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ABSTRACT 

A theoretical consideration of the terminal velocities of 

several  ice crystal  types is presented. The Best number-Reynolds 

number relationship for objects whose shapes simulate ice crystals 

is employed in the computations. The computed terminal velocities 

a s  a function of crystal  s ize a r e  shown. 

A parallel field study has been performed. Photographs of 

crystals falling in natural snowfall were made using a strobe light 

for illumination. From the photographs, a determination of crystal  

type, size, and falling attitude and the distance the crystal  fell be- 

tween successive strobe flashes was made. Terminal velocities 

were then calculated and the data was plotted a s  a function of crystal  

type and size. Curves were fitted to the data using the least squares 

method. These results a r e  shown with the computed values. Also 

shown a r e  Nakayals findings for comparison. 

Experimental results of the study show that a l l  of the crystal  

types observed exhibit a functional relationship between terminal 

velocity and crystal  size. This is consistent with theoretical predic- 

tions developed in the study. Reasons for some disagreement between 

observational and theoretical results a r e  discussed. 

Stanley R. Brown 
Department of Atmospheric Science 
Colorado State University 
Fort  Collins, Colorado 
November 1970 
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INTRODUCTION 

Over the past decade, Colorado State University has been 

conducting a program in the central Colorado Rockies to investigate 

cold orographic clouds, associated precipitation processes, and their 

modification potential, An inherent part of this program has been 

the attempt to refine the description of various cloud physics pro- 

cesses. A cloud process which has been observed frequently in the 

field but has not been explained satisfactorily is the production of 

excessively high concentrations of ice crystals in certain clouds. 

Several mechanisms which would produce such an effect have been 

proposed. One such mechanism might be the mechanical fracturing 

of the fragile dendritic crystal  types resulting from collisions with 

one another o r  with other crystal  types. Basic to our understanding 

of such a process is an accurate knowledge of ice crystal  terminal 

velocities. Detailed knowledge of the terminal velocities of ice 

crystals is important for additional reasons. It is a controlling 

factor in the growth of ice crystals by diffusion and accretion. In 

addition it is a controlling factor in the formation of ice crystal  

aggregates o r  snowflakes. 

Despite the importance of the terminal velocities of ice crys 

tals in s o  many cloud physics problems, our knowledge of them is 

very sparse  and incomplete. The terminal velocities of several ice 

crystal  types have been studied by Nakaya (1954). His work is 



generally regarded a s  the standard fo r  ice crys ta l  terminal  veloci- 

t ies.  Several other studies, Schaefer (1 947), Magono ( 1  953), and 

Litvinov (1 956), have been reported on individual crystals ,  but 

these have not substantially al tered Nakaya 's results.  Unfortunately 

however, Nakaya did not have a large data sample. In addition, 

more  refined techniques than Nakaya used a r e  now available for  

measuring the terminal  velocity of ice crystals.  F o r  those crys ta l  

types not studied by Nakaya, the terminal  velocities a r e  not well 

known. 



OBJECTIVES 

The objective of this study has been to develop theoretical 

values for the terminal velocities of individual ice crystals and 

compare them with experimentally obtained values. To accomplish 

this, the following specific objectives have been to: 

1. measure the terminal velocities of some of the crystal  

types reported by Nakaya using an improved technique 

which: 

a. reduces the human e r ro r  factor, 

b. allows recognition of crystal  accelerations, 

c. allows photographic determination of crystal  type 

and size, 

d. allows determination of the falling attitude of 

crystals. 

2. measure the terminal velocities of some of the crystal  

types not previously reported using the same technique. 



BACKGROUND 

The most extensive study on the terminal velocities of indi- 

vidual ice crystals was made by Nakaya (1954). He employed two 

techniques for determining the velocity. In one, crystals were 

dropped from the top of a closed tube and the time they took to fal l  

through a distance of 2 meters was measured with a stopwatch. 

Graupel, which requires a considerable distance to reach terminal 

velocity, was measured by photographing falling pellets through a 

fan rotating at a known rate. The resulting streaks were chopped at 

known time intervals and the velocity then could be determined. 

The results of Nakaya's work a r e  shown in Fig. 1. Of parti- 

cular interest a r e  the curves for spatial and plane dendrites. They 

both show no size dependence. Nakaya's data is meager a s  he him- - 

self states and therefore is subject to further verification. 

Schaefer (1947) photographed falling crystals that were illu- 

minated by high pressure mercury lamps. The lamps were operated 

by an alternating current which produced a stroboscopic effect. 

With this he was able to determine the terminal velocities of a few 

individual crystals which he reported. For  the most part his values 

were greater than those of Nakaya, Schaefer grouped c rys ta l s  of 

various type together, which seriously reduces the value of his 

findings. 
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Magono (1 953) worked primarily with snowflakes which a r e  

aggregates of individual ice crystals but did study a few individual 

crystals. His technique consisted of photographing the falling crys  - 

tals which were illuminated once per .01 second with light produced 

by an electric discharge. Magono1s results  a r e  similar  to those of 

Nakaya. 

In a later paper, Magono (1954) treated ice crystal  terminal 

velocities from a theoretical standpoint. By making certain assump- 

tions he was able to ar r ive  at values which agreed quite well with 

Nakaya I s  findings. 

Using an interesting technique, Langleben (1954) studied the 

terminal velocities of snowflakes. His method was to use a 16 mm 

cine-camera with a speed of 32 frames per second. The snowflakes 

were photographed in f ree  fall against a dark background. Langleben 

found that the velocity of snowflakes was approximately equal to  the 

1/10 power of the snowflake mass. 

Snowflakes were also studied by Litvinov (1956) using a 1 2  

meter tube and a stopwatch to time the snowflake falling through the 

length of the tube. His results were similar  to Langlebenls, but 

they did not show a s  much dependence on size. 

In a study of the fall velocities of plate-like and columnar ice 

crystals, Jayaweera and Cottis (1969) employed disk and column 

shaped objects, made of various materials, and allowed these to 

fall  through fluids of different viscosities. From this work they 
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were able to deduce certain characteristics which would allow them 

to predict the terminal velocities of plate and columnar ice crystals 

falling through air.  They did not actually work with ice crystals but 

did check their predictions against nylon fibers falling through a i r  

and obtained good agreement. 

Other investigations, s imilar  to the one by Jayaweera and 

Cottis have been made. Podzimek (1968) studied the behavior of 

plastic and metal models falling through various fluids. His models 

simulated stellar,  hexagonal plate, and plate with corner outgrowths 

types of ice crystals. Others, e.g. Stringham (1965), have studied 

the falling behavior of a wide range of shapes. These investigations 

were made for purposes other than the study of ice crystal  behavior. 

However, they have proven very useful for  predicting ice crystal  

terminal velocities. 



THEORY 

An object moving through a fluid experiences a resistance 

due to the behavior of the fluid. Shear s t resses  resulting from 

viscosity and velocity gradients along the surface of the object 

create forces tangential to the surface. Also affecting the object 

a r e  forces normal to the surface which a r i se  from pressure  varia- 

tions along the surface. The component of the vector sum of these 

forces directed opposite to the object's motion is usually known a s  

the drag force, 
F ~ '  

The drag force can be expressed as: 

where C,, is the drag coefficient, p is density of air ,  A is the 

cross-sectional area  of the object normal to the direction of motion 

and U is the velocity of the object. The gravitational force G acting 

on the object is: 

where g is gravitational acceleration, and p is the density of the 
C 

object of volume V. When the object is falling at terminal velocity 

these two forces a r e  equal. Thus: 

Solving (3) for U gives: 
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This general expression for  the terminal fall velocity is not readily 

suitable for computation because of the difficulty in assigning values 

to the drag coefficient for objects of various shape. This difficulty 

a r i ses  from the fact that the drag coefficient is a function of the ob- 

ject's velocity through i t s  relationship with the Reynolds number, 

Re: 

Re = d U/V (5) 

where d is some characteristic length and v is kinematic viscosity. 

The CD-Re relationship is not expressable in t e rms  of elementary 

functions but must be found experimentally. 

Best (1950) developed an approach to solve this problem, 

which combines the Reynolds number and drag coefficient in the 

form: 

X = C  Re 
2 

D 

where X is known a s  the Best number. Solving (3) for CD and sub- 

stituting this into (6) along with the expression for Re gives: 

X = 
v 2 ~  

2d2gV [ 1 (7) 

We can see  that the velocity has conveniently dropped out and we a r e  

left only with t e rms  which a r e  easily evaluated. To use (7) for 

computing terminal fall velocities, the X-Re relationship for the 

shape in question is necessary. This is readily found if  the C ,,-Re 

relationship is known for the particular shape. The procedure is 



to calculate X for a given object, then find the corresponding value 

of Re and calculate U from the expression for  Re. 
I 

In the remainder of this section, an attempt has been made 

to determine the relationship between terminal fall velocity and ice 

crystal  s ize for various crystal  types using Best 's technique. To do 

this the work of several authors on the CD-Re relationship of various 

shaped objects has been utilized. The results a r e  shown graphically 

along with the experimental values obtained in this study. 

Plane Dendrites 

It was found by Magono (1953) and confirmed in this study 

that plane crystals fall with their basal face horizontal. This was 

predictable from the work of various authors on thin disks falling 

through viscous fluids, e. g. Stringham (1 965). He found that when 

Re< 100, disks fall with their maximum cross-sectional a r ea  normal 

to the direction of motion in a steady fashion, but when Re exceeds 

100, the disks begin to oscillate slightly and increase their er ra t ic  

behavior a s  Re increases. The value of Re for most plane crystals 

is < 100, with only those crystals greater  than about 3 -4 mm in 

diameter exceeding this value, For  those, the oscillations a r e  

small and about the vertical and thus do not effect their horizontal 

attitude. Fig. 2 is a photograph of a falling dendrite which was 

illuminated every 1/100 of a second by a strobe light. It clearly 

demonstrates the horizontal attitude of the basal plane. 



The cross-sectional a r e a  normal to the direction of motion 

then is simply the a r e a  of the basal  plane. Since the volume of the 

crys ta l  is the basal  a rea  t imes the thickness, the rat io v / A  reduces 

to just t, the crys ta l  thickness. Thus for plane dendrites, (7 )  be- 

comes 

The relationship between crys ta l  diameter and thickness has 

been investigated by severa l  authors. Auer and Veal (1970) have 

made the most extensive study and report  that the thickness slowly 

increases a s  the diameter increases.  Ono (1969) found that plane 

crystals  show an increase in thickness a s  the diameter increases 

until they reach 50-60~ thick. This occurs a t  a diameter of about 

1600p. The apparent discrepancy between the two investigations can 

probably be explained by the small  sample s i ze  obtained by Ono. 

Plotting Onols curve on the diagram of Auer and Veal shows that i t  

l ies  within the sca t ter  of their points. The two curves a r e  shown in 

Fig. 3, Reynolds (1952) in a study of plane crystals  nucleated in a '  

cold chamber, obtained resul ts  which agreed quite well with Ono 

for  very small  c rys ta l  diameters. His resul ts  a r e  shown in Fig. 4. 

IIowever, Nakaya (1 954) reported an average thickness for dendrites 

of 11p, The reason fo r  this wide departure f rom the resul ts  of 

others is not obvious. 
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Podzimek (1968) has determined the drag coefficient-Reynolds 

number relationship for models which simulated hexagonal plates, 

both with and without corner outgrowths, and stellars.  He gives the 

-. 466 
relationship for plates as: CD = 16.5 Re and for stel lars  and 

-. 466 
plates with outgrowths: C, = 20.2  Re These relationships 

a r e  plotted in Fig. 5 using log-log scales. From these curves, the 

X-Re relationships were determined and these a r e  also shown in 

Fig. 5. Using values of t f rom the curve of A.uer and Veal to calcu- 

late X and then finding the corresponding value of Re from the X-Re 

curve for stel lars  in Fig. 5 the relationship between terminal fall 

velocity and crystal  diameter was found. This is shown in Fig. 12. 

It should be emphasized that this curve is valid only for crystals 

exhibiting a diameter-thickness relationship which is in agreement 

with Auer and Veal. Crystals which exhibit a different diameter- 

thickness relationship, such a s  reported by Nakaya, would lie along 

another curve- 

Hexagonal Plates 

The expression for the Best number given by (8) applies to 

plates a s  well a s  plane dendrites. Following the same procedure 

used for plane dendrites, the terminal velocity-crystal diameter 

relationship was computed. This relationship is shown in Fig. 1 2  

also. The two curves a r e  similar in shape, with the plate curve 

being somewhat higher due to  plates having a lower drag coefficient 



F i g u r e  5. C - R e  and  X - R e  r e l a t i o n s h i p s  f o r  s t e l l a r s  and p l a t e s  as 
D 

found by P o d z i m c k  (1968). A l s o  shown is the  C - R e  
r e l a t i o n s h i p  for thin c i r ~ c u l a r  d i s k s  D 



than plane dendrites. Again i t  should be emphasized that this curve 

holds only for those crystals which exhibit the diameter-thickness 

relationship found by Auer and Veal. 

Spatial Dendrites 

When spatial dendrites a r e  considered, the problem becomes 

more complex. Because of the random orientation and number of 

a rms  occurring, it  is not possible to define cross-sectional area  and 

volume a s  simply a s  for plane crystals. To overcome this difficulty, 

the problem can be approached in the following manner: the spatial 

dendrite can be considered in t e rms  of a sphere which would just 

enclose it. A certain fraction of the sphere's volume would be ice 

and the remainder air .  Likewise, if we project the crystal  a rms  on 

a cross-section through the sphere, a fraction of the cross-sectional 

a rea  would be ice and the remainder air.  However, the a r ea  of ice 

would vary depending on the orientation of the c ross  section. Al- 

though the area  of ice varies, a mean value will exist for each 

crystal. Letting the fraction of the volume which is ice be x, and 

the mean fraction of the area  which is ice be 7, an expression for 

the volume of a spatial dendrite can now be written as: 

where r is the radius of the sphere which just encloses the crystal. 

Likewise the expression for  the mean cross-sectional area  is: 



These resul ts  can now be incorporated into (7) giving: 

Before ( I  I )  can be used, the factor  (x/y) must be evaluated. 

If we consider a simple s ix branch crystal,  four branches lying in 

one plane and Ihc. olhcr t w o  perpendicular to it, an approximate 

value for (x/y) can be obtained. Firs t ,  looking a t  a broad branch 

crystal,  much like those found in this investigation, and using the 

following dimensions: branch width: 5 0 0 ~ ;  branch length: 1000t~ ; 

branch thickness: sop., x is found to have a value of -003. 

As mentioned earl ier ,  y varies  depending on what c r o s s  

section is taken. y will be near  a minimum when the c ross  section 

is taken perpendicular to  a branch such that the remaining branches 

a r e  seen on edge. This is shown in Fig. 6a. Actually, y would be  

slightly l e s s  if the crys ta l  was rotated 45" about the vertical. The 

maximum value will occur when the cross-section is again taken 

perpendicular to a branch bat in such a manner that the remaining 

branches have their broad faces parallel to  the cross-section a s  

shown in Fig. 6b. The f i r s t  condition gives a value of .06 for y 

while the secorld gives -56. Using these values to compute x / y  

gives .05 in the f i r s t  case  and .0053 in the second. Thus x /y  will 

have a value somewhere in between .05 and .0053. Further  calcu- 

lations show that a s  the branches become more slender, x/y in- 

c reases  rapidly. 



Figure 6a. Cross  section of spatial dendrite showing minimum y 

Figure 6b. Cross  section of spatial dendrite showing maximum y 
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The problem now ar ises  of what X-Re relationship to use. 

The author was unable to find any information on this relationship 

fo r  objects similar in shape to spatial dendrites. A s  a f irst  approxi- 

mation, the relationship for  stel lars  shown in Fig, 5 can be used. 

This approximation is probably quite realistic. If the spatial 

dendrite consists of s ix arms,  it will have approximately the same 

surface area  as  a plane dendrite of s imilar  branching. Thus the 

area  over which frictional drag occurs would be essentially the same 

for both crystals. However, the cross-sectional area  presented to 

the flow by the spatial dendrite would be less than that of the plane 

dendrite since all  six a rms  of the spatial dendrite do not lie in the 

same plane. Thus the area  over which pressure drag occurs is 

less for the spatial dendrite. At low Reynolds numbers the frictional 

drag is much greater than the pressure drag. A s  the Reynolds num- 

ber increases, the pressure drag becomes more significant in rela-  

tion to the frictional drag and at a certain value of the Reynolds 

number, becomes the dominant factor. However, the value of the 

Reynolds number at which this occurs for  objects shaped like spatial 

dendrites is not known. The fact that plane dendrites have higher 

drag coefficients than hexagonal plates indicates that the frictional 

drag is still  the dominant factor for the range of Reynolds numbers 

covering these crystals. It is believed that this conclusion can be 

safely extended to  spatial dendrites. Thus we can expect the drag 

force on both plane and spatial dendrites to  be quite similar. 



Using this approximation and allowing x/Y to take on various 

values, we can compute the relationship between the terminal  velocity 

and the measure of c rys ta l  s ize  r. A different relationship exists 

fo r  each value of x/y and severa l  of these a r e  plotted in Fig. 14. 

Columns and Needles 
-- - - 

Stringham (1965) found that columns fall with their  longest 

o r  'c' axis horizontal when the Reynolds number is between 10 and 

400. Ono (1969) found this also f o r  the case  of columnar ice  crystals.  

Thus the cross-sectional a rea  normal to the direction of motion is 

the length t imes the crys ta l  width. The width is the diameter of 

a circumscribed circular  cylinder which just encloses the crystal.  

The cross-sectional a r e a  can then be expressed as: 

where R is the radius of the circumscribed cylinder and L is the 

crys ta l  length. The volume is: 

Substituting these into (7) gives: 

Equation .(l4) shows the interesting resul t  that X is dependent on the 

crys ta l  radius and not directly on length. 



Ono (1969) has found the relationship between length and 

diameter of a large number of columns. His results a r e  shown in 

Fig, 7. We can see  that columns reach a maximum diameter of 

about 90p although the length may continue to increase. Thus two 

crystals of the same diameter may have quite different lengths and 

yet will have the same Best number. However, Jayaweera and 

Cottis (1 969) have obtained the X-Re relationship for circular 

cylinders and report that at low values of X, the relationship is 

markedly dependent on the lengthldiameter ratio but becomes less  

dependent a s  X increases. Their results a r e  shown in Fig. 8. 

Using this information they plotted curves of terminal fall velocity 

versus ~ / d  ratio for cylinders of various diameter. These a r e  

shown in Fig. 9. 

The more recent study by Auer and Veal (1970) does not 

reveal the cutoff of crystal  growth in the 'a1 direction a t  90p. 

Rather their results showed a gradual increase in diameter a s  

length increased. Both Auer and Veal and Ono obtained a large 

number of observations. Thus this question remains to be resolved. 

Needles a r e  treated in the same manner a s  columns, being 

classified a s  columns with much greater length than diameter by 

Jayaweera and Cottis (1969). However in the study by Auer and 

Veal (1970) it was found that the ~ / d  ratio of needles varied from 

about five for  the shortest length crystals to approximately 40 for 

the maximum length crystals. A t  the same time the ~ / d  ratio of 
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Figure  8. Relationship between X and Re for  cyl inders  of var ious  
d / L  ra t io  a s  found by Jayaweera and Cottis  (1969) 
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columns varied from 2 to 15, Thus such a simple definition as  

stated by Jayaweera and Cottis is not adequate. 

Capped Columns 

Ono (1969) has reported that capped columns fall with the 

column length oriented vertically. Thus the cross  -sectional area,  

normal to the direction of motion, is the a rea  of the basal plane of 

the plate capping the column. Letting R be the radius of a cylinder 

which circumscribes the column and R' be the radius of a thin disk 

which circumscribes the end plates, the expression for the crystal  

volume is: 

where L is the column length and h is the plate thickness. The 

cross-sectional area  of the bottom plate is: 

Substituting into (7 )  gives: 

Information on the X-Re relationship is not available for objects of 

this shape, However, by making certain assumptions it  is possible 

to predict. how the X-Re relationship will compare with those of 

other shapes. Due to the falling attitude of a capped column, the 

a i r  will flow around the bottom plate. If the crystal falls with 



sufficient speed, wake formation will occur, and if great enough no 

further contact between a i r  and crystal  will occur after the a i r  passes 

from the edge of the bottom plate, If these conditions a r e  met, the 

drag on the crystal will consist entirely of pressure drag on the basal 

face. The crystal  w i l l  then be expected to behave like a thick plate 

with mass  equal to that of the capped column. Of course, this con- 

cept required many assumptions to be made. In addition, little is 

known on the relationship between R, R1, L, and h. Because of this 

uncertainty, it seems rather pointless to attempt to compute the rela-  

tionship between terminal velocity and various crystal  dimensions. 

Graupel 

The approach used for computing the terminal velocity of 

spatial dendrites can be readily applied to graupel because of i ts  

irregular shape, Considering a sphere which just encloses the parti- 

cle, a fraction x of the sphere's volume would be ice and the remain- 

der air .  In similar fashion, a cross  section through the sphere 

would have a fraction y of its area  ice and the remainder air.  Again, 

a s  with spatial dendrites, the value of y would vary a s  the orientation 

of the cross-section changed. However, a mean value, 7, would 

exist and this would be a constant for  a given particle. Expressions 

for the volume and area  a r e  identical with equations (9) and (10) and 

when substituted into equation (7) give the result: 



which is identical with equation (11). Of course the factor x/y will 

be different for graupel, a s  well a s  the density pc. 

The greatest problem in treating graupel theoretically ar ises  

f rom the density, because of i ts  wide variation. Nakaya reported an  

.5 average value of -125 g/cm while Braham (1964) found values near 

3 
. 9  g/cm in summer cumulus. This variation in density would 

cause a large difference in fal l  velocities between the particles 

studied in the respective investigations. 



EXPERIMENT 

The basic method used fo r  determining the terminal  veloc- 

t ies  of ice crys ta ls  consisted of photographing a falling crys ta l  using 

a strobe light for illumination. To do this, a means of controlling 

the position of crystals  falling in front of the camera  was necessary.  

Also required was a way in which the crys ta l  could be illuminated by 

the strobe light while at  the same time the camera  could be shielded. 

Thirdly, a means of determining the distance that the crys ta l  fell . 

between strobe flashes was necessary. 

Instrumentation 

These requirements were met  by constructing a 9 cm x 2 7  

cm x 15 cm "black box". At one end a 35  mm camera  was mounted. 

Towards the other end, a vertical slit, open a t  the top and bottom, 

was made with glass  plates. The box design is shown in Fig. 10. 

2 
A 1 cm grid was attached to the plate at  the back of the s l i t  to 

allow the distance determination discussed above. One side of the 

s l i t  contained a glass  window for illumination of falling crys ta ls  by 

the strobe light. The camera  was focused in the middle of the 1. 5 cm 

wide sl i t  and exposure t imes ranged from $ to 3 seconds depending 

on film speed and crys ta l  source. Image clar i ty was quite good and 

in most cases  natural c rys ta ls  could be readily identified from the 

film. The resul t  of this arrangement was a se r i e s  of images of the 

same crys ta l  falling in front of the grid. An example of this is 
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Figu re  10. Design of "black box" 



shown in Fig. 2. The distance between images was determined from 

the grid while the time between images was known from the strobe 

light frequency. Thus only a simple calculation was necessary to 

find the fall velocity of the crystal. The box and camera were 

mounted on a stand and a plastic tube was placed above the slit  to 

eliminate horizontal drafts. It was possible to close the bottom of 

the slit a s  well a s  the top of the tube when windy conditions required 

it. The physical arrangement of the apparatus is shown in Fig. 11. 

Procedure 

Two crystal sources were used and the procedure that was 

followed varied somewhat depending on source. Natural plane den- 

drites were collected and stored in sealed plastic containers in a 

cold chamber for later use. To study them, the apparatus was set  

up in the cold chamber at a temperature of about -20°C. Wind condi- 

tions were calm s o  the bottom of the slit  was left open. To eliminate 

thermal effects, the apparatus was allowed to  cool overnight before 

proceeding. The dendritic crystals were dropped one a t  a time and 

caught at the bottom of the slit  on a glass slide. A photomicrograph 

was then made for later comparison of size with that determined 

f rom the photograph of the falling crystal. 

The other crystal  types studied empirically were photographed 

a s  they fell  in natural snowfall. This included spatial dendrites, 

capped columns, needles, needle bundles, and graupel. To 
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eliminate possible a i r  motion within the chamber the sli t  bottom was 

kept closed. The tube top opening was a lso  reduced in size. To en- 

hance the possibility of photographing a crystal,  a slow speed film 

and exposure time of' :3 sc)conds were used under these conditions. 

A constant s l robe light frecpency of 6000 c. p. m. was used 

throughout the study. 'I'his produced severa l  images of thc fastest 

particles whilc: 31. thc same  time it maintained adequate separation of 

the images of the slower particles. It should be pointed out that one 

distinct advantage of the method employed in this study was that par t i  

c le  accelerations were recognizable f rom variations in separation of 

the crys ta l  images. 

To check the repeatibility of the procedure, severa l  dendritic 

crystals  were dropped through the apparatus more  than once. No 

difference in terminal  velocity was detectable between each tr ial ,  

thus increasing the author's confidence in the method. 
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RESULTS A N D  DISCUSSION 

Plane Dendrites 

Approximately 100 plane dendrites were photographed. All but 

41 of these either showed riming or  hit the sl i t  edge. The experi- 

mentally determined values for these 41 a r e  plotted in Fig. 12. While 

the observations show greater  velocities than those of Nakaya a s  pre-  

dicted by theory, agreement with the computed curve is rather poor. 

The fact that the experimental data is, in general, below the computed 

curve indicates that the actual dendrites had a higher drag coefficient 

than the stel lar  models used by Podzimek although it might be partly 

due to a difference in thickness since he does not provide this informa- 

tion on his models. The disagreement between the slope of the com- 

puted curve and the general slope of the authorfs data can perhaps be 

attributed to the CD-Re relationship reported by Podzimek. This 

relationship gives a curve of constant slope when plotted on log-log 

paper. However, the C -Re relationship a s  found by various authors, 
D 

for  objects of other shape shows a significant change in slope a s  Re 

3 
varies up to Re z10 . The relationship for a thin circular  disk which 

closely approximates a hexagonal plate in shape is shown in Fig. 5. 

To see  what effect this had, a curve, parallel to the C -Re 
D 

curve fo r  thin disks and tangent to Podzimekfs curve, was drawn. 

From this a new X-Re curve was obtained and finally the resulting 

terminal fall velocity-diameter relationship was computed. This new 

relationship is the s tar red curve shown in Fig. 12 .  We see  that 
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Figure 1 2 .  Relationship between terminal velocity and crystal 
diameter of unrirned plane dendrites and plates 

* See text for explanation of this curve 



there is better agreement between the slope of the new computed 

curve and the slope of the experimental data. Of course the position 

of the new curve is of less  significance since the choice of position 

of the CD-Re curve was arbitrary. 

Also shown in Fig. 1 2  is a fitted curve using the least- 

squares method a s  well a s  Nakayals curve. The large difference be- 

tween Nakayals results and those obtained in this study a r e  in part 

due to the difference in elevation between the two experimental sites 

but this would only amount to about 2 cm/sec. Of more significance 

is the difference in crystal thickness found in the two studies. A few 

dendrites collected in this study were observed to  determine their 

thickness and were found to  agree quite well with Auer and Veal. 

However, a s  mentioned earlier,  Nakaya reported that the average 

thickness of the dendrites which he studied was l lp .  The fact that 

Nakayals curve shows a constant terminal fall velocity can probably 

be explained by 1) the fact that his data sample was small  and 2) the 

size dependence is actually quite small  for crystals  larger  than 

1600p in diameter, the range in which Nakaya made his measure- 

ments. It is also possible that the crystals had not reached terminal 

velocity when Nakaya began his timing, since they had fallen only 

20 c m  at this time. His technique did not allow recognition of crystal  

accelerations such a s  was possible with the technique used in this 

study. 
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A few of the dendrites showed a small  amount of riming a s  

noted from the photomicrographs. These were excluded from the 

unrimed dendrites. How ever, due to the importance of accretion 

processes, a plot of their terminal velocities versus crystal  dia- 

meter was made a s  shown in Fig. 13. It is apparent that even though 

a large amount of scattering is present, in general the values a r e  

considerably higher than those found for unrimed dendrites. 

Theoretically the riming can be treated a s  an increase in 

crystal  thickness equivalent to  the total volume of the rimed droplets. 

This is a result of the r ime occurring primarily on the basal face. 

Due to the variation in the amount of riming, one would expect a 

variation in terminal velocities, a s  observed. 

Spatial Dendrites 

The data obtained for 40 spatial dendrites a r e  shown in Fig. 

14. We see  that the crystals exhibit x / y  ratios between .03 and .09  

with a tendency towards lower values a s  the crystal  s ize increases. 

It is not known how this ratio varies with crystal  s ize nor under 

different growth conditions. It appears that it  does not remain con- 

stant a s  the size increases, however this may be due to the shape of 

the C -Re curve plotted from Podzimekls expression a s  discussed 
D 

in the previous section. If the C -Re curve showed the same change 
D 

in slope a s  curves for  other shapes, then the computed curves in 

Fig. 14 would exhibit a greater change in slope and would be closer 



Figure 13. Relationship between terminal velocity and crystal 
diameter of rimed plane dendrites 
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to the experimental data. An example of this has been computed 

and is shown in Fig. 14. Also shown a r e  the findings of Nakaya and 

a curve which was fitted to  the data. 

Needles 

Unfortunately only three falling needles were photographed 

in this study. A s  expected they fel l  with their 'c '  axis horizontal. 

Their terminal fall velocities a r e  plotted in Fig. 15 along with 

Nakaya's findings. The values appear to agree quite well with 

Nakaya if his curve is extended to  larger  sizes. Three needle bun- 

dles were also photographed and these a r e  included in Fig. 15. 

Capped Columns 

Several falling capped columns were photographed and their 

terminal fall velocity a s  a function of column length is shown in Fig. 

16. In addition several  crystals consisting of more than one column, 

separated by plates in a stacked fashion, were photographed. An 

example of these is shown in Fig. 18. Their terminal fall velocities 

a r e  shown in Fig. 17. 

As discussed in the theory section, i f  the crystal  fell with 

sufficient speed to cause wake separation to occur, we would expect 

the crystal  to behave a s  a thick plate of mass  equal to that of the 

capped column. Such a crystal would, of course, have a greater  

terminal fall velocity than the plates in Fig. 1 2  and would also show 

dependence on the column length L through its effect on the crystal  
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Figure 14. Relationship between terminal velocity and crystal 
diameter of spatial dendrites 

:+ See text for explanation of this curve 
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F igu re  16. Relationship between te rmina l  velocity and column 
length of capped columns 



Column length (mm) 

Figure 17 .  Relationship between terminal velocity and column 
1t.ngth of multiple capped columns 
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mass. It is evident from Fig. 16  that the experimental data tends 

to be compatible with this concept, Included in Fig. 16 is a curve 

which has been fitted to the data of the individual crystals. 

A composite showing the fitted curves of the various crystal  

types is given in Fig. 1 . Also included a r e  Nakaya's curves for 

comparison. 
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SUMMARY 

In this study, an attempt has been made to explain the terminal 

velocity-crystal s ize relationship f rom a theoretical aerodynamical 

standpoint for several crystal  types. A parallel study has been ca r -  

ried out to measure the terminal velocities of ice crystals using a 

more refined technique than employed by Nakaya, and to establish 

values for the terminal velocities a s  a function of size for some of 

the crystal  types not previously reported. 

Experimental results of the study show that a l l  of the crystal  

types observed exhibit a functional relationship between terminal 

velocity and crystal s ize in the size range considered. This is con- 

sistent with theoretical predictions developed in the study. Confi- 

dence in the method used is high because of i t s  demonstrated repeata- 

bility and its improvements over the method used by Nakaya such a s  

reduction of human e r ro r  and the opportunity for recognizing particle 

acceleration. 

The specific results of this study may be summarized as  

follows: 

1, Theory predicts that the terminal velocity of plane den- 

drites should be greater  than reported by Nakaya and in 

addition should show a functional relationship with crystal 

size, both diameter and thickness. This has been con- 

firmed by the observations. The importance of crystal 



thickness in controlling the terminal velocity was one 

result of the theoretical treatment. This parameter has 

been largely ignored in previous studies. A curve was 

fitted to the experimental data using the least squares 

technique and gave the relationship between terminal 

velocity and crystal  diameter as: U = 37.6 d 
0.217 

2, Hexagonal plates were treated in the same manner a s  

plane dendrites and a terminal velocity-crystal s ize 

curve was developed for them. Because plates have 

lower drag coefficients than plane dendrites, they have 

higher terminal velocities. Thus the plate curve is dis- 

placed towards higher velocities from the curve for plane 

dendrites. No natural plates were observed in the study 

for comparison with the theoretical treatment. 

3. The volume and cross  sectional a rea  of a spatial dendrite 

can be determined by considering a sphere which just 

encloses the crystal. A certain fraction, x, of the 

sphere's volume would be ice. Similarly, i f  the crystal  

a rms  a r e  projected on a cross  section through the sphere, 

a fraction, y, of the cross  sectional a rea  would be ice. 

Theoretical considerations showed that the ratio xIy was 

one of the controlling factors in predicting terminal velo- 

cities. Observations showed in this study that natural 

crystals apparently do not maintain a constant xIy ratio 



a s  they increase in size since the slope of the experi- 

mental data does not parallel theoretical curves. A curve 

0.38 
fitted to the data is described by: U = 50.5 d 

4. It was found from theoretical considerations that the 

terminal velocity of columns is dependent on the crystal  

radius and not directly on length. Jayaweera and Cottis 

(1 969), using a similar theoretical approach, computed 

the terminal velocities of columns a s  a function of diameter 

and length/diameter ratio. Their results  a r e  included in 

this paper for comparison. 

5. Needles a r e  treated along with columns because of their 

similarity. They a r e  classified a s  columns with much 

greater  length than diameter by Jayaweera and Cottis 

(1969). The value of the length/diameter ratio a t  which 

the classification changes is not specified by them, how- 

ever. Three natural needles were observed and their 

terminal velocity was plotted versus their length. Their 

terminal velocities could not be compared directly to the 

theoretical curves of Jayaweera and Cottis because the 

crystal  diameters were greater  than those included in 

their study. However, good agreement with Nakaya was 

found when his curve was extended to greater  lengths. 

6. Theoretical considerations predict that a capped column 

should behave like a thick plate of mass  equal to that of 



the capped column. Observational data tends to support 

this treatment. However, lack of information on the rela-  

tionships between the various dimensional parameters, 

along with lack of information on the drag coefficient for  

objects of this shape prevented the computation of mean- 

ingful terminal velocities, A curve fitted to the observa- 

tional data is described by: U = 8 2 , 5 L  
0.65 

0 
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