of roots  of G and i s  l i s t e d  i n  

 able 8. We have noted t h a t  tl must pass through zero a t  t = (m+,")T; thus 

0 remains e i t h e r  pos i t i ve  o r  negative during one h a l f  period and reverses i t s  

s ign  during t h e  o the r  h a l f .  The d i r ec t ion  o f  0 a t  the  beginning of the  period 

is a l s o  speci f ied  i n  the  Table. Aside from the  information on the  posi t ion 

o f  the  wave components r e l a t i v e  t o  each other  during the  period which Table 8 

yie lds ,  we s h a l l  see  how the  va r i a t ion  o f  0  is re l a t ed  t o  the var ia t ion of 

o the r  flow c h a r a c t e r i s t i c s .  

Table 8. Range of 0 i n  terms of the  number o f  roots  of G i n  one 
nonlinear period and d i r ec t ion  o f  0 as  t increased from mT. 

No. of Roots 0 1 2 

Range - L < O < l L  2 2 0 ~ 0 ~ 2 l I  - l r < e < l l  

Bn (mT) min. ; G (mT) > 0 

I 
Bn (mT) max. ; G (mT) < 0 

Bn(mT) max. ; G (mT) > 0 

I 
Bn (mT) min. ; G (mT) < 0 

Phase frequencies may be calcula ted  d i r e c t l y  from (3.13) once Bn i s  known. 

These frequencies include the  Rossby-Haurwitz contr ibut ion,  v a S B ,  a l i n e a r  con- 

t r i b u t i o n ,  h based on the  j e t  configuration and a nonlinear term. ?he 
aa, 68' 

frequencies c l e a r l y  undergo a per iodic  va r i a t ion  with the  same period a s  Bn. 

'Ihey have maximum and minimum values a t  the  same times a s  Bn, but they may have 

o the r  r e l a t i v e  extremes depending on whether o r  not 0 = 0 i n  the  allowed range 

i ~ n  t h i s  discussion, m may take  on any i n t e g r a l  value.  
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of Bn. D i f f e ren t i a t ion  o f  (3.13) with respect  t o  Bn and s e t t i n g  t h e  r e s u l t -  

ing equation t o  zero w i l l  y i e l d  a qua r t i c  equation, the  roo t s  o f  which w i l l  

represent  t he  values o f  B,, (or  T) a t  which the  phase frequency w i l l  have 

extremes. These values may then be compared with the  allowed range o f  B 

t o  determine whether e x t r a  maxima o r  minima do indeed e x i s t .  

Let us now consider the  hor izonta l  d i s t r i b u t i o n  o f  the  wave a t  any time. 

We s h a l l  focus our a t t e n t i o n  on the  bamt rop ic  problem s ince  t h e  wave d i s -  

t r i b u t i o n  i s  more complex, but the r e s u l t s  can e a s i l y  be extended t o  the  mean 

wave f i e l d  of t h e  b o r o c l i n i c  6 1 .  We have from (2-5) and (3.1) t h a t  

from h-hich we may determine t h e  meridional ve loc i ty  component a f t e r  subs t i -  

t u t i o n  o f  the  d e f i n i t i o n ,  

and r e c a l l i n g  the  de f in i t i on  of e from (3.1).  The r e su l t ing  equation f o r  

meridional veloci ty  v i s ,  

v = (1-;2)-i 9' 
a >. 

(7.3) 

= -5 i.(1-p2)- i ( (~  P + B P cos 8 ) s i n  E + B P s i n  8 cos E)  
6 6  a a  a a 

Since the  trough o r  r idge l i n e  is defined a s  the  longitude a t  which the  motion 

is zonal, t h e  trough (ridge) longitude, A t r ,  is given from (7.3) by 

Bopa s i n  0 
t an  Etr(lJ,t) = - BaPa cos 0 + B P 

6 6 

We s e e  immediately t h a t  t h e  l a t i t u d i n a l  dependence o f  htr is r e l a t e d  t o  0 ,  

f o r  when B i s  a t  an extreme, and hence 0 = 0 o r  n, t he  trough (ridge) i s  

north-south.  The s lope of t h e  l i n e  i s  r e l a t ed  both t o  t h e  magnitude and s ign 

o f  8 and can be evaluated as follows. Different ia t ing (7.4) with respect  t o  

p ,  solving f o r  the  va r i a t ion  of X t r  and using the  first of (3.2),  we f i n d  



dXtr d tan E 
- =  1 t r 

dp . t ( l+tan2 it,) d u 

- - - - - - - - .  

- - -- -- -- - -- - 

Eq. (7.5) i nd ica t e s  t h a t  t h e  trough s lope goes through a periodic cycle ,  - 
beginning with no s lope a t  t = mT (north-south), bending t o  one side-fo; 

one-half period, re turning t o  zero a t  t = (m+i)T, and then bending t o  the  

o the r  s i d e  f o r  t h e  second h a l f  period. Since the  numerator of (7.5) may 

have roots  i n  the  allowed range of p ,  t he  d i r ec t ion  of the  trough l i n e  a t  

any time w i l l  be a function of l a t i t u d e  and may change sign. 
-- -- . . 

The t r anspor t  of momentum across a l a t i t u d e  c i r c l e  has been shown t o  

depend c losely  on the  slope of troughs and ridges (S ta r r ,  1948) and thus t o  

t h e  development of j e t s  and barot ropic  i n s t a b i l i t y .  Continuing o u r  d i s -  

cussion of t h e  barot ropic  problem, the  momentum t ranspor t  may be de f ined  as 

We again use the  wave stream function $I' from (7.1) s ince  it i s  apparent  

t h a t  t h e  zonal components w i l l  make no contr ibut ion t o  the  i n t e g r a l .  Sub- 

s t i t u t i n g  E and 8 f o r  Ocr and and performing t h e  required d i f f e r e n t i a t i o n s  
6 

and i n t eg ra t ion  as indicated by (7.6) we f ind - - -. - .- -- -- - -. - . - - . - - - - . - - - - .- 

'n 
M = II * - -.- (P P' .f3 ---.@-a - P P') (1-p2)+ .- -- ---(!,7) 

n 

The momentum t r anspor t  i s  therefore  per iodic  with period T, zero at t = mT, 

(m+t)T, and opposite i n  d i r ec t ion  during t h e  two h a l f  cycles.  Ra the r  than 

d i scuss  t h e  d e t a i l s  of (7.7), we s h a l l  show t h a t  t he  momentum t r a n s p o r t  i s  

d i r e c t l y  r e l a t e d  t o  the  tilt of the  trough. By combining (7.7) w i t h  (7.5) 

we have, 



The r e s u l t s  of t h i s  analys is ,  which show the  momentum t r anspor t  l i n e a r l y  

r e l a t e d  t o  trough slope with the  same s ign ,  a re  i n  complete agreement with 

general theory. 

Final ly ,  we may consider the  mean square v o r t i c i t y  f o r  both the  baro- 

t r o p i c  and b a m c l i n i c  models. For the  ba roc l in i c  problem, t h e  conservation 

condi t ion must be converted t o  conservation of po ten t i a l  v o r t i c i t y .  In  

s p e c t r a l  terms, t h i s  modification is t r i v i a l ,  implying merely t h a t  we sub- 

s t i t u t e  d f o r  c as eigenvalues. From t h e  bas i c  Eqs. (2.13) we f ind,  
Y Y 

therefore ,  t he  mean square v o r t i c i t y  (the squared v o r t i c i t y  in t eg ra t ed  

over the  e n t i r e  f i e l d )  t o  be given by the  r e l a t i o n ,  

This parameter wst be conserved f o r  the  flows considered here in ,  and the  

const ra in t  thus imposed has already been implied i n  our  d iscuss ion of energy 

exchanges i n  Section 5.  

8 .  Some Barotropic Calculations 

?he proper t ies  of the  low-order system (2.13) have been discussed i n  

general terms by various methods i n  the  preceeding sect ions .  The exact  var i -  

a t i o n  of the  system w i l l  be described only by applying s p e c i f i c  i n i t i a l  con- 

d i t i o n s  t o  the  so lu t ion  as out l ined i n  Section 3. There a r e ,  however, an 

i n f i n i t e  v a r i e t y  of i n i t i a l  conditions which could be considered. We con- 

sequently confine our a t t en t ion  t o  a d iscuss ion o f  t h e  ba ro t rop ic  problem 

with a l imi ted  range of i n i t i a l  conditions.  ?hose conditions,  as we s h a l l  

s ee ,  confine t h e  energy of the  system t o  t h e  range o f  atmospheric p o s s i b i l i t y ,  

t h e  zonal wind configuration t o  r e a l i s t i c  flows, and t h e  wave configurations 

t o  simple d i s t r ibu t ions  f o r  the  long and medim s c a l e  waves. In  a l l  calcu- 

l a t i o n s ,  we s h a l l  i nves t iga t e  the  changes i n  the  system due t o  va r i a t ions  i n  

p (the r e l a t i v e  energy i n  the  per turbat ion)  while maintaining t h e  o the r  

i n i t i a l  conditions inva r i an t .  We may then expect t o  observe, over t h e  range 

o f  atmospheric condi t ions ,  the  v a r i a b i l i t y  of t h e  model so lu t ions .  

In the  ca lcula t ions  t o  be discussed, f i v e  d i f f e r e n t  amplitudes (Go) were 

used, t h ree  with the  A - J  (see Section 4 f o r  de f in i t i ons )  and two with the  D - J .  

These amplitudes have been used together  with the  j e t  p r o f i l e s  t o  give an 

average energy K (see 4.6) f o r  a l aye r  of 50 mb i n  u n i t s  o f  105~oules/m2. 

The choice of these  u n i t s  was es tabl ished t o  compare with the  values given 

by Kung (1966) €01 winter ,  summer and annual mean of 1962, a l l  o f  which have 

been l i s t e d  together  i n  Table 9 .  



Table 9. Mean k ine t i c  energy used i n  ca lcula t ions  and observed 
atmospheric values (Kung, 1966) f o r  50 mb layer  i n  un i t s  of 
1 0 ~ ~ o u l e s / m ~ .  Observed values have been averaged between 900- 
100 mb. 

- 
J e t  K 

W s e m d  values:  Umg (1966)) 1 
Summer 1 
Winter i 
Annual Mean 

Layer Extremes 

.075 

.135 

-- - 2 L -  .--.- 
.067 

.133 

It is evident from the  Table t h a t  the  range of energy chosen f o r  ca lcula t ion 

e f f e c t i v e l y  s t r add les  the  values observed i n  the  atmosphere. One could 

reasonably extend t h e  range of the  ca lcula t ions ,  but  the  r e s u l t s  from the  

values o f  energy ac tua l ly  used may be meaningfully compared t o  atmospheric 

events.  

The zonal p r o f i l e s  used i n  the  computations have already been described 

i n  Section 4 and depicted on Figs.  1 and 2.  The A - J  is c l ea r ly  applicable t o  

t h e  r e a l  atmosphere by de f in i t i on ,  whereas the  D-J was chosen more f o r  sim- 

p l i c i t y  o f  representa t ion than f o r  r e a l i t y .  A more r e a l i s t i c  D-J  would 

r equ i re  too much resolut ion i n  the  zonal coe f f i c i en t s  and consequently work 

counter t o  t h e  low-order concept. Nevertheless, t h e  computations with the  

se l ec t ed  D-J  should be ind ica t ive  of t he  in t e rac t ions  which might take place 

i n  atmospheric flow with a double j e t .  

Having e s t ab l i shed  the  va r i a t ions  on t h e  zonal flow, we now consider the  

i n i t i a l  wave p r o f i l e s .  The wave energy w i l l  be considered, as suggested pre- 

v iously ,  by allowing p t o  vary over i t s  e n t i r e  range (O<pzl). We f i r s t  s e l e c t  

t h e  simple p r o f i l e  given by (4.16) and allow .t t o  vary over the  range 1sRs18; 

t h i s  p r o f i l e  has t h e  v i r t u e  of involving only the  lowest allowed modes i n  the  

l a t i t u d i n a l  d i rec t ion.  From calcula t ions  with t h i s  function we are  able  t o  

e s t a b l i s h  how t h e  nonlinear proper t ies  of our system vary with regard t o  wave 

number. Lest we general ize  on these  solut ions ,  however, we have se l ec t ed  t o  

A-J 

A-J  

--  -..- A-J - 
D - J  

D- J  

.340 

1.10 

- - 4.57 

1.34 

5.33 



i nves t iga t e  a number of d i f f e r e n t  wave p r o f i l e s  f o r  a given wave number 

($23) t o  determine the  v a r i a b i l i t y  o f  solut ions  i n  terms of wave p r o f i l e s .  

These p r o f i l e s  allow f o r  a r b i t r a r y  spec i f i ca t ion  of Aa, AO, n and n (where 
6 

we requ i re ,  with complete gene ra l i t y ,  n >n ) .  Some of these  p r o f i l e s  have 
0 a 

been presented i n  Fig.  2,  together  with FL of Eq.  (4.16) f o r  e=3. 

?he %ow-order t runca t ion  f o r  t he  i n i t i a l  conf igurat ions  d iscussed above 

may be conveniently represented on an n-9. diagram i n  which t h e  a c t i v e  com- 

ponents (represented by y ,  a, and 0 values) a re  described by c i r c l e s .  Figure 

4 i n c l u d r ? s a n u m h e r 6 f d a e - r l i  (c i rc led)  
" components i n  each diagram as a spec t r a l  configuration. Reference t o  Table 3 

i n d i c a t e s  t h a t  t he  A-J  has e i g h t  zonal components whereas the  D - J  has only 

fou r .  Columns one and two of Fig. 4 show some poss ib l e  conf igurat ions  with 

e i t h e r  of the  allowed zonal j e t s ,  using the  wave p r o f i l e  given by (4.16) f o r  

s eve ra l  d i f f e r e n t  wave numbers. 'Ihe l a s t  two columns o f  the  figure show the  

conf igurat ions  f o r  the  A - J  with d i f f e r e n t  wave p r o f i l e s  o f  wave $=3. 

SPECTRAL CONFIGURATIONS 

C Z N  

I 0-J 

2 A-J 

3.4 A-J 

Fig. 4 Spectral  configurations f o r  a number of t runcat ions  u s e d  
f o r  ca l cu la t ion .  Circled points  i nd ica t e  allowed wave vectors.  



We s h a l l  now consider some of the  fea tures  of t he  low-order system which 

r e s u l t  from the  so lu t ions  f o r  s p e c i f i c  i n i t i a l  conditions and t runca t ion .  

Foremost among these  f ea tu re s  i s  t he  nonlinear energy exchange per iod.  Since 

t h e  conventional l i n e a r  theory cannot predic t  nonlinear periods,  t h e i r  pre-  

d i c t i o n  by t h e  low-order equations should add s i g n i f i c a n t l y  t o  our understand- 

i ng  o f  t h e  more general  system. Nevertheless, unless t he  atmosphere i s  con- 

s t i t u t e d  as a h ighly  t runcated  system (not a frequent occurrence) one should 

no t  anticipate--nor do we find--exact pc r iod ic l ty  i n  nonlinear flow. There 
- - -  

a r e  indica t ions  t h a t  some quas i -per lodlc l ty  ma) ~ ~ 1 s t  i n  the  atmosphere 

(Namias, 1954; El iasen,  1958) although d a t a  limitations inust be considered 

NONLINEAR EXCHANGE PERIOD 

ATMOS. JET 

Uo= 275 - 
= 135 -- 
= 075 

DWBLE JET 

I l l  l 

DAYS 

Fig.  S Nonlinear energy exchange periods f o r  d i f f e r e n t  i n i t i a l  
conf igura t ions  f o r  a va r i e ty  o f  wave numbers, p lo t t ed  agains t  P 

(ordinate) .  



in cvaluat  i ng suc l~  u lbcrvs t  i ens. Furthermore, i n t eg ra t ions  of  l e s s  t run-  

ca t ed  muJcls (Liacr, 196.1) ; ~ l s o  ind ica t e  p e r i o d i c i t i c s ,  although the  number 

of such ca l cu l :~ t ions  i s  s cv~ ' r c1y  l imi ted .  Wc must therefore  i n t e r p r e t  t he  

observat ion  of  exact periods a s  represent ing  atmospheric behavior with a 

mixture o f  optimism and suspic ion.  

Figure 5 descr ibes  t he  nonlinear exchange period.  T, a s  defined by 

(A-9) i n  days f o r  various encr?! l c v r l s ,  both j e t s ,  and a s e l ec t ion  of  wave 

numbers (; = l , j , b , l Z )  f o r  t he  wave conf igura t ion  given by (4.16); t he  

periods arr. p lo t t ed  aga ins t  ,- (o rd ina t e ) .  We f i r s t  observe t h a t  f o r  a l l  
~ .. . .  . - . . . . . . . -. 

r e a l i s t i c  values of :--values of  c.>8 a r e  r a r e l y ,  i f  ever ,  observed i n  t h e  

atmosphere--the per iods  a r e  r e l a t i v e l y  i n s e n s i t i v e  t o  t he  i n i t i a l  p a r t i -  

t i on ing  of energy betxeen the  zonal flow and the  wave. For a l l  waves the re  

appears t o  be a systematic decrease i n  t h e  per iod with increas ing t o t a l  

energy; tne  curves f o r  those uaves not described i n  t he  f i gu re  show no 

e r r a t i c  behavior and may be in t e rpo la t ed  from the  given data .  The periods 

f o r  the f - J  appear somewhat longer than f o r  t he  A - J ,  bu t  t h i s  va r i a t i on  i s  

not sf j r e a i  s ign i f i cance .  lie a l s o  note  a maximum i n  the  period f o r  t he  

\<aye t h r e e ,  a f t e r  k-hich the  periods gradual ly  become s h o r t e r  f o r  s h o r t e r  

wave lengths .  The magnitudes of t he  per iods ,  however, which run f r o m  l e s s  

than one t o  four days a r e  not i n  c lose  agreement with previous ca l cu l a t ion  

and observation.  hhereas t h e  three-day per iod f o r  wave number one i s  i n  

agreement u i t h  a previous ca l cu l a t ion  by t h e  w r i t e r  (Baer, 1964), t h e  value 

f o r  xave number t h ree  does not compare favorably (previously ca lcula ted  a s  

=6 days) nor does it correspond with t h e  observed value of 6-7 days (Namias, 

1954, e t c . ) .  Although d i r e c t  observations o r  ca lcula t ions  a r e  not ava i l ab l e  

f o r  s h o r t e r  waves, it i s  un l ike ly  t h a t  waves i n  t he  primary energy input  

region (;, = 5-7)  would undergo p e r i o d i c i t i e s  as  s h o r t  as fou r  days o r  l e s s .  

Lest  one conclude t h a t  t he  low-order system w i l l  y i e ld  periods only 

of  t h e  type  described by Fig. 5 ,  we consider  t he  nonlinear periods generated 

by a l t e r n a t e  wave p r o f i l e s .  In Fig. 6 we descr ibe  four  d i f f e r e n t  wave t run-  

ca t ions  f o r  wave number t h r e e  with four  independent choices o f  t he  p r o f i l e  

parameters A and A f o r  each t runcat ion .  The corresponding periods a r e  again 8 
p l o t t e d  aga ins t  p .  The f i r s t  two t runcat ions  do not show s t r i k i n g  d i f ferences  

from t h e  r e s u l t s  of Fig. 5; however, t h e  l a t t e r  two, e spec i a l ly  f o r  t runcat ion  

n =6, n =8, show remarkably d i f f e r e n t  per iods ,  which appear t o  depend con- 
a B 

s i d e r a b l y  more on t h e  t runca t ion  than on the  s e l ec t ion  of  p r o f i l e  parameters. 

Whereas our  previous observation suggested t h a t  t h e  nonlinear periods a r e  only 

weakly dependent on p ,  f o r  t he  l a t t e r  two t runcat ions  on Fig. 6 t h e  per iod 

decreases  rapidly  with increas ing p .  We furthermore note  t h a t  t he  periods may 

be  as long a s  f i f t e e n  days. 



NONLINEAR EXCHANGE PERKID 
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Fig. 6 Nonlinear energy exchange periods f o r  wave 11-3 with 
d i f f e ren t  i n i t i a l  wave configurations,  p lo t t ed  agains t  p 

(ordinate).  

The existence of a nonl inear  period does not ,  of course, give an  indi-  

ca t ion of the  nonlinear a c t i v i t y  of the  system, measured by the  amount of 

energy ac tua l ly  exchanged during the  period. Linear theory ind ica t e s  (Section 

6) t h a t  f o r  small P the  exchange must a l so  be smal l ,  provided t h a t  t h e  i n i t i a l  

configuration i s  s t a b l e  (a condition which i s  genera l ly  s a t i s f i e d  i n  our ca l -  

cu la t ions ) .  Long per iods  f o r  small  values of p ( l i t t l e  energy i n i t i a l l y  i n  

the  wave) therefore  ind ica t e  a very slowly and weakly changing system. The 

amount o f  energy exchanged pe r  u n i t  time under t h i s  condition must indeed be 

small  s ince  it w i l l  be propor t ional  t o  p normalized by t h e  period. 





In order  t o  d iscuss  the  energy exchanged during the  p e r ~ o d  more knowl- 

edgeably, we now present  t he  energy ranges as defined by (5.7) but norma- 

l i z e d  by the  ava i l ab le  energy Ka (see Eq.  4 . 7 ) .  Figure 7 describes the 
maximum energy exchange on a sca l e  -1 5 A K / K a  5 1 against  p f o r  the t o t a l  

zonal energy, the  lowest ac t ive  zonal component energy (y=3), the  8-wave 

energy and the  a-wave energy.' Our presenta t ion i s  l imited t o  the  r e s u l t s  

f o r  a = 1,3,6 s ince  t h e  va r i a t ions  become reasonably small f o r  s h o r t e r  waves. 

?he initial conditions applicable f o r  the ca lcula t ions  described i n  the  

f i g u r e  a r e  those f o r  w h i c h ~ & h ~ ~ ~ & ~ 8 ~  in Fig. 5 .  ?he purpose 

o f  present ing t h e  y=3 zonal mode i s  t o  determine the  importance of the  lowest 

mode i n  the zonal f i e l d .  For the  conditions represented i n  Fig. 7 ,  it is 

evident,  on comparing the  upper two diagrams f o r  each wave, t ha t  the y=3 mode 

dominates the  exchange f o r  the t o t a l  zonal energy. This observation i s  con- 

s i s t e n t  with t h e  p r e u i a s  ca l cu la t ion  by the  wr i t e r  (Baer, 1964) f o r  a l e s s  

t runcated model. Moreover, from an observational point of view, i t  i s  rea- 

sonable t o  expect t h e  l e a s t  var iable  ( in  l a t i t u d e )  p a r t  of the zonal f i e l d  

t o  vary most with time i n  order  t o  maintain the  moderately smooth zonal 

p r o f i l e s  which a re  ac tua l ly  measured. 

A second pronounced f ea tu re  of the  exchange a s  described i n  Flg. 7 i s  

t h e  compensation between the  two wave components. In a l l  cases, except f o r  

very large  and u n r e a l i s t i c  values of p ,  when the  6-energy is increasing the  

a-energy is decreasing, which r e s u l t s  i n  a smal ler  exchange o f  the  zonal 

energy, The a c t i v i t y  of the  system is therefore  not uniquely defined simply 

by t h e  exchange between t h e  zonal flow and the  wave, s ince  t h e  wave may under- 

go s i g n i f i c a n t  modifications without involving the  zonal energy. One obvious 

exception t o  t h e  above conclusion i s  the  behavior of t he  D - J  p r o f i l e  f o r  E = l ,  

wherein both the  a- and 6-wave energies change with the  same sign. Tke D-J  

p r o f i l e  seems, furthermore, t o  be almost completely inac t ive  f o r  t h e  case 

!2=3, t h e r e a f t e r  following the  behavior of the  A-J p r o f i l e  f o r  sho r t e r  waves. 

Although the  exchanges a re  not  l a rge  f o r  reasonable values of 0 ,  a some- 

what su rp r i s ing - fea tu re  is the  influence of the  t o t a l  energy on the  exchange 

process.  Whereas f o r  wave number one the  a c t i v i t y  o f  t h e  system increases  

f o r  increased energy amplitude--as might be ant ic ipated-- th is  tendency i s  

reversed as t h e  waves get  sho r t e r .  Thus f o r  wave number s i x ,  a s  the  energy 

amplitude i n  the  system increases ,  the  exchange process i s  inh ib i t ed .  

?he v a r i e t y  o f  energy exchange which may occur f o r  a s i n g l e  wave (here 

chosen as 11=3) due t o  modifications i n  wave t runcat ion and p r o f i l e  parameters 

is exemplified by Fig.  8. Many poss ible  exchange proper t ies  may be noted. 

I n  one case (n r6 ,  n =8) t he  exchange i s  small and not s t rong ly  dependent on 
a B 

p; i n  t h e  o thers  the re  is a s t rong dependence on p with a tendency f o r  the 



~ i ~ .  8 Maximum energy exchange for  wave e=3 with different 
wave c.onfigurations axd prof i l e  parmeters,  including no*- 
m l i i e d  energy i n  the zonal flow and both Wave component* 

plotted against 0 (ordinate). 



exchange of zonal energy during t h e  period t o  change d i r ec t ion  as  p i n -  

creases .  In one case (n =4,  n =a), where the  zonal energy does not have 
a 6  

any range (PZ.~), the  wave components a r e  reasonably ac t ive ;  i n  case n = 4 ,  

n = l o ,  however, a t  p z . 5  t h e  e n t i r e  system appears t o  be i n e r t .  There does B 
seem to  be tm increase  of  a c t i v i t y  with t he  addi t ion  o f  t he  component 

n =lo;  however, i n  one case t he  a-wave energy i s  almost completely i nac t ive  6 
whereas i n  t he  o the r  it shows s i g n i f i c a n t  a c t i v i t y .  The inev i t ab l e  con- 

. - 

c lus ion  f r o m  t h i s  f i gu re  is  c l e a r l y  t he  g rea t  v a r i e t y  of  exchange poss i -  

b i l i t i e s  fo r  t he  low-order %stem de~e&-tion- - - ---- -. - - 
- *.... 

The previous d iscuss ion has d e a l t  with properties of t he  flow inde- 

pendent of t h e i r  de t a i l ed  t ime characteristics. Since the  exact t ime 

v a r i a t i o n s  a r e  known, we now present  t h e  time f luc tua t ions  of the  norma- 

l i z e d  energy components durlng an e n t i r e  perlod.  Flg.  9 shows t h e  solu-  

t i o n s  i n  _time _for -the i n i t i a l  conf igura t ion  given by the A - J  and The wave 

p r o f i l e  taken from (4.16) f o r  s e l ec t ed  values of p .  Since each value  of  

0 c o n s t i t u t e s  a separa te  problem, t h e  so lu t ions  a r e  shown graphica l ly  wlth 

p increas ing t o  t h e  r i g h t .  For each p value ,  two cha r t s  a r e  shown; t he  

upper one descr ibes  t he  behavior of  t he  zonal energy and i t s  individual  

components, and the  lower one descr ibes  the  t o t a l  wave energy and t h e  a- 

and 6-wave components. The upper s e t  of  cha r t s  appl ies  f o r  wave L=10 and 

energy amplitude G0=.135 whereas the  lower s e t  appl ies  f o r  L=3 and uo=.275. 

Since both i n i t i a l  s t a t e s  a r e  s t a b l e  by l i n e a r  ana lys i s  (see  Section 6 )  

t h e  lack  of a c t i v i t y  with t ime f o r  small values of  p i s  t o  be an t i c ipa t ed .  

We s e e  f o r  t h e  case L=10 t h a t  t he  individual  wave components a r e  q u i t e  

a c t i v e ,  but t h e i r  a c t i v i t y  tends t o  cancel such t h a t  t h e  zonal energy does 

no t  have l a rge  time f luc tuat ions .  This tendency f o r  t h e  sho r t  waves has 

a l ready been indica ted  from Fig.  7 .  On the  contrary ,  f o r  the  k=3 c a s e  

t h e r e  is l i t t l e  tendency f o r  cancellationbetwee_nthe wave components and 

the  conse va r i a t i ons  a r e  l a rge .  Slnce t h e  6-wave energy 

i s  reasonably uniform throughout t h e  period f o r  a l l  p values ,  t he  dominant 
" - 

exchange is"-CaGieii'bS-by^ t h e y G ; e . * .  aiso-note- t h e  dominant inf luence  

o f  t h e  y=3 zonal component i n  t h e  t o t a l  zonal wave energy. 

Ihe  changes i n  time va r i a t i on  which a r i s e  due t o  t h e  choice of d i f f e r e n t  

p r o f i l e  parameters and/or d i f f e r e n t  wave t runcat ion  a r e  made evident from 

Fig .  10. We have se l ec t ed  t o  descr ibe  th ree  d i f f e r e n t  t runcat ions ,  w i th  

t h r e e  d i f f e r e n t  s e t s  of p r o f i l e  parameters f o r  each t runcat ion .  In a l l  cases,  

t h e  i n i t i a l  conditions involve in t e r ac t ion  of  wave L=3 with t he  A - J ,  f o r  an 

energy amplitude of  u0=.135 and f o r  i n i t i a l  wave energy given by ~=.6. Sev- 

e r a l  i n t e r e s t i n g  fea tures  appear on t h i s  f igure .  Because of  t he  i n t e r a c t i o n  

of t h e  wave components, we note  t h a t  a double per iod i n  t h e  t o t a l  zona l  energy 
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(also t o t a l  wave energy) evolves. A t  l e a s t  one o f  the cases IS almost 

e n t i r e l y  inact ive ,  a remarkable r e s u l t  f o r  a speci f ica t ion with more than 

h a l f  of the  energy i n  the  wave i n i t i a l l y .  Final ly ,  the  e l l i p t i c  na tu re  

o f  the  solut ion is c l ea r ly  evident i n  the  case n =8, n =10 and A - 4 ,  A =l. 
a B a B 

In summary, t he  most evident observation from these  ca lcula t ions  i s  

t he  v a r i a b i l i t y  o f  t h e  solut ions .  Depending on the  i n i t i a l  spec i f i ca t ion ,  

t h e  solut ions  may range from a completely inact ive  system t o  one wi th  

s t rong ly  e l l i p t i c  var ia t ions .  They may show highly var iable  wave components 

uhi&* . . in  the  t o t a l  wave - * 

energy. The response of the  system does not necessar i ly  depend on i t s  

t o t a l  energy amplitude. In order  t o  make a s a t i s f a c t o r y  comparison of 

the  low-order system t o  the  atmosphere, therefore ,  i t  i s  e s sen t i a l  t o  know 

very precise ly  the  configuration of the atmosphere. Should the  atmosphere 

no t  be in a mmf5gnration-nhi~k is representable hy *& low-order -trun- 

cat ion,  any comparison between r e a l i t y  and the  model ray  be s e r i o u s l y  ques- 

t ioned. The model and the  representa t ive  ca lcula t ions  herein descr ibed 

nevertheless give an indicat ion of the  var ie ty  o f  barot ropic  motions which 

might be experienced i n  the  atmosphere. 

9. Conclusion 

The de ta i l ed  nonlinear exchange processes (energy and others) a r e  

d i f f i c u l t  t o  i s o l a t e  and hence t o  comprehend i n  any general model o f  the  

atmosphere. By severely t runcat ing atmospheric models, it i s  p o s s i b l e  t o  

br ing these  exchange processes i n t o  focus. We have chosen t o  t r u n c a t e  the  

s p e c t r a l  form of the  barot ropic  v o r t i c i t y  equation and the  two l e v e l  

p o t e n t i a l  v o r t i c i t y  equation with constant s t a b i l i t y  t o  allow exchange 

only between an a rb i t r a ry  zonal flow and one planetary wave. The r e s u l t -  

ing  equations keve been t amed  "low-order spec t r a l  equations", a l though 

o the r  t runcat ions  lead t o  equations which may be included i n  t h i s  termi- 

no low.  - -  2 -  * . - _ ."". " - - -- 
0 -  - - -  - --- 

The solut ions  t o  the  low-order equations considered here in ,  which a re  

i d e n t i c a l  i n  form f o r  both t h e  barot ropic  and ba roc l in i c  cases,  are  a n a l y t i c  

i n  t i m e ,  and have been de ta i l ed  i n  the t e x t .  Their dependence on i n t i a l  

condi t ions  has been shown and requires  a spec i f i ca t ion  of the  t o t a l  energy 

in t h e  system (c lear ly  not a condition fo r  l i n e a r  problems), t he  i n i t i a l  

zonal p ro f i l e ,  t h e  r e l a t i v e  i n i t i a l  energy i n  the  wave and the wave p r o f i l e .  

Since t h e  solut ions  a r e  periodic,  t he  energy exchanges amongst the  components 

(both k i n e t i c  and potent ia l )  may be  es tabl ished a t  any time during t h e  cycle.  

Furthermore, because of the  pe r iod ic i ty ,  the  maximum exchwges f o r  any Corn- 

ponent may be ascertained. An in t e re s t ing  fea ture  of t h i s  system is t h e  fac t  
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t h a t  t he  energy exchange i n  the  barocl in ic  case follows a la* s i m l l a r  t o  one 

derived by F j o r t o f t  (1953) f o r  barotropic flow. 

Although the  equations which a r e  solved a r e  nonlinear,  i f  the  l i n e a r i z e d  

form o f  the equations shows s t a b i l i t y  ( e i the r  barotropic or  b a r o c l i n i c ) ,  the  

l i n e a r  solut ions  w i l l  g ive  a good indicat ion of ttie behaviol. of the system 

when t h e  i n i t i a l  energy i n  the  wave is small. Indeed, f o r  small i n i t i a l  wave 

energy, the l i n e a r  solut ion shows t h a t  the  maximum exchange over o n e  period - - - - . - - 
is l inea r ly  proportional t o  the  wave energy, a r e s u l t  which is s u b s t a n t i a t e d  

by the  nonlinear solut ion.  - 
A number o f  p r o p e r t i e h f  the  system other  than energy exchange may be 

determined, which include the  phase angle var ia t ions  with time, the wave 

speed, and momentum t ranspor t  across l a t i t u d e  c i r c l e s .  However, a l l  these 

ca lcula t ions  require  the  spec i f i ca t ion  of i n i t l a 1  condltlons f o r  s o l u t i o n .  

To determine-how the  s y s e m  responds t o  var iable  i n i t i a l  conditions, there- 

fo re ,  we calcula ted  f o r  t he  barot ropic  model with two zonal j e t s  a n d  a va r i e ty  

of wave p ro f i l e s  and wave numbers. The r e s u l t s  of these  c a l c u l a t i o n s  indi-  

ca t e ,  although they cannot be d i r e c t l y  compared t o  atmospheric motions,  t ha t  

a wide v a r i e t y  of nonlinear processes may be expected. The reader i s  re -  

f e r r ed  t o  Section 8 f o r  d e t a i l s  of these ca lcula t ions .  

We may now ask what u t i l i t y  the  low-order system serves,  since t h e  r e su l t s  

o f  computation do not appear t o  compare favorably with observations o f  atmos- 

pher ic  flow. To begin, atmospheric flow involves a composition of waves,  a l l  

i n t e rac t ing ,  and therefore  shows a p ic ture  of a more complex phenomenon. The 

individual  exchanges, a s  described by the low-order system, must e x i s t ,  how- 

ever.  Therefore, we should attempt t o  expand t h e  low-order system t o  more 

than one wave, and i n t e r p r e t  t h e  consequences of such a modification i n  terms 

o f  the  low-order behavior o f  each wave independently. The low-order system 

s tud ied  i n  t h i s  repor t  i s  capable of giving information on the  i n t e r a c t i o n  o f  

more than one have, but only as t h a t  in teradt ion a f f e c t s  t he  zonal f l o w .  Thus 

we may bu i ld  up more complex systems which w i l l  approach observed mot ions .  

The problem af s t a b i l i t y  @6th barot ropic  hnd barncl in ic7 which has 

received wide a t t en t ion  by renown s c i e n t i s t s  is a l s o  amenable t o  s t u d y  by 

t h e  low-order systems. Whereas previous analyses required l i n e a r  equa t ions  

--thereby l imi t ing  the  conclusions t o  the  determination of the s t a b i l i t y  

c r i t e r i o n  and possibly growth ra tes- - the  nonlinear systems maintain t h e i r  

conservation conditions and therefore  have no such l imi t a t ions .  Cursory  

ca l cu la t ions  with t h e  low-order equations through t h e  l i n e a r  s t a b i l i t y  point 

i nd ica t e  t h a t  no sharp t r a n s i t i o n  i n  processes takes place,  contrary t o  the  

ind ica t ions  of l i n e a r  theory. Analysis of t h i s  problem i s  being undertaken 

cu r ren t ly .  



One might expect that linear effects added to the low-order system 

should not alter drastically the nonlinear character of the system and 

consequently analytic solutions should ensue from their inclusion. Based 

on this assumption, one could then investigate the influence of orography, 

friction and heating on a low-order system. Although the conservation con- 

ditions would be lost for the latter two effects, it may be possible to 

isolate the waves and profiles which are most profoundly influenced by these , 
most important of atmospheric forces. 

Fjnally, the availability af analytic solutions to nonlinear systws 

should prsve valuable as an aid in studying computationai stability and 

truncation. Here again we have the opportunity of following the exact solu- 

tion in comparison with those determined from different truncation schemes, 

rather than relying only on the linear forms of the basic equations. A 

comprehensive study of this problem is currently being completed. 
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Eq. (3.8) may be solved in terms of elliptic integrals since it involves 
a general quartic equation on the right-hand side. The solution to such in- 

tegrals is well known (see, for example, Bowman, 1961) and we shall therefore 

give only a brief review here, outlining the method for reduction to standard * 

form. For convenience, we rewrite (3.8) ; 

If we denote the roots of the equation 

as 2, 5, ;, i respectively, where we shall take the conjugate pairs (if they 

exist) as ( A , ; ) ,  (., , 5 ) ,  one may define the following quantities: 

Sow choosing '>L as the two roots of the equation 

(b-b')?' - (c'-c)@ + cb'-bc' = 0, 

we may, by first introducing the transformation 

write the quartic as, 

4 .  
1 bi~' = (l+~)-~(~x~+ q) (p'x2+ q') 
i 

where 

(A. 2) 



Subst i tu t ing (A.2) i n t o  (3 .8 ) ,  we have 

(A. 3) may%e-fur%%Giii$ifiea by-dsfiiilng the  quan t i t i e s  

and t h e  indices  

such t h a t  

and t h e  primed quan t i t i e s  take on the  remaining values.  Subs t i tu t ing  (A.4) 

and (A.5) i n t o  (A.3) we have, f i n a l l y ,  

I{ ((-)rx2+(-)sb2) ((-)rex2+(-)s*a2)}-idx Jdt = - 
q 5 q  

The f i n a l  ~educ t ions f . (A .6 )  Lo n o d  forlu requires  a knowledge of the  d i s -  

t r i b u t i o n  of the  indices  which we s h a l l  denote as group m, 

In  terms of m, we may express x ( t )  a s  





Ihe variables above, together  with t h e i r  dependence on the  allowed values 

of the- s e t 2  &re%&ls t ed_ in  ElebAL together with the  dependence of  B,, on 

it. Here a denotes t he  phase angle which i s  es tabl ished from i n i t i a l  values' 
m 

described by a zero subsc r ip t .  For completeness, we note t ha t  

where t he  qua r t e r  per iod  (K) i s  given f o r  ym=l. Thus the  period of t he  e l l i p t i c  

function i n  days i s  given a s ,  



Appendix B 

To complete the  so lu t ion  of  system (2.13),  it i s  necessary t o  e s t ab l i sh  

t h e  dependence of one of t he  phase angles,  say eg, on time. By use of (3.12),  

t h e  o the r  angle (8 ) w i l l  be determined. We s h a l l  t he re fo re  concentrate i n  

t h i s  d iscuss ion on O s ,  although by merely revers ing nota t ion  ( l e t t i n g  a% and 
I. 

6%) t he  equations w i l l  be appl icable  t o  Ba.  

The equation of i n t e r e s t  i s  (3.13) which we s h a l l  rc-peal. here  f o r  c l a r i t y :  

where a l l  the  terms have been defined i n  Section 3.  I f  we now make the  sub- 

s t i t u t i o n  B =B (x) from (A.l) and arrange terms, we have the  equation f o r  6 
n n B; 

Eq. (B.l) requi res  t he  following de f in i t i ons :  

In t hese  de f in i t i ons ,  A and u have been determined i n  Appendix A and the  o the r  

constants  have been e s t ab l i shed  i n  Section 3. The quant i ty  K used here  comes 

from (3.7) and should not  be confused with t h e  complete e l l i p t i c  i n t e g r a l  of  

t h e  f i r s t  kind. 

The l a s t  term of  (B.l) may be reduced t o  simple f r ac t ions  i f  we f i r s t  

no t e  t h a t  t he  roots  of  t he  quadra t ic  i n  t h e  denominator a r e  given as 



We s h a l l  assume the  roots  r e a l ;  i f  they a r e  not ,  the simplest procedure i s  

t o  ca lcula te  BU. The poles of (B.1) e x i s t  a t  the  points (-l ,n2,n3) and we 

may therefore  compute the  residues about those points ,  which are  given by 

T h e r e l a f  ions - * - -  - ----- 

Introducing these  residues i n t o  ( B . l )  and combining terms, we now f ind t h a t  

t he  equation may be wri t ten  i n  the  form, 

when 

If we now complete the  squares of the  terms i n  (B.3)  and in t eg ra t e ,  we a r r ive  

a t  E q .  ( 3 . 14 ) ,  



Table B l .  Values of c F j ,  cllj  and i. as  used i n  Eq.  ( 8 .4 ) .  
I 

The values of c . c . and z,. a r e  l i s t e d  i n  Table B1. ?he i n t e g r a l s  F and H, 
F J '  HJ J 

taken from t = O  t o  some a r b i t r a r y  time T may be expressed as 

- .  - . -  i K + w t  
- T  x d t  

- - 
F(; ,-T) = - =  

3 , - !? + NF(c. ,4K) 
x . - < .  3 I 

3 

where 

The i n t e g e r  N spec i f i e s  t h e  number of complete nonl inear  periods (T) included 

i n  T and t h e  index i represents  t he  quadrant of t h e  l a s t  period. Therefore .  

t a s  def ined i n  t he  l imi t s  of (8.5) w i l l  range only over a quar ter  p e r i o d .  

With t h i s  r r p r r s m t a t i o n w f  F and H, we now see  why 8 need not have per io-  B 
d i c i t y  of  per iod  T; f o r  by subs t i t u t ing  the  right-hand s i d e  of (8.5) i n t o  

(B.  4)  , we have 



For each f u l l  nonlinear period T, A i s  incremented as N increases  by an in -  

t ege r .  

The remainder of t h i s  Appendix w i l l  be devoted t o  the  evaluat ion of the  

in t eg ra l s  F and H. 

Functional form of F(wt): 
- - - 

In d i f f e r e n t i a l  form, we note-from (8.5) t h a t  F may be writ ten,  

where x has been defined i n  (A.l) and 5. i n  Table B 1 .  The var ia t ion of t 
I 

with respect  t o  x i s  given by (A.3) o r  (A.6) and depends on x2; t he re fo re ,  
-. - . -- 

on subs t i tu t ion  of 5 . 6 )  i n t o  ( ~ . 8 )  w e  s ee  immediateiy that -F Z< so lub le  i n  

terms of elementary in t eg ra l s .  To e lucidate  t h i s  p o s s i b i l i t y ,  l e t  u s  define 

the  va r i ab le  Z such t h a t  

We s h a l l  attempt t o  make z2<1 and have therefore  chosen form (B.9) s i n c e  

b2>a2 by de f in i t i on  (A.4).  However, depending on t h e  range of x, it may be 

necessary t o  i n v e r t  (B.9). Subst i tu t ing f o r  d t  from (A.6) and f o r  x2 from 

(B.9) i n t o  (B.8), we have f o r  dF, 

If we now r e c a l l  the  dependence of x on ym=snwmt from (A.8), we may e s t a b l i s h  

t h e  dependence of Z on u,t. This dependence has been l i s t e d  i n  Table 82 a s  a 

funct ion of the  index s e t ,  m. The values of and c ,  which a l so  depend On m, 

a r e  l i s t e d  i n  the  same Table, together with some l imi t s  on t h e i r  v a l u e s  which 

can be  determined from known constants.  I t  should be noted t h a t  t h e  quan t i ty  

k& used i n  Table B2 is the  complementary modulus defined a s  km2=1-kk, where 

the  values  of the  modulus ki a r e  l i s t e d  i n  Table A l .  

Proceeding with the  in t eg ra t ion  of (B.lO) we a r r ive  a t  the two ~ o s s i b l e  

so lu t ions ;  





where the-dependence on w t ' - i s  @paie%t T ~ N  Table 1 2 .  In general, t he  - - -  
behavior of F during a nonlinear period given by 4K=uT is s lmi l a r  t o  t r i g -  

onometric functions over a complete cycle.  However, t h i s  i s  not the case 

f o r  a l l  values of m;  therefore  we l i s t  i n  Table B2 the  values of F durlng 

one cycle i n  which, a s  i n  (B.6), O _ < w t < K  and O:i:3 f o r  F=F(lK+wt). In t h e  

event t h a t  F i s  not purely per iodic ,  we l i s t  a l s o  t h e  value f o r  f(4K). 

Functional form of H(wt) : 

The d i f f e r e n t i a l  form of H, from (8.5) may be wri t ten  

(B. 12) 

I f  we subs t i tu t e  f o r  x i n  terms of y given by (A.8) ,  (B.12) becomes. 

The var iables  AH, BH and 5 .  are  l i s t e d  i n  Table B3.for the d i f f e ren t  index 
J 

group m. In the  subsequent discussion, we s h a l l  suppress the  j index, a l -  

though it w i l l  be implied, as we have already suppressed the m subscr ip t .  

Let us now define two angles 8 and a (not r e l a t ed  t o  the var iables  used i n  

t h e  main t ex t )  a s  follows; 



N N N N  

B f , " ?  .'-) .h 'h .r) 
b 4 L " L " L r  



s i n  8 E y = Snwt 

= dnwt 

The re la t ionship  between 13 and w t  i s  evident from (A.8); a is simply computed 

Trum the dubs -k JisLed Jn Table A1. In tegra t ing (8.13) a f t e r  transforming 

d t  t o  dB from (B.14) we have, -- --- 

The function II which represents  the  required in t eg ra l  i n  the  evaluation of H 

is ca l l ed  the  e l l i p t i c  i n t eg ra l  of the  t h i r d  kind, and has been evaluated over 

the  range Oz+:n/~ (Abramowitz and Stegun, 1964). Since w t  ranges over a 

qua r t e r  per iod (K) i n  t h i s  range of $ (8.14) we may define the  in t eg ra l  

The value of t h e  i n t e g r a l  may be determined i n  any quadrant from i t s  value i n  

t h e  f i r s t  quadrant (where it has been defined) as follows: 

For t h e  complete period, T, i n  which case @=zn, 



On the assumption t h a t  n as given i n  (B.15) may be evaluated--ut i l iz ing t h e  

above information t o  extend t h e  i n t e g r a l  t o  a r b i t r a r y  time--the function H 

may be expressed i n  the  form, 

1 
H ( c j  ,w7) = ; (QIT + $1~5 ,PT\(I)) (B. 16) 

when, from (B.141, s i n  9 = snwr. Unfortunately the  conputation o f  var ies ,  

depending on the  s ign  and magnitude of L and thr-ee d i f f e r e n t  PlmCtions m u s t  _ _  . - - -  - j' 
b e  ~"a icu la t ed :  n l ,  n 2  and II3. me function appropriate t o  any m value is  

l i s t e d  i n  Table B3. 

For completeness, we conclude t h i s  Appendix with t h e  formal represen- 

t a t i o n  o f  the  th ree  functions (111 2 3) together  with the  necessary de f in i t i ons .  , s 
s 

s q2s 
nl(5;wt\a) = - 2 ~ 1 ~ 6 ~  1 (-1 s i n z w t  sinh 2s5 

s=] S(1-qZS) K 

+ q 1 6 ~  tan- l (tanh B t a n  $ wt) 

snwtcnwt 
+q3 tan-l(p2 -1 

rn 2s 
112(6;~t\u) = -263 1 (-1' s i n  Fwt sinh 2sBl 

s=1 s(1-qZS) 

+63 t a n - l (  tad181 t an  & wt) 

n3(g;ut\ .~ = -26, j --E sin oi s i n  2sB3 
s = 1  s ( 1 - p )  



OD 

2s 
W(B3) cot63 + 4 1 s i n  283 

s=l  1 - zqZs cos 2B3 + q4' 

The l a t t e r  quantity q is defined as the nome. The function F ( E , ~ )  is the 

incomplete e l l i p t i c  integral  of the f i r s t  kind, whereas K i s  the complete 

e l l i p t i c  integral  for  the modulus k. The complementary complete integral  

K' i s  evaluated using k'. Thus we have, 

A l l  the above relat ions have been programmed for  d ig i ta l  computation. 




