Tropical Cyclones in the Australian/Southwest Pacific Region

by
Greg J. Holland

P.I. William Gray

Department of Atmospheric Science
Colorado State University
Fort Collins, Colorado

NSF \#ATM-7923591
NOAA/NHRL \#NA 81 RAH-00001
Australian Government

Colorado

Department of Atmospheric Science

TROPICAL CYCEONES IN THE AUSTRALIAN/SOUTHWEST PACIFIC REGION

By
Greg J. Holland

Atmospheric Science Department
Colorado State University
Fort Collins, Colorado
March, 1983

Abstract

Some results are presented from the completed first stage of a collaborative Colorado State University/Australian Bureau of Meteorology project to investigate various aspects of tropical cyclones in the Australian/southwest Pacific region. We begin with a brief description of the major environmental and geographical features of this region, together with an overview of previous research work. We then discuss the distinguishing climatological and structural features of tropical storms, hurricanes and major hurricanes throughout the region, and highlight the effects of the prevailing flow patterns and the Australian continent. Finally, we present a theoretical and observational examination of the mechanisms leading to development, intensification and motion of these cyclones.

DEDICATION

T0

Christine
Gary, Daryl and Sarah

Home is wherever they are

TABLE OF CONTENTS

Page

1. INTRODUCTION 1
1.1 Definitions and Terminology 3
1.2 Regional Geography and Meteorology 7
1.3 Overview of Previous Research 15
2. DATA 18
2.1 Tropical Cyclone Data 18
2.2 Environmental Data. 20
3. COMPOSITING TECHNIQUE 24
3.1 Coordinate System and Sign Convention 24
3.2 General Technique 25
3.3 Special Precautions: Removing Bias 27
3.4 Summary 29
4. TROPICAL STORMS 31
4.1 Tropical Storm C1imatology 32
4.2 Tropical Storm Structure 40
4.2.1 Dynamical Structure 40
4.2.2 Thermal Structure 50
4.3 Summary 56
5. HURRICANES 59
5.1 Hurriane Climatology 60
5.2 Major Hurricane Climatology 64
5.3 The Structure of the Oceanic Hurricane. 70
5.3.1 Dynamical Structure 70
5.3.2 Thermal Structure 79
5.4 The Continental Influence on Hurricanes off the East and West Australian Coasts 86
5.4.1 The East Coast Hurricane 89
5.4.2 The West Coast Hurricane 95

TABLE OF CONTENTS (cont'd)

Page
5.5 The Structure of the Major Recurving Hurricane 104
5.6 Hurricane Kerry: A Case Study. 109
5.7 Summary 119
6. TROPICAL CYCLONE INTENSIFICATION 122
6.1 Background. 122
6.1.1 The Role of Moist Convection 122
6.1.2 The Role of the Environment. 125
6.2 C1 imatology 133
6.2.1 Intensity and Intensity Change 133
6.2.2 Rapid Intensification. 141
6.3 The Physics of Cyclone/Environment Interaction. 143
6.4 Synthesis: The Intensity Change Process. 150
6.4.1 Axisymmetric Effects 150
6.4.2 Environmental Forcing and Asymmetric Effects 156
6.5 Summary 162
7. TROPICAL CYCLONE MOTION 165
7.1 Background and Theory 166
7.1.1 Isolated, Axisymmetric Barotropic Vortex on a β P1ane with no Friction. 166
7.1.2 Axisymmetric, Barotropic Vortex Embedded in a
Uniform Current 171
7.1.3 Non-1inear Effects 173
7.1.4 The Effects of Basic Current Asymmetries 187
7.1.5 The Sensitivity of Cyclone Motion. 191
7.1.6 The Effect of Surface Friction 194
7.2 A Comparison of Theory and Observations 195
7.2.1 On Determining a Steering Current. 195
7.2.2 Observations 200
7.3 Summary 206

TABLE OF CONTENTS (cont'd)
Page
8. SUMMARY. 208
8.1 C1imatology 208
8.2 Structure 211
8.3 Intensity Change Mechanisms 214
8.4 Motion Mechanisms 218
8.5 Further Research and Forecast Implications 222
ACKNOWLEDGEMENTS 228
REFERENCES 230
APPENDIX 1 - LIST OF SYMBOLS AND ACRONYMS 244
APPENDIX 2 - THE COMPOSITE STRATIFICATIONS 247
APPENDIX 3 - THE BALANCED VORTEX MODEL. 253
APPENDIX 4 - AN ALTERNATE AXISYMMETRIC AZIMUTHAL WIND PROFILE FOR TROPICAL CYCLONES 256

I. INTRODUCTION

Between the landmark 1956 Brisbane Tropical Cyclone Symposium (Bureau of Meteorology, 1956) and the mid 1970's considerable effort was devoted to examining and documenting various features of tropical cyclones in the Australian/southwest Pacific region. As we briefly outline in section 1.3 , diverse characteristics ranging from storm surge to rainfall observations, and from small severe hurricanes to vortex pairs across the equator were described by a number of authors. In addition the Australian Bureau of Meteorology has published annual case history summaries after 1962, together with occasional more extensive and detailed investigations into tropical cyclones which had a severe impact on coastal communities.

Despite such efforts, our knowledge of the important features of, and processes in these cyclones has remained quite patchy. This has largely been due to lack of adequate data in the cyclone vicinity. In all cases, chance observations have provided tantalizing glimpses of different characteristics but insufficient data were available for an adequate description of the entire cyclone. The deficiency is especially evident in the Australian Tropical Cyclone Forecasting Manual (Bureau of Meteorology, 1978) in which we had to adapt Northern Hemispheric results to a Southern Hemisphere perspective on the assumption that the basic characteristics were similar.

We have, however, seen substantial progress since 1978: the Australian Bureau of Meteorology has placed a high priority on tropical
cyclone research and encouraged collaboration with extermal institutions; and the data coverage and usage has improved with the development of rawinsonde compositing techniques, the use of recorded radar data, instrumented tower boundary layer data, the Japanese Geostationary Meteorological Satellite (GMS), and the first reconnaissance by an instrumental research aircraft (Sheets and Holland, 1981).

In this paper we present the results to date from one component of this increased activity; that is, an examination of the general features of tropical cyclones in the Australian/southwest Pacific region, their climatology, structure, energetics, environmental interactions and diurnal modulation. This is a collaborative project between Colorado State University and the Australian Bureau of Meteorology and has involved the collation of all available tropical cyclone and synoptic data in the Australian/southwest Pacific region, together with the adaption of Professor Gray's compositing methodology to a Southern Hemisphere perspective. These data collations and new compositing procedures are described in Chapters 2 and 3; in Chapters 4 and 5 we discuss the climatology, structure and energetics of tropical storms and hurricanes; in Chapter 6 we attempt to isolate the major intensification mechanisms, and relate these to the development of the major hurricane; and in Chapter 7 we discuss the physics of tropical cyclone motion.

Before proceeding, however, we shall first introduce some basic concepts and definitions, describe the regional geography and meteorology, and give a brief background on previous research work. A full 1 ist of symbols and acronyms is provided in appendix 1 and a summary of all composite stratifications is in appendix 2.

1.1 Definitions and Terminology

Following Lourensz (1977, 1981), Kerr (1976) and Revelie (1981), the Australian/southwest Pacific region is defined as that area from $95^{\circ} \mathrm{E}$ to $150^{\circ} \mathrm{W}$ and the equator to $30^{\circ} \mathrm{S}$. This region, which is shown in Fig. 1.1, extends from the western edge of Lourensz' data set to the eastern extremity of tropical cyclone occurrence in the South Pacific Ocean. Three subsets of this large region will also be used. These are: the Australian region, which encompasses the Australian and Papua New Guinea areas of tropical cyclone warning responsibility, from 105 to $165^{\circ} \mathrm{E}$; the southwest Pacific region, which extends east of $145^{\circ} \mathrm{E}$; and the north/west Australian region which extends west of $145^{\circ} \mathrm{E}$.

After Bureau of Meteorology (1978), the following terminology is adopted:

Tropical Disturbance (TD): a synoptic scale weather system of tropical origin which may or may not be detectable as a wind field perturbation.

Monsoonal Trough (MT): the trough of low pressure into which the monsoons converge.

Monsoonal Depression (MD): a cyclone on the monsoon trough.

Tropical Cyclone (TC): a non-frontal synoptic scale, cyclonic rotational low pressure system of tropical origin, in which 10 minute mean winds of at least $17 \mathrm{~m} \mathrm{~s}^{-1}$ occur, the belt of maximum winds being in the vicinity of the system's center. In the absence of wind data, a central pressure of less than 995 mb is used.

Fig. 1.1. The Australian/southwest Pacific region showing major geographical features.

Tropical Storm (TS): a tropical cyclone in which the maximum wind speeds are in the range $17-33 \mathrm{~m} \mathrm{~s}^{-1}$, or the central pressure lies between 995 and 980 mb .

Hurricane or Typhoon: a tropical cyclone in which the maximum wind speeds exceed $33 \mathrm{~m} \mathrm{~s}^{-1}$, or the central pressure is less than 980 mb .

Major Hurricane: a tropical cyclone in which the maximum wind speeds exceed $45 \mathrm{~m} \mathrm{~s}^{-1}$, or the central pressure falls below 960 mb . This corresponds to class 4,5 hurricanes on the Saffir-Simpson code (Simpson, 1974) and to the major hurricane classification in Revelle (1981).

Core Region: the region within 200 km of the cyclone center.
Inner Circulation: the region within 300 km of the cyclone center.
Outer Circulation: the region $300-800 \mathrm{~km}$ from the cyc1one center.
Following the suggestion by Gray (personal communication 1982) and Merrill (1982), we separated tropical cyclone "intensity" into three modes: inner core intensity (which we shall simply refer to as intensity), strength and size. These are illustrated in Fig. 1.2 as
changes from an initial profile. Intensity is defined by the maximum wind, or by the central pressure if no maximum wind data are available. Strength is defined by the average relative angular momentum of the low level inner circulation. Size is defined by the axisymmetric extent of gale force winds, or by the outer closed isobar.

This is a physically and energetically consistent separation. Merrill (1982) has shown that there is a poor correlation between intensity and size, and our experience is that intensity and strength are also only weakly correlated. However, as we shall discuss in Chapter 6, strength changes are almost certainly associated with, and follow, size changes. Energetically, intensity change is usually, if not always, associated with an inward contraction of the radius of maximum winds and a quasi-conservation of angular momentum as the inflowing air penetrates closer to the cyclone axis. However, because of the small radius, even very large intensity changes are only associated with relatively small angular momentum changes on the entire storm scale. This angular momentum can be easily provided by a slight rearrangement of the inner circulation without any import from the environment. By comparison, strength and size changes (or the maintenance of a strong or large system against surface friction) require substantial angular momentum imports.

We believe that many previous studies of the environmental influences on tropical cyclone intensity have been, in reality, examining strength changes. The distinction between tropical cyclone intensity, strength and size is also especially important in the Australian/southwest Pacific region. As we shall show in later chapters, tropical cyclones in this region are in the mean 1 arger and
stronger than those in the northwest Pacific or north Atlantic regions. They are, however, no more intense.

The terms origin, maximum intensity, and decay also have special meanings. Origin and decay are used to describe the first and last points on a cyclone track as defined by Lourensz (1981), Kerr (1976) or Revelle (1981) with the following exceptions: 1) a cyclone which moves polewards of $30^{\circ} S$, or over land, is considered to have decayed; 2) should a cyclone move over land, decay to a monsoonal depression, then move back over water and reintensify, it is given a new origin point at the coast. Cyclones poleward of $30^{\circ} \mathrm{S}$ are removed to prevent contamination of the data by extratropical systems, a policy which is consistent with that adopted by Lourensz (1981). The new 1and to sea 'origins' correspond to the regeneration points defined by McBride and Keenan (1982). Maximum intensity is that achieved by the cyclone throughout its entire lifetime as a distinct system (i.e., regardess of movement over 1and).

Fig. 1.2. A schematic of the effects of intensity, strength and size change on the radial profile of azimuthal winds in a tropical. cyclone.

Following Holland (1981) we also place tropical cyclone tracks into five categories: westward, southward and eastward moving, recurving and erratic. The first three describe cyclones which move continuously towards the west to southwest, southwest to southeast, and southeast to east throughout their lifetime, with no major track perturbations. To be classified as recurving a cyclone must have moved steadily to the west or southwest for at least two days, recurved in an anticlockwise manner then moved steadily east to southeast for another two days (or crossed the coast). A11 cyclones which do not fit the above classification are placed in the erratic category.

1.2 Regional Geography and Meteorology

The Australian/southwest Pacific region has several geographical and meteorological peculiarities which not only distinguish it from the well documented North Atlantic and northwest Pacific basins, but, as we shall presently see, produce cyclones with quite different structures and physical characteristics. We shall highlight some of these peculiarities in the following paragraphs. However, the discussion is kept to a brief and introductory nature; interested readers might consult Bureau of Meteorology (1978), Sadler (1975), Atkinson (1971), Ramage (1970), Newell et al., (1972), or Gray $(1968,1979)$ for further information on some of the fascinating meteorological details of this region.

The broad geographical features of the region may be seen in Fig. 1.1. In the northwest, the long, high Indonesian island chain stretches from Sumatra to the Arafura Sea. This zonally orientated barrier averages over 1000 m in height, with peaks exceeding 3000 m , and
separates the Indian Ocean from the 'maritime continent' (Ramage, 1968). On the northeastern side of the Arafura Sea rises the New Guinea massif, a formidable orographic barrier with average heights around 3000 m and peaks exceeding 5000 m . Further polewards, but right in the center of the tropical cyclone activity, lies the arid Australian continent. Much of the western and northern Australian regions are orographically featureless and semi-desert. A wide continental shelf is found of the northwest coast and in the northeast lies the warm, shallow Gulf of Carpentaria. The major orographic feature is found along the east coast. This mountain chain, the Great Divide, is typically $1-2000 \mathrm{~m}$ in height and rises sharply from a generally narrow coastal plain.

In a counterpoint to these large orographic and continental features, the southwest Pacific region consists of myriad of coral cays and tropical islands, many of which are of volcanic origin.

The Australian/southwest Pacific tropical cyclone season typically begins in October or November and ends in May through June (Burean of Meteorology, 1978; Revelle, 1981). The major meteorological features of the region during this season, as shown in Figs. 1.3, 1.4 and 1.5, include the monsoonal regime over northern Australia, the orographic controls on convective activity, and the southwest Pacific cloud band and associated zonal Walker circulation along the equatorial Pacific.

The advance and retreat of the monsoonal westerlies over the Indonesian and northern Australian area are clearly seen in Fig. 1.3. In October, trade wind easterlies extend from the subtropical ridge over southern Australia and across the equator (though a substantial heat trough has developed over western Australia). By January a monsoonal

Fig. 1.3. Mean gradient level streamine/isotach for October, January, and April (after Atkinson, 1971).

Fig. 1.3. Continued.
trough has developed in the Southern Hemisphere and advanced down over northern Australia and eastwards to the New Hebrides. This trough reaches its maximum southward extent in February then begins to retreat, as may be seen in the April analysis of Fig. 1.3. Of course, these are only mean movements; on occasions the monsoonal trough may extend over southern Australia or out into the central South Pacific.

The upper level flow features also evolve in association with the complete monsoonal circulation. As may be seen in Fig. 1.4, between October and January the subtropical ridge moves southward over northern Australia, breaks into two cells, and develops a distinct crossequatorial flow into the Northern Hemisphere (the return branch of the monsoon). The subtropical ridge then moves back to the north between January and April and the cross-equatorial flow weakens. Note, however, that the ridge remains quasi-stationary over the southwest Pacific and westerly winds extend to quite low latitudes there, even in January. We shall presently see that this feature, together with the monsoonal

East West

East West

Fig. 1.4. Mean 200 mb level streamline/isotach analyses for October, January, and April (after Sadler, 1975).

Fig. 1.4. Continued.
climate over northern Australia, has a distinct effect on tropical cyclones across the region.

Associated with, and providing the connection between these upper and lower features are the regions of deep tropical convection, whose general distribution may be seen in Fig. 1.5. (To be pedantic, Fig. 1.5 is comprised more of extensive stratiform clouds. But such stratiform clouds are generally preceded, or maintained by deep convective activity.) Comparing Fig. 1.5 with Fig. 1.3 we see that the cloud maximum lies along the tropical convergence zone on the equatorward side of the monsoonal trough. There is, in addition, a distinct orographic as sociation, particularly over the maritime continent (see e.g., Holland and Keenan, 1980) and around New Guinea. A distinctive cloud band may also be seen extending southeast from New Guinea. This is the 'South

Fig. 1.5. Mean cloud cover (oktas) for October, January, and April (after Atkinson, 1971).

Fig. 1.6. Mean sea surface temperatures for January with superimposed prevailing ocean currents (after Gorshkov, 1976).

Pacific cloud band' (Streten, 1970), which lies along the intersection of the mean Hadley circulation over eastern Australia and the zonal Walker circulation (Bjerknes, 1966) along the equatorial Pacific.

The final meteorological feature in this brief description is the mean sea surface temperature fields in Fig. 1.6. An east Australian current brings warm water over the southern Coral Sea and a cool west Australian current, combined with upwelling slightly cools the waters off southwest Australia. But note the warm pool off the northwest coast. Wyrtki (quoted in Ramage, 1971) suggested that upwelling water in this region is replaced by warmer subsurface water drifting polewards over the continental shelf and around northwest Cape. Thus, we have a unique situation in that the waters off parts of the west coast are warmer than those off the east coast at the same 1atitude.

1.3 Overview of Previous Research

The earliest known reports on tropical cyclones in the Australian/southwest Pacific region may be found in Reid (1838), Dobson (1853), Piddington (1855), and Fitz Roy (1863), and the first complete climatology in Visher (1925) and Visher and Hodge (1925). Since that time climatological information on various tropical cyclone aspects has been included in H.M. Hydrographic Department (1938), Meteorologisch Instituut (1949), Giovane11i (1952), Hutchings (1953), Brunt and Hogan (1956), Gabites (1956), Giovanelli and Robert (1964), Gray (1968, 1975), Brunt (1969), Ramage (1970), Atkinson (1971), Genti11i (1971), Crutcher and Quale (1974), Crutcher and Hoxit (1974), O1iver (1974), Dobson and Stewart (1974), Chong et a1. (1980), Dexter (1981), and Ho1land and Pan (1981). Seasonal summaries of tropical cyclones in the Australian region have also been compiled by the Australian Bureau of Meteorology since 1962.

The most recent, comprehensive climatological information on tropical cyclones may be found in Burean of Meteorology (1978), Holland (1981), Lourensz (1981), and McBride and Keenan (1981) for the Australian region, and in Kerr (1976) and Revelle (1981) for the southwest Pacific region. Lourensz (1981) is an update of earlier publications by Coleman (1972) and Lourensz (1977) (from which much of our data are derived). He presents track and maximum intensity information on all cyclones in the Australian region from 1909-1980, together with some statistics on, among other things, occurrence, motion and coastal crossings. Kerr (1976) and Revelle (1981) contain similar information for cyclones in the southwest Pacific region for the periods 1939-1969 (Kerr) and 1969-1979 (Revelle), and Revelle provides further
statistics on gale, storm, hurricane and major hurricane classes. Bureau of Meteorology (1978, Chapter 4) present a wide range of statistics on Australian region tropical cyclones from the periods 1909-1975 and 1949-1975; they discuss the data problems before 1949 and examine some relations between tropical cyclones and the general meteorological features of the region. A further analysis of the quality of the Anstralian cyclone data is contained in Holland (1981); in that paper we examined the period 1909-1979 and concluded that only since 1959 are the data of research quality. McBride and Keenan (1982) also extend the analysis in Bureau of Meteorology (1978) to present a detailed climatology of the modes of cyclogenesis in the Australian region and their relation to environmental parameters.

Since the Brisbane Tropical Cyclone Symposium (Bureau of Meteorology, 1956) a number of authors have also examined various aspects of tropical cyclones in the Australian/southwest Pacific region, including structure, storm surge, rainfall, motion mechanisms and unusual or interesting phenomena. A number of structural features have been examined by Bond and Rainbird (1956), Whittingham (1960, 1964), Whittingham and Swan (1960), Falls (1970), Neal and Wilkie (1970), Barclay (1972), Gomes and Vickery (1976), Hol1and (1980), Sheets and Holland (1981), and McBride and Keenan (1982). Cyclone genesis and intensification mechanisms have been documented by Gibbs (1955, 1956), McRae (1956), Southern and Scott (1976), McBride and Keeman (1982), and Love (1982), while some motion relationships are described in Lajoie and Nicholls (1974), Lajoie (1976a,b, 1977) and Holland and Pan (1981). Case studied of specific cyclones may be found in Bath (1957), Whittingham (1963, 1964), Whittingham and Aubrey (1967), Director of

Meteorology (1970, 1972, 1977, 1979), Wilkie and Gourlay (1971), a report by staff members of the Australian Bureau of Meteorology (1975), Lajoie (1981), Sheets and Holland (1981), Love (1982), Holland and Black (1983) and Black et al. (1983). Extensive information on cyclone rainfall is contained in Brunt (1958a, b, 1966, 1968), Wilkie (1960), and Milton (1978), and on storm surge in papers by Mackey and Whittingham (1956), Whittingham (1958, 1959), James Cook University of Northern Queensland (1972), Dexter and Watson (1975) and Spillane and Dexter (1976). Specific, unusual features of, or results from tropical cyclones in the region may be found in Pisharoti and Kulkarni (1956), Neumann and Opton (1958), Leigh (1969), Gourlay (1970), Maragos et al. (1973), Holland (1978), and Holland et al. (1983) and general surveys of tropical cyclone socioeconomic effects are given by $01 i v e r$ (1974) and Southern (1981).

For a more comprehensive survey of the results of these research efforts, the reader is referred to the Australian Tropical Cyclone Forecasting Manual (Bureau of Meteorology, 1978).

2. DATA

2.1 Tropical Cyclone Data

Even though tropical cyclone data are readily available back to the 1909 in the Australian region and to 1939 in the southwest Pacific, much of the earlier data are of intermittent quality. Hence, following our recommendation in Holland (1981), we chose the period 1958-1979 as containing the optimum length of research quality data. Cyclone data for this period were then obtained from four sources: 1) a magnetic tape, prepared by R. Lourensz of the Australian Bureau of Meteorology, containing Australian region track data corresponding to that in Lourensz (1977); 2) hard copy of post analyzed Australian region track data from 1975-1979 (Lourensz, private communication 1980; Neal, private communication, 1980); 3) Kerr (1976), which contained tracks for southwest Pacific cyclones up to 1969; and hard copy tracks provided by C. Revelle of the New Zealand Meteorological Service and which were used in preparing Reve11e (1981).

The Anstralian sources provided positions, central pressures and flags to indicate coastal crossings, over-water or over-1and trajectories, and times of minimum central pressures. Revelle provided positions together with estimated times of transition to and from tropical depression, tropical storm, and hurricane. With few exceptions, only position data and a rough separation of hurricanes and tropical storms could be obtained from Kerr (1976).

These data were then melded into a common format and linearly interpolated, where necessary, to the standard synoptic times of 05,11 , 17, 23 GMT. On occasions when tracks from two sources overlapped, the Australian data were used because of their greater detail. Any extra New Zealand data were then smoothly fitted to the ends of the Australian tracks. Cyclone velocities were calculated using centered differences, or one sided differences at the track extremities. Following the Australian convention, flags were set to denote coastal crossings, over-water or over-1and trajectories, interpolated data, times of minimum central pressure, and to delineate Australian and New Zealand data.

After a careful examination of the whole data set, a few atypical systems were deleted; these atypical systems included a couple of short lived tropical depressions which never intensified below 1000 mb , extremely short lived systems on the coast or at the western edge of the Australian region, and a couple of high 1atitude, late season, and seemingly extratropical systems. In a post-examination of the completed data set we al so noted that Hurricane Kerry (1979) and Hurricane Hazel (1979) were inadvertantly omitted and the last couple of days of track were left off two cyclones in the southwest Pacific. The final data set then contained 363 cyclones of which 140 were estimated to have reached hurricane intensity. The spatial and temporal distributions of these cyclones will be presented in Chapters 4,5 and 6.

Because of the lack of regular aircraft reconnaissance these Australian/southwest Pacific cyclone data are not of comparable quality to those from the northwest Pacific or Atlantic regions. It is also difficult to provide an objective estimate of the underlying cyclone
intensity and positioning exrors. In Folland (1981) we examined the basic observing systems over the Australian region, incorporated the known radar, satellite etc. errors from other regions, and used some simple tests to arrive at a best guess at these errors. To sumarize, our estimates were that: cyclones within 500 km of the Australian coast are accurately located to within $20-50 \mathrm{~km}$; cyclone positions more than 500 km from the coast are generally in error by $50-100 \mathrm{~km}$ and occasionally moreso; maximum wind estimates have virtually no skill; and central pressure estimates are generally quite poor and may be biased on the weaker side by about 10 mb in the Coral Sea region. These results are consistent with comparisons of "best track" positions of northwest Pacific cyclones from different agencies (Be11, 1981).

Fortunately, we also concluded that the position exrors are considerably reduced whenever observations are available in the cyclone core region. Hence the inner circulation of the composites presented in this study are probably only rarely effected by the larger errors. And, as Frank (1976) has noted, random position errors of up to 100 km will have little effect on the composite outside $4-500 \mathrm{~km}$. Uncertainties in the central pressure data are potentially much more serious, particulariy if the intensity trends are wrong. We have made every effort to minimize the impact of these errors in deriving the composite stratifications used in this paper.

2.2 Environmental Data

A11 available archived wind and thermal data for the period 19581979 were obtained from the Australian Bureau of Meteorology, the New Zealand Meteorological Service, the Malaysian Meteorological Service,
and the U.S. National Center for Atmospheric Research. Onfortunately, data from the Indonesian Islands, the French Pacific trust territories, and Papua New Guinea since 1972 were not available in such an accessible form. Some of these data were, however, obtained from the Australian Bureau of Meteorology, who have kept a real time archive of all traffic over the World Meteorological Organization's Global Telecommunication System since 1972.

Except for some extra consistency checks on the Australian data, all archived data were accepted as being sufficiently accurate for our purposes. Their quality control typically proceeds as follows: after recording in the field the soundings are manually recalculated and checked; they are then placed on magnetic tape and subjected to a number of standard meteorological tests before archival. These tests vary from simple checks of superadiabatic lapse rates etc. to long term checks on station bias.

The real time data were not so easily accepted. Aside from possible field errors they contained considerable coding errors and transmission line noise. By devising a series of antomated tests we were able to recover about 70% of these soundings. Another 20% were corrected manually and 10% were beyond hope. Thus, we were able to archive about 90% of the soundings, though many have been truncated or have ievels missing.

A valuable feature of these Australian/southwest Pacific data is that most stations make wind flights four times daily, though thermal observations are only made once daily. Hence we have compiled separate wind-only and thermal data sets. The wind-only set contains some 3 million flights from the 155 stations shown in Fig. 2.1. These flights

Fig. 2.1. The distribution of stations contained in the Australian/southwest Pacific wind-only data set.
were generally made at or near $05,11,17,23 Z$ ($23 Z$ varies from 06 to 14 LST across the region) and contained wind velocities for 18 pressure levels: surface, $950,900,850,750,700,600,500,400,300,250,200$, $150,100,80,70,60,50 \mathrm{mb}$. The thermal set contains 300,000 radiosonde soundings for the stations in Fig. 2.2. These soundings, which were generally taken at 23Z, contain temperature, moisture, height and winu velocity data at the same 18 pressure levels as the wind-only set.

A complete listing of all stations and summary of the procedures used in building the data sets may be found in Gray et al. (1982).

Fig. 2.2. The distribution of stations contained in the
Australian/southwest Pacific thermal data set.

3. COMPOSITING TECHNIQUE

Our basic philosophy is to composite observations from a number of similar systems to increase the data density to a level sufficient for detailed analyses and budget calculations. The general technique follows that described by Williams and Gray (1973), Frank (1976) and Gray et al. (1982). We have, however, introduced a number of refinements and modifications based on the collective experience obtained over the past few years.

3.1 Coordinate System and Sign Convention

As shown in Fig. 3.1, a cylindrical coordinate system is used. The coordinates and sign convention are: radius, r, measured along the curved earth's surface and positive outwards; azimuth, θ, measured counterclockwise from either due north or the direction of storm motion; and pressure, p, in the local vertical. Four coordinate system perspectives have been adopted:
a) NAT system: as in Fig. 3.1
b) MOT system: as in Fig. 3.1 but with cyclone motion subtracted from all wind observations
c) ROT system: as in Fig. 3.1 but with azimuth measured counterclockwise from the direction of cyclone motion

Fig. 3.1. The cylindrical coordinate system used in compositing studies, shown in the NAT system perspective.
d) MOTROT system: the same perspective as the ROT system but with the cyclone motion subtracted from all wind observations.

3.2 General Technique

Full details on the general composite technique may be found in Gray et al. (1982). To summarize, the relevant coordinate system is located at the cyclone center at each time period and the positions of all observations within 15° 1atitude radius are derived. The effect of balloon and cyclone motion during ascent are accounted for. As shown in Fig. 3.2 the cyclone is then divided into octants and into a nested radial grid at each pressure level. The average of all observations in each grid box is then assigned to a grid-point at the box center. Outside 6° 1atitude radius a 2° 1atitude resolution is maintained, with
sampling across the mean spatial and seasonal gradients in such absolute parameters as temperature, height and moisture. As an example, in examining the effects of such asymmetries we deliberately made an indiscriminant composite of all cyclones in the Gulf of Carpentaria and Western Australian region (Fig. 1.1). The mean position of the resulting cyclone was near 20° S. But, because of the data void Indian Ocean, the southwest quadrant came from observations over northern Australia and the northwest quadrant from observations along the Indonesian Islands. Thus, the southwest quadrant was anomalously warm and dry and the northwest quadrant was anomalously warm and moist. Cyclone size and intensity differences across the region and the proximity of the subtropical jet stream produced further biases.

Robert Merrill (much personal communication 1981 , 1982) has proposed a technique for removing this bias. He suggested a separate composite of the absolute value, squares and covariances of latitude, longitude and Julian day number. These data may then be combined with the mean spatial and temporal distribution of each parameter to remove much of the observational system bias. Following this suggested approach, we routinely composite the latitude, longitude and day number. Should these indicate a large degree of bias, the composite is discarded. In normal circumstances, however, a few biased grid points are indicated and are treated as suspect at the analysis stage. Our experience thus far is that wind composites (which are a measure of height gradients) are quite robust and insensitive to minor observational asymmetries. The hot, dry Australian continent, however, places a strong limitation on the thermal composites that may be made.

Thus, in some cases we are able to derive very good wind composites but cannot provide corresponding thermal information.

Statistical Techniques: Two types of statistical techniques are employed. Following Merrill (1982) we routinely produce statistics on the distribution and standard deviation of observations at each grid point, together with pooled distributions and standard deviations of each radial band for the 850,500 and 250 mb levels. Other levels are derived as necessary. These statistics provide a valuable tool in the hand analysis of the various parameter fields. Multi Response Permutation Procedure (MRPP) statistics (Mielke et al., 1976) may also be employed in special cases to examine the internal consistency of some composites and to test the significance of observed parameter differences.

3.4 Summary

The complete composite procedure is summarized in the flow diagram in Fig. 3.3.

We must emphasize that the composite cyclones produced by this procedure have a specific purpose. Considerable care is taken to retain certain features in a stable configuration. But this is occasionally at the cost of other features. For example, composite AUS04 (Appendix 2) delineates the effect of the Australian continent on east-coast hurricanes only, and would be useless for almost all other applications. A re-examination of the relevant data is required before the composites 1isted in Appendix 2 can be used for any other than their designated purposes.

Fig. 3.3. A flow diagram illustrating the procedure used in deriving a tropical cyclone composite.

4. TROPICAL STORMS

As we have noted in Chapter 2 there are no adequate data on maximmm sustained winds in Australian/southwest Pacific tropical cyclones; and those east of $165^{\circ} \mathrm{E}$ do not even have central pressure data. Hence, Australian region tropical storms were selected as all cyclones with minimum central pressures higher than 980 mb . East of $165^{\circ} \mathrm{E}$ we placed all cyclones not defined as hurricanes by Kerr (1976) and Revelle (1981) in the tropical storm category. This is not a precise separation and it almost certainly has left a number of hurricanes in the tropical storm category. But it is the best we can do with the available data.

The hot, dry Australian continent also has a marked effect on the thermal characteristics of tropical cyclones in its vicinity (Chapter 3). Hence only very limited thermal composites can be made for much of the Australian region. In the next chapter we describe two such limited composites, the east and west coast Australian horicanes, and give a quantitative description of these continental effects. Here we present a complete climatology of tropical storms throughout the region. But we shall limit our discussion of the composite structure and energetics to developing and non-developing tropical storms over the southwest Pacific at least 1000 km from the Australian coast.

4.1 Tropical Storn C1imatology

Spatial Distribution: These are given in Fig. 4.1 in terms of the number of days in which a tropical storn was present within a five degree latitude/longitude Marsden square centered on each point (the spatial grid resolution is one degree latitude/longitude). In terms of tropical cyclone days, then, the highest frequency of tropical storms occurs in the Gulf of Carpentaria with secondary maxima in the Coral Sea and off the northwestern Australian coast.

These distribution features arise from a variety of mechanisms of which the continent is a major factor. Three mechanisms contribute to the strong peak in the Gulf of Carpentaria. Firsily, as we have shown in section 1.2, the monsoonal trough extends across northern Australia for mach of the cyclone season. The warm Gulf waters are thus in an optimum position to allow monsoonal depressions to develop. Secondly, the proximity of land on three sides ensures a relatively high proportion of tropical storms, since most intensifying tropical cyclones cross the coast before reaching hurricane intensity. And, thirdly, as we will show in Fig. 4.8 , these Gulf storms are also moving quite slowly (and erratically); they thus affect a given place for a longer time. The maximum off the northwest coast is a reflection of the large proportion of cyclones which track to the west/southwest, parallel to and just off the coast in this region. We shall show in our discussion of the West Coast Hurricane in section 5.3 that the Australian continent indirectly forces this preferred motion. The maxima in the Coral Sea arise from the regular annual occurrence over these tropical waters, particularly in the vicinity of the South Pacific cloud band (Streten, 1970; section 1.2) which extends southeastward from New Guinea. The

Fig. 4.1. Tropical storm occurrence (days per 5° Marsden square for the 1959-1979 period) for the north/west Australian and southwest Pacific regions. Stippling indicates regions of no occurrence and dashed lines indicating intermediate 5 day isochrones are use for extra detail.
eastward spread is more a result of intormittent years in which large numbers of cyclones form over the central South Pacific.

The origin, maximum intensity, and decay point distributions, given in Fig. 4.2, show the major regulating offect of the Australian continent. As Bureau of Meteorology (1978) and McBride and Keenan (1982) have noted, most tropical storms in the western region originate on the monsoonal trough, which is located over northern Australia (Fig. 1.3). One third of these systems also originate from over land depressions. This provides the sharp maximum between $15-20^{\circ} \mathrm{S}$, and also the peaks in the longitudinal distribution over the southeast Timor Sea, warm Joseph Bonapart Gulf (southwest of Darwin) and Gulf of Carpentaria. By comparison, no well defined mean monsoonal trough or continental effect extends over the southwest Pacific. There, almost all tropical storm origins are over the ocean and are spread over a broad latitudinal range. However, in both regions very few tropical storms keep intensifying on moving past 20° S. This is undoubtedly due to the combined effects of strong upper tropospheric westerlies (Fig. 1.4) and cold sea surface temperatures (Fig. 1.6) poleward of this latitude. Fifty five percent of western region tropical storms decay over land, 40% decay over tropical waters, and less than 5% become extratropical poleward of 30° S. Thus, there are relatively sharp latitudinal peaks in the distributions of maximum intensity and decay points, and these are nearly coincident with the origin maximum. No such coincidence occurs in the southwest Pacific. There the tropical storms generally reach maximum intensity well poleward of their origin 1atitude and decay at high latitude over the ocean. Only 10% of these

Fig. 4.2. Tropical Storm origin, maximum intensity and decay point distributions for the north/west Australian and southwest Pacific regions during the period 1959-1979. Tic marks indicate median latitudes and filled in symbols indicate multiple occurrence.
storms decayed over land, while 57% decayed over the ocean equatorward of $30^{\circ} \mathrm{S}$ and 33% moved poleward as extratropical depressions.

Intraseasonal Distributions: The intraseasonal distributions of tropical storm occerrence are shown in Fig. 4.3. In both regions the season extends from late October to May and the southwest Pacific has occasional late season storms. Both regions also have an early season peak in storm activity followed by a gradual rise to maximum in January/February. A sharp decline occurs in late February. This is followed in March and April by an increase in the north/west Australian region, and an essentially constant occurrence frequency in the southwest Pacific. The sharp late February drop in the north/west Australian region is associated with a rapid increase in hurricane occurrence (c.f. Fig. 5.3). This is because more systems are able to reach hurricane intensity as the monsoonal trough migrates equatorward away from the Australian continent.

Fig. 4.3. Tropical storm intraseasonal distribution for the northwest Australian and southwest Pacific regions. Except for the extremities the curves have been smoothed by a running 15 day mean.

The tropical storm distributions for the north/west Australian region are different to those for all tropical cyclones (including hurricanes). As we have shown in Bureau of Meteorology (1978), the distribution of all tropical cyclones in this region has a distinct minimum in January and February. We shall see in Chapter 5, that this minimum is entirely due to a marked decrease in hurricane occurrence.

Motion: In the southwest Pacific region, tropical storm (and harricane) motion is characteristically quite different to that observed in other ocean basins around the world. As may be seen in Fig. 4.4, tropical storms in this region consistently track towards the east/southeast at a high median speed of around $8 \mathrm{~m} \mathrm{~s}^{-1}$. Only a small proportion move in the westward direction common to other basins. This propensity for eastward motion has previously been described by Bureau of Meteorology (1978), Holland and Pan (1981), Holland (1981), Revelle (1981) and Gray (1982), who note that it arises from the large proportion (around 40\%) of cyclones which continually move eastward throughout their lifetime. This is well illustrated by Fig. 4.5, which shows the spatial distribution of the zonal component of tropical cyclone motion. We see that westward motion dominates only in very low latitudes and is nonexistent in the far east of the region.

By comparison, the majority of tropical storms in the north/west Australian region track to the west or southwest (Fig. 4.4); though a significant proportion also move towards the east. As may be seen in Fig. 4.5, the westward motion dominance arises from storms tracking nearly parallel to the northwest Australian coast. The smaller proportion of eastward moving storms are a combination of high latitude recurving cyclones, a few eastward moving storms just south of Java and

Fig. 4.4. Tropical storm direction and speed distributions for the north/west Anstralian and southwest Pacific regions. The curves have been smoothed by five point running means.

Fig. 4.5. Tropical storm zonal motion distribution (averaged over 5° Marsden squares) for the north/west Australian and southwest Pacific regions. Stippling indicates regions of no occurrence and hatching indicates one standard deviation.
a slight preference for eastward motion amongst the highly erratic storms in the Gulf of Carpentaria. These erratic, slow moving Gulf storms, combined with the effective removal of most rapidly moving high latitude storms by the Australian continent, also result in a relatively low median speed of around $5 \mathrm{~m} \mathrm{~s}^{-1}$.

4.2 Tropical Storm Structure

We shall use the AUS08 and AUS09 composites to describe the general structure of oceanic tropical storms in the southwest Pacific region. A complete description of these composites is contained in Appendix 2. They consist of intensifying tropical storms between 10 and $25^{\circ} S$ and at least 1000 km from the Australian Coast. (We shall describe the effects of the Australian continent on east and west coast cyclones in Chapter 5.) AUSO8, the Non-developing Tropical Storm, represents the intensifying phase of tropical storms which never reach hurricane intensity. AUS09, the Pre-hurricane Tropical Storm consists of the intensifying tropical storm phase of those systems used in the AUS06 and AUSO7 hurricane composites in the next chapter.

4.2.1 Dynamical Structure

The axisymmetric cross-sections of azimuthal winds in Fig. 4.6 indicate that the two storms have a similar overall size, with a cyclonic circulation extending beyond 14° latitude radins. However, the Pre-hurricane Tropical Storm is slightly stronger and more intense; has a much weaker lower tropospheric vertical shear; a stronger vertical shear near $300-200 \mathrm{mb}$; and a better developed anticyclone, with anticyclonic winds closer to the center.

Fig. 4.6. Axisymmetric azimuthal wind ($\mathrm{m} \mathrm{s}^{-1}$) cross-sections for the Pre-harricane (AUS09) and Non-developing (AUS08) Tropical Storms. Hatching indicates anticyclonic circulation.

The processes acting to maintain, or develop, these azimuthal wind features may be seen in the axisymmetric radial wind cross-sections in Fig. 4.7. The Pre-hurricane Tropical Storm has a well developed upper outflow from the core region, thus maintaining the anticyclonic circulation in Fig. 4.6. It also has a strong inflow between $400-300 \mathrm{mb}$ which extends to 8° 1atitude radius and, by an increased import of cyclonic angular momentum, ensures a concentration of vertical wind shear in the upper troposphere. This, in turn, helps maintain and develop the necessary warm core near 300 mb . The outer region, low level inflow into the pre-hurricane system is also importing substantial amounts of angular momentum and accelerating the cyclone winds there. As Love (1982) has recently noted, and as we show in section 6.4 , this increases the overall size of the system and provides an enhanced environment for further intensification.

The lower stratospheric inflow into the Pre-hurricane Tropical Storm may also contribute to its continued intensification. As we shall show in section 6.4, we believe that this results from the same processes which maintain the long outflow and upper inflow regimes. Such low stratospheric inflow can provide subsidence warming, and hence surface pressure falls, in the nascent eye region.

The flow field asymmetries, and the impact of the environment, for the Pre-huricane Tropical Storm can be seen in the streamline/isotach fields in Fig. 4.8. (The location of this, and all subsequent composite plan views, on a geographical grid is defined by the mean latitude and longitude of all systems in the composite stratification.) This developing system has a quasi-symmetric cyclonic circulation to at least 500 mb , is overlain by an anticyclonic outflow regime at 150 mb and has

Fig. 4.7. Axisymmetric radial wind (m s^{-1}) cross-sections for the Pre-harricane (AUS09) and Non-developing (AUS08) Tropical Storms. Hatching indicates outflow. Radial winds of less than 1 m s are not significantly different from zero.

Fig. 4.8a. Plan view streamline/isotach (m s^{-1}) fields for the Prehurricane Tropical Storm at 850 and 500 mb .

Fig. 4.8b. P1an view streamline/isotach (m s^{-1}) fields for the Prehurricane Tropical Storm at 250 and 150 mb .
outflow channels to both the equatorial easterlies and subtropical westerlies.

The major low to mid-level asymmety arises from a strong inflow jet from the equatorial westerlies. : This convergent jet imports high enthalpy tropical air. It is also associated with a characteristic cloud 'feeder band'; an example of which is shown in Fig. 4.9. A similar equatorial inflow has been noted by Love (1982) for the pretropical storm environment, and Simpson (1971) has associated the concomitant cloud band with sustained intensification of tropical cyclones in the Atlantic

Fig. 4.9. GMS visible satellite imagery of tropical storm Kerry at 0600 Z on 15 February 1979.

A second, 850 mb trade wind maximum occurs on the poleward side of the Pre-hurricane Tropical Storm and appars to overshoot, with a low level outflow to the southwest. This basic 850 mb pattern of anticyclonic flow well to the east, convergence izmediately to the east, and divergence and cyclonic flow to the west. will be seen in all
composites presented in this thesis. As Anthes and Hoke (1975) have noted and as we shall describe fully in Chapter 7, this distortion is largely a non-linear result of advection of earth vorticity by the cyclonic circulation, or a beta effect.

Returning to Fig. 4.8b, we note that the subtropical westerlies impinge on the southwest sector at 250 and 150 mb . But they do not penetrate the core region. Rather, they provide a long outflow channel to the sontheast in addition to the weaker equatorward channel at 150 mb. A similar poleward outflow channel has been described by Ramage (1959, 1974) and Sader (1978) as being associated with sustained intensification of tropical cyclones in the northwest Pacific. It is also similar to the 'jet on the ridge' configuration, which McRae (1956) and Wilkie (1964) have described as the most common situation for cyclogenesis and subsequent intensification in the Australian region.

The wind fields for the Non-developing Tropical Storm are shown in Fig. 4.10. All of the processes which we described as being conducive to further intensification in the pre-hurricane system are weaker or absent. the low-level jet from the equatorial westerlies is weaker and shallower, and a strong, deep subtropical westerly flow extends over the center at 500 mb and above. Though there is a resulting very strong 'outflow channel' to the southeast, the westerlies are literally ripping the system apart. Thus, this composite is typical of the characteristic 'shearing off process' which is responsible for most of the instances of premature decay over tropical waters in the Australian/southwest Pacific region (c.f., Rooney, 1981).

Fig. 4.10a. Plan view streamline/isotach (m s^{-1}) fields for the Nondeveloping Tropical Storm at 850 and 500 mb .

Fig. 4.10b. Plan view streamline/isotach (m s^{-1}) fields for the Nondeveloping Tropical Storm at 250 and 150 mb .

4.2.2 Thermal Structure

The Pre-hurricane Tropical Storm moisture and upper level potential temperature fields are shown in Figs. 4.11 and 4.12. The double banded moisture maxima to the north and east of the system clearly support the wind field indications of an influx of equatorial air and deep convection in these regions (Figs. 4.8 and 4.9). The moisture extends completely around the core to embed this pre-huricane system in a deep, moist tropical air mass.

Notice also in Fig. 4.11 the deep dry slot which extends from the west and around the equatorward perimeter of the cyclone core. This will be seen to be consistent feature of intensifying cyclones in the Australian/southwest Pacific region. We believe that this is partially a beta effect, in which distinct spiral bands of alternating moist convection and dry subsidence are preferentially arranged by the cyclone's interaction with the earth vorticity field (Anthes, 1972); and partially a result of advection of dry subtropical air around the cyclone on the poleward side of the moist equatorial inflow jet (c.f., Fig. 4.8). We shall provide a complete description of the underlying processes in Chapter 7.

The upper level potential temperature fields in Fig. 4.12 show that the Pre-hurricane Storm is indeed warm-cored. Interestingly, however, secondary warm regions also occur to the northeast and southwest of the center. The warm region to the northeast lies over the lower level moist 'cloud band' in Fig. 4.11. It is probably a result of vertical recycling in the vicinity of the unresolved cloud bands which constitute this composite mean. The warm band to the southwest lies along the

Fig. 4.11. Plan view moisture mixing ratio (g/kg) fields for the Prehurricane Tropical Storm at 850 and 500 mb .

Fig. 4.12. Plan view potential temperature (K) fields for the Prehurricane Tropical Storm at 250 and 150 mb .
confluence between the subtropical westerlies and storm outflow (Fig. 4.8b) and al so extends into the, presumably weakly subsident, right entrance region of the outflow jet. The lower level dry slot in Fig. 4.11 indicates that this subsidence extends downards to at least the 500 mb level.

The moisture and upper level potential temperature fields for the Non-developing Tropical Storm are shown in Figs. 4.13 and 4.14. They are quite different to those for the pre-hurricane system. At 500 mb much of the moisture is constrained to the eastern sector; a dry slot is found just west of the core and a strong moisture gradient exists over the storm center. This results from the previously described shearing off effect of the subtropical westerlies (Fig. 4.10). Deep convection cannot be maintained in the western sector and is also shifted eastward away from the core region. Thus, there is an eastern sector moisture maximum at 500 mb , and the radial outflow maximum in Fig. 4.7 occurs some 400 km from the center.

The upper level potential temperature fields in Fig. 4.14 show that the Non-developing Tropical Storm is still warm cored, despite the intrusion of subtropical air. (Recall that this composite is made up of intensifying systems that are destroyed before reaching hurricane intensity.) A remarkable warm band also occurs on the poleward side. As with the similar, but much weaker feature in the pre-hurricane system, this band lies along the confluence zone of the cyclone circulation and westerly environmental flow. It is thus almost certainly just poleward of the often observe sharp edge of the anticyclonically curved cirrus band which extends polewards and eastwards of such systems.

Fig. 4.13. Plan view moisture mixing ratio (g/kg) fields for the Nondeveloping Tropical Storm at 850 and 500 mb .

Fig. 4.14. Plan view potential temperature (K) fields for the Nondeveloping Tropical Storm at 250 and 150 mb .

Since the maximum amplitude occurs in the right entrance of the strong 'outflow' jet in Fig. 4.10b, this band is probably largely maintained by the toroidal circulation around the jet streak. Indeed, as may be seen in the meridional cross-section in Fig. 4.15 , it has a number of similarities to the temperature field usually observed in association with the subtropical jet (c.f., Palmen and Newton, 1969, p. 226). However, Holland et al. (1983) have presented aircraft observations of a phenomenal warming of 18 K above ambient near 230 mb in this region for tropical cyclone Kerry (1979). By using a combination of physical reasoning and observations, they concluded that this warming required stratospheric subsidence in which the potential energy gain was derived from the kinetic energies of the opposing subtropical westerlies, the easterlies around the poleward side of the cyclone, and downward advection of easterly momentum from the stratosphere. The observed warm band in Figs. 4.14 and 4.15 probably arises from a combination of these processes.

4.3 Summary

In this chapter we have described a number of features of tropical storms in the Australian/southwest Pacific region.

We have shown that these systems occur almost exclusively between November and May with a peak frequency in January or February. Their highest frequency is in the Gulf of Carpentaria, and secondary maxima are found in the Coral Sea and just off the northwestern Australian coast. The Australian continent appears to predominate in determining these distributions. Many storms form in its coastal waters and decay

Fig. 4.15. Meridional cross-sections of potential temperature (K, solid lines) and zonal wind component (m s^{-1}, dashed lines for westerlies, dotted 1 ines for easterlies) poleward of the Nondeveloping Tropical Storm.
soon after by making landfal1. Further, since the continent has a role in the determination of the large scale wind fields (section 1.2), it also has an indirect influence on tropical storms over the open ocean.

Perhaps the most notable result of this indirect influence is seen in the preferred eastward movement and decay over tropical waters of tropical stoms over the southwest Pacific Ocean. We have shown that these storms lie under a strongly sheared mid to upper level subtropical Westerly flow. They thus move consistently eastward (and often erratically). They also suffer a considerable vertical shearing, with the major convective region pushed to the southeast and a strong thermal and moisture gradient over the core, and thus prematurely decay over tropical waters.

Paradoxically, those oceanic tropical storms which subsequently develop into hurricanes seem to benefit from the same upper level westerly flow. In these latter systems the subtropical westerlies do not extend over the core region, but are close enough to provide a distinct, strong outflow channel on the poleward side. Thus, we have shown that the interaction with the upper level flow can either destroy or sustain the storm intensification.

We have also seen a distinctive low level signature in both tropical storm composites. Both storms are very large and the developing system has a strong secondary inflow at large radii. This secondary inflow arises from a combination of subtropical, trade wind inflow to the southeast and a tropical, monsoonal inflow to the northeast. Further, both storms have a divergent flow and extension of the cyclone to the west, a deep equatorward inflow, convergence to the east and an anticyclone well to the east.

We shall discuss the processes behind, and importance of these features in Chapters 6 and 7. But first we shall examine the climatology and structure of hurricanes throughout the region.

5. HURRICANES

Following our discussion on tropical storm classification in the first paragraph of Chapter 4 and our definitions in section 1.1, we classify hurricanes as: 1) all cyclones in the Australian region in which the central pressures fell below 980 mb ; and 2) all systems east of 165° E which were classified as hurricanes by Kerr (1976) or Revelle (1981). An additional, major hurricane classification contains all cyclones in the Australian region which attained minimum central pressures of less than 960 mb . In this chapter we present a complete hurricane climatology for the Australian/southwest Pacific region, and compare this to the tropical storm climatology in Chapter 4 . We also examine and compare the structure of the intensification and decaying phases of oceanic hurricanes in the southwest Pacific region, and describe the continental influence on hurricanes just off the east and west Australian coasts.

Unfortunately, we do not have sufficient information in the region east of $165^{\circ} \mathrm{E}$ to differentiate major hurricanes for the whole period. Hence, our major hurricane climatology is limited to the Australian region. Some additional climatological information on major hurricanes in the southwest Pacific may be found in Revelle (1981). We are also unable to present any information on the oceanic structure of the major hurricane, though we shall discuss some dynamic features of major recurving hurricanes in section 5.4

5.1 Hurricane Climatology

Spatial Distribution: By comparing Fig. 5.1 to Fig. 4.1 we see that the spatial distribution of hurricsnes is qualitatively similar to that for tropical storms in the southwest Pacific, but there are marked differences in the north/west Australian region. Intensifying tropical storms in the landlocked Gulf of Carpentaria tend to cross the coast before, or soon after reaching hurricane intensity. Hence, we observe a much lower frequency of Gulf hurricanes (Fig. 5.1) compared to tropical storms (Fig. 4.1). By comparison there is a remarkable peak in hurricane occurrence off the northwest Australian coast. Hurricanes in this area typically track along and parallel to the coast and either continue to the southwest or suddenly recurve and make landfall anywhere between Broome and Geraldton (Fig. 5.1). Thus, a town such as Port Hedland is in the outer fringes of, and under direct threat from, a hurricane on an average of $2-3$ days every year!

The hurricane origin, maximum intensity and decay point distributions are shown in Fig. 5.2. For the southwest Pacific region these are qualitatively similar to those for tropical storms in Fig. 4.2. However, the hurricanes display a trend towards lower 1atitude origins and higher latitude maximum intensity and decay points. By comparison, in the north/west Australian region the median storm and hurricane origin latitudes are similar but most hurricanes originate in the Timor Sea, reach maximum intensity off the northwest Australian coast and decay by crossing that coast. As with tropical storms, the detrimental environmental winds and cold ocean poleward of $20^{\circ} \mathrm{S}$ has a strong limiting effect on the distribution of intensifying hurricanes.

Fig. 5.1. Hurricane occurrence (days per 5° Marsden square for the 1959-1979 period) for the northwest Australian and southwest Pacific regions. Stippling indicates regions of no occurrence and dashed lines, indicating intermediate 5 day isochrones, are used for extra detail.

Fig. 5.2. Hurricane origin, maximum intensity and decay point distributions for the north/west Australian and southwest Pacific regions during the period 1959-1979. Tic marks indicate median latitudes and filled in symbols indicate multiple occurrences.

Intraseasonal Distributions: The intraseasonal distributions in Fig. 5.3 indicate that both regions have an early season hurricane maximum, whereas the tropical storms (Fig. 4.3) rise to a late season peak. This is due to a tendency for the early season systems, which form along the fledgeling monsoonal trough (Bureau of Meteorology, 1978; McBride and Keenan, 1982) at low 1atitudes, to become hurricanes and also have longer lifetimes. Hurricanes in the north/west Australian region also exhibit a distinct mid-season minimum, which we believe is caused by the Australian continent. During the mid-season the monsoonal trough lies over northern Australia (Fig. 1.3) and the oceanic area over which cyclones can form is considerably reduced. Further, those cyclones which form, generally do so close to the coast and subsequently make landfall, or are otherwise adversely affected. Thus, there is very

Fig. 5.3. Hurricane intraseasonal distribution for the north/west Australian and southwest Pacific regions. Except for the extremities, the curves have been smoothed by a ranning 15 day mean.
little reduction in the frequency of tropical storms (Fig. 4.2) but a distinct reduction in hurricane occurreace. As the monsoonal trough moves equatorwards off the continent in late February the hurricane occurrence increases sharply (Fig. 5.3) whereas, as we have already noted in Fig. 4.3 the tropical storm occurrence decreases.

Motion: Westward moving systems comprise a much larger proportion of hurricanes (Fig. 5.4) than tropical storms (Fig. 4.4). A similar feature has been noted by Revelle (1981) for the southwest Pacific region. However, the southwest Pacific hurricanes still have an eastward motion maximum and move faster on an average than those in the north/west Australian region. The zonal motion distributions in Fig. 5.5, indicate that these features are largely a result of high latitude, decaying systems (which are removed from the north/west Australian region by the Australian continent). The majority of low latitude hurricanes are moving westward in both regions.

5.2 Major Hurricane Climatology:

Spatial Distribution: The major hurricanes form a subset of the hurricanes, and, as shown in Fig: 5.6 have a very similar spatial distribution to that for all hurricanes in Fig. 5.1. The origin, maximum intensity and decay point distributions, shown in Fig. 5.7, are also qualitatively similar to those for the hurricane. Note, however, the concentration of coastal crossings along the north/west Australian coast. Eighty six percent of major hurricanes in the north/west Australian region made landfall compared to only $\mathbf{3 8 \%}$ of non-major hurricanes and 55% of tropical storms. Further, 41% of the major

Fig. 5.4. Hurricane direction and speed distributions for the north/ west Australian and southwest Pacific regions.

Fig. 5.5. Hurricane zonal motion distribution (averaged over 5° Marsden squares) for the north/west Austraiian and southwest Pacific regions. Stippling indicates regions of no occurrence and hatching indicates one standard deviation.

Fig. 5.6. Major hurricane occurrence (days per 5° Marsden square for the period 1959-1979) for the Australian region. Stippling indicates regions of no occurrence, and dashed lines indicate intermediate isochrones.

Fig. 5.7. Major hurricane origin, maximum intensity and decay point distributions for the Australian region. Tic marks indicate median latitudes and filled in symbols indicate multiple occurrences.
hurricanes in the entire Australian region made landfall on the north/west Australian coast at or very near maximum intensity. As we shall show in section 5.3 and Chapter 6, these statistics are largely due to the generally benevolant environnent for west coast hurricanes.

Intraseasonal Distribution: The intraseasonal distribution of major hurricanes, shown in Fig. 5.8 contains the same early season maximum as the hurricane distributions in Fig. 5.3, but no mid-season minimum. The lack of a mid-season minimum arises partly from the mixing of Coral Sea hurricanes with the north/west Australian systems. But there is also tentative evidence that a higher proportion of hurricanes become major in this mid-season period. The sharp March reduction is somewhat of a mystery and is to be investigated further.

Motion: The trend for hurricanes to move more consistently westward than tropical storms (Figs. $4.4,5.4$) is continued in the major hurricane classification. As Fig. 5.9 shows, major hurricanes in the

Fig. 5.8. Major hurricane intraseasonal distribution for the Australian region. Except for the extremities, the curves have been smoothed by a running 15 day mean.

Fig. 5.9. Major hurricane direction and speed distributions for the Australian region. The curves have been smoothed by 5 point running means.

Australian region are dominated by westward moving systems. A similar finding has been made for the southwest Pacific by Revelle (1981). We shal1, however, show in Chapter 6 that these major hurricanes are comprised mainly of recurving cyclones which cross the Australian coast after recurvature. Cyclones which move continuously westward rarely become major hurricanes. This is quite different to other ocean basins where westward moving systems, which can move for long periods over warm tropical waters with no detrimental upper tropospheric shearing effects, may become very intense.

5.3 The Structure of the Oceanic Hurricane

We shall use the AUS06 and AUSO7 composites in this section to describe the general features of deepening and decaying oceanic hurricanes in the southwest Pacific. These composites are described fully in Appendix 2, but briefly, they are both comprised of hurricanes in the southwest Pacific between 15 and $25^{\circ} \mathrm{S}$ and at least 1000 km from the Australian coast and contain the hurricane portion of those systems in the AUS09, Pre-hurricane Tropical Storm composites; AUS06 represents the developing phase and AUS07 represents the decaying phase of these hurricanes.

5.3.1 Dynamica1 Structure

As may be seen in the axisymmetric cross-sections in Figs. 5.10 and 5.11 the oceanic hurricane is quite large. In both the developing and decaying phase it has a deep cyclonic circulation extending beyond 14° latitude radius, and is overlain by an extensive anticyclone. In this

Fig. 5.10. Axisymmetric azimuthal wind (m s s^{-1}) cross-sections for the Developing (AUSO6), and the Decaying (AOSO7) Oceanic Hurricane. Hatching indicates anticyclonic circulation.

Fig. 5.11. Axisymmetric radial wind (m s^{-1}) cross-sections for the Developing (AUS06), and the Decaying (ADSC 7) Oceanic Hurhuricane. Outflow regions are hatched. Fadial winds of less than $1 \mathrm{~m} s^{-1}$ are not significantly different from zero.
regard the oceanic hurricane is quite similar to the steady state typhoon describ 2 d by Frank (1977a). However, the developing and decaying phases do have some interesting additional features.

The developing hurricane in Figs. 5.10 and 5.11 is similar to the Pre-hurricane Tropical Storm in Figs. 4.6 and 4.7. It exhibits a strong, deep cy 21 onic circulation out to a radius of 8^{0} latitude with weak vertical wind shear between 850 and 400 mb . A low level wind maximum also extends beyond 10° 1atitude radius and is associated with a secondary maximm in radial inflow (Fig. 5.11); we shall presently see (Fig. 5.12) that this is a result of sustained northwesterly environmental winds equatorward, and southeasterly environmental winds poleward of the hurricane. The developing hurricane further contains a deep low level inflow, with the remnants of the secondary maximum near 400 mb which we::e noted in the pre-hurricane phase. An extensive upper tropospheric ou:flow is also present, with a maximum between $2-6^{\circ}$ latitude radius and a constant radial wind from $6-14^{\circ}$. This outflow is associated with an increasing anticyclonic circalation with radius and is overlain by al lower stratospheric inflow.

By compari ion, the decaying hurricane in Figs. 5.10 and 5.11 has a stronger upper i.evel anticyclone, a weaker low level cyclone, and considerable ve::tical wind shear between 700 and 400 mb . The radial flow is also qu:te different: the stratospheric inflow has ceased inside 6° latitude radius; the upper troposphere outflow and 1 ower tropospheric inflow are weaker and cease at $12-14^{\circ}$ latitude radins; and a distinct outflow has developed near 600 mb , though a residual inflow remains near 40(mb.

Fig. 5.12a. Plan view streamine/isotach (m s^{-1}) fieds for the Developing Oceanic Hurricane at 850 and $; 00 \mathrm{mb}$.

Fig. 5.12b. P1an view streamline/isotach (m s^{-1}) fields for the leveloping Oceanic Hurricane at 250 and 150 mb .

The plan view wind fie1ds for the Developing Oceanic Hurricane, contained in Fig. 5.12, show a stronger, but otherwise similar structure to the tropical storm phase in Fig. 4.8. In the $10 w$ to mid-levels the composite hurricane has a large extent and is nearly symmetric. The strong, deep tropical inflow jet is still being maintained and the beta effect distortion is clearly evident at 850 mb . At 250 mb , the upstream trough now extends equatorward of the hurricane, but the confluence zone between the subtropical westerlies and the hurricane cutflow has remained some 6° latitude from the center. The subtrcpical ontflow jet has also strengthened considerably with average radial winds exceeding $15 \mathrm{~m} \mathrm{~s}^{-1}$.

The westerly winds have less effect at the 150 ml level. There is, however, still evidence of the strong outflow jet to 1 he southeast. As with the tropical storm phase, this jet is complementcd by a second equatorward jet to the northeast.

The streamline/isotach fields for the decaying hirricane are shown in Fig. 5.13. By comparison to the developing stage he 850 mb circulation is less extensive and weaker, and the deel tropical inflow has ceased. Indeed, the 500 mb flow contains a distinct subtropical inflow, and has become considerably distorted. The u'per level westerlies now extend well over the hurricane with on the remnants of an outflow regime at either 250 or 150 mb . While the southeastward outflow jet is still weakly present, its equatorward sounterpart at 150 mb has largely ceased. In these regards the Decaying Oceanic Hurricane is quite similar to the Non-developing Tropical Storm in Fig. 4.10.

Fig. 5.13a. Plan view streamline/isotach (m s^{-1}) fields for the Dicaying Oceanic Hurricane at 850 and 500 mb .

Fig. 5.13b. Plan view streamline/isotach (m s^{-1}) fi:1ds for the Decaying Oceanic Hurricane at 250 and 150 mb

5.3.2 Thermal Siructure

The axisymm:tric cross-sections of temperature anomalies in the developing and drcaying hurricanes are shown in Fig. 5.14. The well documented mid t ", upper tropospheric warm core (e.g., Shea and Gray, 1973; Hawkins anil Rubsam, 1968; Frank, 1977a) may be c1early seen. In the developing hirricane the warm anomaly is quite strong and concentrated nea: 300 mb (the actual maximum anomaly in the eye cannot possibly be resolved by our larger scale compositing procedure). In the decaying hurricaie the warm core is weaker and vertically more diffuse. These observations are consistent with our vertical wind shear observations in ?ig. 5.10. Though not completely shown due to lack of resolution, a cold band of up to $5^{\circ} \mathrm{C}$ is also present in the lower stratosphere, sucrounding an apparently warmer center. In the developing phase this band extends from $1-3^{\circ}$ latitude radius; in the decaying phase it is further from the center and covers $3-5^{\circ}$ 1atitude radius. Frank (1977a) also observed a stratospheric cooling over the typhoon, but this extended over the core region. Even though there are only a few obseriations, the lower stratosphere of both phases of the southwest Pacific hurricane is warmer in the core region than at $2-6^{\circ}$ 1atitude radius. We also note that the cool bands in Fig. 5.14 correspond closely to the outflow maxima in Fig. 5.11, which must be as sociated with sustained vertical motion. These observations support the speculation by Frank (1977a) that the lower stratospheric cooling results from overshooting cumulonimbus clouds.

A notable feature is the lower level cool band at 2° 1atitude radius in the developing phase and at 3° latitude radius in the decaying

Fig. 5.14. Axisymmetric cross-section of temperature anomaly (${ }^{\circ} \mathrm{C}$) (taken as the difference from the 14° 1atitude radius value at the same level) for the Developing (AUS06) and the Decaying (AUS07) Oceanic Hurricanes. Stippling indicates cold regions.
phase. The mixing ratio cross-sections in Fig. 5.15 indicate that these cool bands are also quite dry. They thus show distinctively in the equivalent potential temperature cross-sections of Fig. 5.16. These are an axisymmetric indication of the distinctive banded structure of all tropical storm and hurricane composites presented in this study. As we have noted in (hapter 4, and as we shall describe fully in Chapter 7, we believe that this banded structure arises from: 1) an interaction between the cyclone and earth's vorticity field; and 2) differential advection of pctentially warm tropical, and cold subtropical air. The plan view equivalent potential temperature fields for the developing huri icane are shown in Fig. 5.17. The variations in equivalent potential temperature below 500 mb are largely due to moisture variaitons; at 250 mb they are entirely due to temperature variations. Wr can see that a deep tongue of warm, moist tropical air occurs on the 1 ortheast side. As with the Pre-hurricane Tropical Storm, this tropical iir extends around and to the poleward side of the hurricane core. Cool, dry subtropical air is starting to flow equatorwards al large radii to the west of the hurricane; and a distinct low level dry : lot, corresponding to that in the axisymmetric crossection of Fig. 5.14, extends from west through north and east of the core region.

Notice al:o the rapid fall in equivalent potential temperature to the southwest if the core at both 500 and 250 mb . This gradient lies along the conf uence zone between the potentially warm hurricane outflow and cool upper level environmental westerlies (Fig. 5.12). Unlike the pre-hurricane : Thase in Fig. 4.12, there is no evidence of strong upper level subsiden:e along this confluence zone. This agrees with the

Fig. 5.15. Axisymmetric cross-section of moisture m.xing ratio (g/kg) for the Developing (AUSO6) and the Decay ng (AUSO7) Oceanic Hurricane.

Fig. 5.16. Ax symmetric cross-section of equivalent potential tempe :ature (K) for the Developing (AUSO6) and the Decayin; (AUSO7) Oceanic Hurricane. Dashed lines denote in :ermediate isotherms used to provide detail.

Fig. 5.17a. Plan view equivalent potential temperat re (K) fields for the Developing Ocearic Murricane at 850 and 500 mb .

Fig. 5.17b. Plan view equivalent potential temperature (K) field for tle Developing Oceanic Hurricane at 250 mb .
qualitative wis.d field observations in Fig. 5.12b that there is also much weaker confluence, and less concentrated upper level convergence in this region. lowever, the continued presence of a dry slot in the 500 mb moisture fic 1 d of Fig. 5.18 indicates that some middle level subsidence is lieing maintained in this confluence region.

The highe: 1atitude, subtropical effects on the thermal structure of the decayin; harricane are clearly shown in Fig. 5.19. Only a residual of the warm moist tropical tongue (Fig, 5.17a) remains to the northeast. Th s tongue is cut off from the core and no longer wraps around the pol ward side. Rather, a strong equivalent potential temperature gridient has developed to the southeast as the hurricane comes under th: influence of the westerly subtropical airstream.

Note, howerer, that the impinging westerly airstream has a less adverse affect on the stronger hurricane circulation than was evident in

Fig. 5.18. Plan view moisture mixing ratio (g / kg) f.eld at 500 mb in the Developing Oceanic Hurricane.
the Non-developing Tropical Storm (Figs. 4.13 and 4.:4). We shall summarize these effects in section 5.7.

5.4 The Continental Influence on Hurricanes off the East and West Australian Coast.

As we have seen in sections 4.1 and 5.1 , many t opical cyciones complete their entire life cycle within a few hundrel kilometers of the Australian coast. They are thus affected in varying degrees by the close proximity of this large, dry landmass. In the extreme, a number of these cyclones are destroyed in their formative or intensification stages by crossing the coast. But even those which :emain out to sea have a substantial proportion of their circulation orer land. Australian forecasters have long been aware of the d:bilitating effect. of dry continental air being entrained into these costal cyclones. Further, aside from these direct influences, the con inent may

Fig. 5.19a. P: an view equivalent potential temperature (K) fields for tle Decaying Oceanic Hurricane at 850 and 500 mb .

Fig. 5.19b. P1an view equivalent potential temperatare (K) field for the Decaying Oceanic Hurricane at 250 mb.
indirectly affect coastal cyclones by the modifying effect that it has on the larger scale flow fields.

In this section we shall discuss some of these influences by using the AUS04 and AUS10 composites. These are described fully in Appendix 2, but briefly: AUSO4, the East Coast Hurricane, contains all tropical cyclones within about 500 km of the east Australian coast between 15 and $25^{\circ} \mathrm{S}$, and with central pressures less than 990 mb ; AUS 10 , the West Coast Hurricane, contains a similar cyclone set for the west Australian coast. In order to obtain sufficient observations for a detailed analysis, both deepening and decaying phases were included. However, the regional peculiarities resulted in the East Coast Hurricane teing, on average, decaying, while the West Coast Hurricane is deepenirg.

5.4.1 The East Coast Hurricane

The 850 mt and 500 mb moisture fields for the East Coast Hurricane are shown in Fig. 5.20, together with the $850,500,250,150 \mathrm{mb}$ wind fields in Fig. 5.21. At 850 mb the monsoonal trough extends west/northwest across Cape York Peninsula and a strong jet in the monsoonal westerlies provides the major influx of mass and moisture into the hurricane. The characteristic beta effect distortion and elongation to the west, wlich we noted in our discussion of the oceanic cyclones, appears to be nodified by the Great Dividing Range. Considerable orographic fundelling of these low level winds is evident. Thus, even though a distiict moisture band extends from the monsoonal westerlies around the huri icane, the inland regions are relatively unaffected (the encircled stat:ons are not significantly different from their January mean from Maher and Lee, 1977). Some advection of dry continental air is, however, evident from the west through north of the hurricane.

At 500 mb the coastal funne11ing has disappeared. Instead, the hurricane appes rs to lie poleward of the subtropical ridge and is being influenced by $:$ subtropical southwesterly flow. Thus, even though there is a deep monso onal flow to the north, very dry continental air is being advected into he cyclone and is tending to cut off the tropical moisture suppl.: The poleward extent of tropical air around the hurricane, and the efflux of dry air from the continent, may be seen more clearly in. the moisture cross-section of Fig. 5.22. This crosssection extend: northwest and due south of the cyclone and approximately parallels the oastline. We see that moist tropical air extends

Fig. 5.20. Plan view moisture mixing ratio (g / kg) \because ields for the East Coast Hurricane at 850 and 500 mb . Als , shown in circles are mean January mixing ratios for a select on of stations from Maher and Lee (1977). No data were ava lable for the hatchod regions.

Fig. 5.21a. P: an view streamline/isotach (m s ${ }^{-1}$) fields for the East Crast Hurricane at 850 and 500 mb .

Fig. 5.21b. Plan view streamline/isotach (m sid) fi:lds for the East Coast Hurricane at 250 and 150 mb .

Fig. 5.22. Vertical moisture mixing ratio (g/kg) cross-section through the East Coast Hurricane and approximately parallel to the Atstralian coastine.
polewards some 700 km at the surface and slightly less at higher levels. The low level coastal funnelling also prevents the dryer continental air below 850 mb from moving over the ocean within 600 km to the northwest. But this effect is lost above 800 mb , and dry air penetrates close to the center under the influence of the impinging subtropical westeriies. The associated characteristic convective signature for East Coast Hurricanes is illustrated by two infamons hurricanes, Ada (1970) and Althea (1971) in Fig. 5.23. Note: 1) the large convective region to the south and southeast which ends along the coast and is curved anticyclonically by the interaction with the upper level westerlies (c.f. the 250 nb level in Fig. 5.21); 2) the dry slot around the northern periməter of the cloud masses; and 3) the convective band lyiag along the appriximate position of the low level monsoonal jet and moist band in Figs. i. 20 and 5.21. It is also now evident that the large 500 mb moist regiol encompassed by the $4 \mathrm{~g} / \mathrm{kg}$ isohyet in Fig. 5.20 arises more from in situ convective activity than from horizontal advection.

Fig. 5.23. ESSA 8 visible satellite imagery of hurricanes Ada (from Director of Meteorology, 1970) and Althea (from Director of Meteorology, 1972) off the east Australian coast.

There is, however, some advection of moisture out of this region over the continent.

The flow ields at 250 and 150 mb (Fig. 5.21) and the upper level thermal fields (not shown) are not directly influenced by the Australian continent. Thy, and the lower level fields, are, however, under a considerable idirect influence. As we have briefly discussed in Chapter 1, the poleward extension of the monsoonal trough and convective activity over $10 r$ thern Australia produces a concomitant poleward extension of tie upper tropospheric subtropical ridge. A downstream trough then forms over the Coral Sea region (Fig. 1.4), with subtropical westerlies extending to very low latitudes. Holland and Pan (1981) have shown, using a series of monthly mean charts, that this Coral Sea trough extends downward to the 500 mb level. Below this level a sharp poleward shift of the subtropical ridge was observed with trade wind easterlies over the southirn Coral Sea (Fig. 1.3). Thus, the generally destructive effect of the apper level subtropical westerlies, shown in Figs. 5.20 to 5.23 may be attributed to an indirect continental influence.

5.4.2 The West Coast Hurricane

The 850 nb and 500 mb moisture fields for the West Coast Hurricane are shown in Fig. 5.24 together with the $850,500,250$ and 150 mb flow fields in Fig. 5.25. At 850 mb the monsoonal trough extends northeastward over northern Australia. The now familiar jet from the monsoonal westerlies extends into the hurricane and there appears to be a secondary mensoonal surge equatorward of the Indonesian Islands (though this feature could be a result of data bias). Extensive trade wind easterlits lie poleward of the hurricane, and the superpositioning

Fig. 5.24. Plan view moisture mixing ratio (g/kg) jields for the West Coast Hurricane at 850 and 500 mb . Alsc shown in circies are mean January mixing ratios for a selection of stations from Maher and Lee (1977). No data werr available for the hatched region.

Fig. 5.25a. P.an view streamline/isotach (m s^{-1}) fields for the Wist Coast Hurricane at 850 and 500 mb . No data were arailable for the hatched regions.

Fig. 5.25b. P1an view streamline/isotach ($\mathrm{m} \mathrm{s}^{-1}$) fislds for the West Coast Hurricane at 250 and 150 mb . No data were available for the hatched regions.
of the Western Iustralian Coastal Trough (Fig. 1.3) and the cyclone circulation is ; learly evident at 850 mb . Unfortunately, we have no thermal data, a d very little wind data, to the west and northwest of the hurricane. However, to the east and southeast the hurricane circulation is dvecting a considerable amount of tropical moisture over the normally drr northwestern deserts. This is in direct contrast to the East Coast Iurricane where orographic funnelling prevented an inland penetration of sopical air. This flux of moisture around the eastern side also prote; the hurricane from incursions of dry continental air. Instead, mixing between the continental and maritime air produces a strong moisture gradient to the south. Any continental air reaching the core region will have been considerably modified by a long trajectory over warm tropizal oceans.

A similar situation exists at 500 mb . This shows the depth of the monsoonal influc and the protection of the core region from dry continental air. The hurricane also lies just equatorward of the subtropical ridge at this level and is well removed from the subtropical westerlies. There is, however, evidence of the now familiar dry tongue extending arouni the northern perimeter; this is probably enhanced by dry continental air extending around the hurricane.

These features may be more completely seen in the moisture crosssection of Fig. 5.26 and the satellite mosaic of hurricane Joan (1975) in Fig. 5.27. The moisture cross-section runs northeast to southwest through the composite cyclone, however, it has been derived almost entirely from coastal stations and is thus representative of mean coastal cross-section. On the poleward side, then, we see that the moist maritime air extends some 700 km near the surface and nearly 1000 km

Fig. 5.26. Vertical moisture mixing ratio (g/kg) crcss-section through the West Coast Hurricane and approximate:|y along the Australian coast1ine.

Fig. 5.27. ESSA 8 visible satellite mosaic of hurrisane Joan (from Director of Meteorology, 1979) off the west Australian coast.
at higher level; Presumably this increased extent with height is due to the stronger flux of dryer continental air in the low level trade winds. To the $10 r$ theast lies an extensive region of tropical maritime air, interruptel only by the $400-600 \mathrm{~km}$ dry tongue above 750 mb . The cloud patterns for hurricane Joan further illustrate the flux of tropical moisture over the continent; the protected core region; the efflux of dry continental air off the southwest coast, and its advection around the western periphery of the storm; and the dry tongue to the north and northeast.

Some quite interesting examples of the continental effect on the West Coast Hurricane may be seen in Fig. 5.28. This figure gives a coastal cross-section of the temperature deviations from the Port Hedland January mean. We can see the usual mid-to upper tropospheric warm core and the lower stratospheric cold band. The weakly sloping tropopause and absence of colder subtropical air within 1200 km also confirm that the cyclone is well within the tropics. Of most interest, however, is the reversal of the normal meridional temperature gradient, and the extremely cold core (by tropical standards) below 700 mb . The advection of hct tropical continental air around the poleward side of the hurricane, with colder tropical maritime air on the equatorward side, produces an equatorward directed temperature gradient. From thermal wind considerations, this results in an easterly vertical wind shear over the harricane (c.f., the zonal wind observations in Fig. 5.28). These easterly winds, in turn, tend to advect the hurricane towards the west. As may be seen in Fig. 5.25, the deep subtropical

Fig. 5.28. Vertical cross-section of temperature deviations from the Port Hedland January mean (Maher and Lee, 1977) through the West Coast Hurricane and approximately parallel to the west Australian coastline. Also shown are the mean zonal wind components in the hurricane core.
ridge, which is anchored over the monsoonal trough across northern Australia (c.f., section 1.2), also protects the West Coast Hurricane from the subtropical westerlies. Thus, the Australian Continent appears to be largely responsible for the remarkably consisient southwestward trajectory, and peak occurrence frequency, of hurricanes just off the northwest coast (c.f., Figs. 5.1 and 5.5).

The poleward advection of tropical maritime ai: around the cyclone further produces a considerable low level cooling f:om the climatological norm; 900 mb temperatures within 600 km of the hurricane are 1-2 standard deviations below the January mean it Port Hedland. Combined with the hot tropical continental air at lirger radii, this produces a strong cold core below 700 mb . (However, the unresolved eye region is almost certainly warm cored at these levels.) The resulting
thermal wind effect on the azimuthal winds is shown in Fig. 5.29. Instead of the 1.0 mally observed 850 mb wind maximum, the cyclonic winds increase in the vertical with a maximm near 700 mb . This cold cored feature has alsu been observed by McBride and Keenan (1982).

In the uppr levels (Fig. 5.25b) we find an anticyclone due east of the hurricane, fich overlies, and is probably partially supported by the deep overladd convective activity in this region (c.f., Fig. 5.27). The hurricane i still protected from the full impact of the subtropical westerlies, but is close enough to be able to maintain an outflow channel in the livergent flow to the southwest of the anticyclone. We shall show in Clapter 6 that this is a favorable situation for continued intensification.

Fig. 5.29. Axj symmetric azimuthal wind cross-section for the West Cos st Hurricane. Hatching indicates anticyclonic circulaticn.

5.5 The Structure of the Major Recurving Hurricane

As we have previously noted, the lack of major hirricane information in the southwest Pacific east of 165° E me ns that we are unable to derive any composites for the major oceanic hurricane. Fortunately, however, as we shall show in Chapter 6 most major hurricanes also recurve. This not only implies that a consistent environmental influence is responsible for their development, it also allows us to produce a dynamic composite of most majcr hurricanes in the Australian region, while minimizing any bias problems. To do this, we selected all major Australian hurricanes (minimum certral pressure less than 960 mb) which recurved and which reached maximun intensity at or within one day of recurvature. These were separated into three phases: the developing tropical storm phase, with central pressure between 995 and 980 mb (AUSO1); the intensifying hurricane phase, with central pressure 1 ess than 980 mb (AUS02); and the decaying lurricane phase, again central pressure less than 980 mb , no land falis, and at most two days after maximum intensity was reached (AUSO3). Firther details on the resulting composites, AUS01, AUSO2 and AUSO3, are contained in Appendix 2.

We note that the major hurricanes which comprise this composite come from both eastern and western Australia. We have assumed that the narrow stratification criteria imply a consistent environmental wind field, and thus minimize any wind bias. However, the wide longitudinal range of the observations, with the presence of the Australian continent, stop $u s$ from also producing an acceptable thermal composite.

For compari; $\begin{gathered}\text { purposes a similar set of rawinsonde composites were }\end{gathered}$ produced for recirving northwest Pacific supertyphoons. These include: the developing tropical storm stage, NWPRI1 (995-980 mb); the initial typhoon developrent phase, NWPRI2 (980-960 mb); the intensifying super typhoon stage NWPRI3 (<960 mb and reaches maximum intensity within one day of recurvatrie); and the filling typhoon stage NWPRF (<980 mb and at most two days af ter maximum intensity). Further details on these composites may i.1so be found in Appendix 2. Note that in the northwest Pacific we were able to produce an extra intensifying typhoon composite (NWPRI2). Whil: this is slightly noisy it provides valuable information on the initial typhoon intensification phase. Unfortunately we had insufficient data to produce a similar, stable composite in the Australian region.

Azimuthal Winds: The axisymmetric cross-sections of azimuthal winds for the lustralian and northwest Pacific composites are shown in Figs. 5.30 and 5.31. The tropical storm phase of the major hurricane is almost identic 11 to the Pre-hurricane Tropical Storm in Fig. 4.6. The storm is very large and strong, has a weak vertical wind shear in the lower troposphire and is overlain by an extensive anticyclone. It does, however, have a slightly more extensive cyclonic circulation in the lower stratosphere. By comparison, the northwest Pacific tropical storm stage (NWPRII) has a similar vertical structure but is slightly weaker and smaller.

At the hirricane, or typhoon stage, the Australian system is still stronger and arger than its northern hemispheric counterpart. It also strengthens s ightly in the decaying stage, but becomes smaller and develops a lor level vertical wind shear, indicating the rapid

Fig. 5.30. Axisymmetric cross-section of azimuthal winds for the Australian region major recurving hurricane at the intensifying tropical storm stage AUSO1, the intensifying hurricane stage AUSO2 and the decaying hurricane stage AUS03. Regions of anticylonic circulation are hatched.

Fig. 5.31. Axisymmetric cross-section of azimuthal winds for the northwest Pacific region recurving supertyphoon at the intensifying tropical storm stage PRI1, the initial typhoon intensification stage PRI2, the intensifying supertyphoon stage PRI3, and the decaying typhoon stage PRF. Hatching indicates anticyclonic circulation.
destruction by the strongly sheared environmental flow. By comparison, the typhoon becomes stronger and larger after recurvature.

The size difference between the two regions is provided by their large scale envirorment. Australian refion tropical cyclones form in a well developed monsoonal trough. They typically hav $10-20^{\circ}$ 1atitude of westerly monsoonal flow on their equatorward side anc a similar extent of easterly trade wind flow on their poleward side. Thus, they form with a very large size. As these Australian region (yclones track polewards they move out of this favorable region and contract slightly. Cyclones in the northwest Pacific, however, have extensive trade wind easterlies on their poleward side but do not typically form with an extensive westerly monsoonal flow on their equatorwad side. Hence, they start out smaller than their Southern Hemispherf counterparts. As these cyclones move into the far west Pacific or Soulh China Sea, the equatorial westerlies increase in extent. This, together with subtropical surges off the Asian mainland (Merrill, 1982; Pan Chienshang, personal communication, 1982), generally cause: northwest Pacific cyclones to grow during the latter stages of their lifecycle.

It is also notable that the intensity of the upler level anticyclone remains essentially constant throughout the recurving major hurricane's 1ifetime. By comparison, the intensity (f the upper anticycione over the supertyphoon increases considerably. Again, this is an environmental effect. The Australian system spends its entire lifetime near the upper level subtropical ridge and just on the equatorward side of strong subtropical westerlies. Jhese maintain the strong axisymmetric upper level anticyclone from fornation through decay. The northwest Pacific system, however, forms in the deep
tropics. It then moves under the upper level subtropical ridge and close to the suttropical westerlies.

Radial Wincs: The axisymmetric radial wind cross-sections for the Australian and lorthwest Pacific systems are shown in Figs. 5.32 and 5.33. If we rerall that radial winds of $1 e s s$ than $1 \mathrm{~m} \mathrm{~s}^{-1}$ are not significantly d:fferent from zero, then the tropical storm phases are almost identical. The major difference lies in the stratospheric and low level outer region inflow maxima in the Australian storm.

Considerable regional differences emerge, however, in the hurricane/typhoon stages. In the developing stage the stronger Australian system produces a stronger low level radial flow. But, it is also being directly affected by the upper level westerly flow. Thus, we see a strong deep upper outflow. This outflow becomes deeper and more extensive at the decaying stage as the strongly sheared environmental flow tears the hurricane apart. The supertyphoon develops a strong $300-400 \mathrm{mb}$ infi.ow layer during intensification. This weakens and a very strong low lev:l inflow, a result of the stronger circulation in Fig. 5.31, develops during the decaying stage.

Tre plan riew wind fields are not shown since they are very similar to the Pre-hurricane Tropical Storm and Developing and Decaying Oceanic Hurricane described earlier.
5.6 Hurricane Kerry: A Case Study

Throughort Chapters 4 and 5 we have made extensive use of compositing to determine the major features of different types of tropical cyclunes. We have, wherever possible used very restrictive

Fig. 5.32. Axisymmetric cross-section of radial winds for the Australian region major recurving hurricane at the intensifying tropical storm stage AUSO1, the intensifying hurricane stage AUSO2 and the decaying hurricane stage AUS03. Outf1ow regions are hatched. Radial winds less than $1 \mathrm{~m} \mathrm{~s}^{-1}$ are not significantly
 different from zero.

Fig. 5.33. Axisymmetric cross-section of radial winds for the northwest Pacific region recurving supertyphoon at the intensifying tropical storm stage PRII, the initial typhoon intensification stage PRI2, the intensifying supertyphoon stage PRI3, and the decaying typhoon stage PRF. Outflow regions are hatched. Radial winds less than $1 \mathrm{~m} \mathrm{~s}^{-1}$ are nct significantly different from zero.
selection criteria in and attempt to kep smoothing t, a minimum and retain salient details while still providing sufficiest observations for an objective analysis. But how representative are the resulting composites? This end other questions can only be answered by a detailed analysis of many cyclones, which, though an item for future research, is far beyond the scope of the present study. However, we can show that at least one tropical cyclone, Hurricane Kerry, is quite similar to the Oceanic Hurricane composite described in section 5.2. Kerry was the first southwest Pacific hurricane to be reconnoitred jy a fully instrumented research aircraft (Sheets and Holland, 1才81) and has also been extensively analyzed (Lajoie and Butterworth, 1982; Lajoie, 1981; Holland et a1., 1983; Holland and B1ack, 1983; B1ack et al., 1983). Since it was also not included in the Oceanic Hurricane composite it provides an excellent example for comparison.

As shown in Fig. 5.34, Hurricane Kerry formed at low latitude over the southwest Pacific Ocean and moved generally westwird. It intensified to minimal hurricane strength on February 15 , weakened while crossing the Solomon Islands, and subsequently reintensified in the Coral Sea. Maximum intensity of 954 mb was achieved on February 19 (Broadbrige, 1981) following distinct evidence of a missed recurvature. Kerry subsequently decayed gradually while following z long, erratic path across the Coral Sea.

The general synoptic scale structure of the cyclone during the intensification period are illustrated by the gradient level and 200 mb analyses in Fig. 5.35, the GMS satellite imagery in Fig. 5.36, and the sequential outfiow layer analyses in Fig. 5.37. A more complete sequence of analyses may be found in Sheets and Holland (1981).

Fig. 5.34. Tra:k of Hurricane Kerry showing dates (open circles 00 GMT) and selected central pressure estimates. (From Sheets and Hol..and, 1981).

On Februar: 15 th, Kerry was at minimal hurricane strength and the operational analyses in Fig. 5.35 compare very favorably to the tropical storm composite wind fields in Fig. 4.11, and to the intensifying hurricane compoiites in Fig. 5.12. At the gradient level we see the same equatorial inflow jet, the outer region trade wind inflow from the southeast, the listinct convergence to the east and cyclonic distortion to the west. A: this stage at 200 mb , however, Kerry was slighty different to th: composite wind fields. It lay slightly equatorward of the subtropical ridge, with a weak westerly trough to the south, and displayed a stronger equatorward and weaker poleward outflow channel configuration.

Fig. 5.35. Operational gradient and 200 mb streamlife/isotach (m s ${ }^{-1}$) analyses for 00 GMT on February 15, 1979 from the Darwin Tropical Analysis Centre.

Fig. 5.27. ESSA 8 visible satellite mosaic of hurribane Joan (from Director of Meteorology, 1979) off the west Australian coast.

Fig. 5.37. Composite outflow layer structure of Hurricane Kerry for:
a) $16 / 00-17 / 12 \mathrm{Z}$, b) $18 / 00-19 / 12 \mathrm{Z}$, and c) $20 / 00-21 / 12 \mathrm{Z}$. (After Lajoie, personal commancation 1982). Isotachs are in $\mathrm{m} \mathrm{s}^{\mathbf{- 1}}$.

The convective signatures for February 15 and 19 (Fig. 5.36) show a major cloud band from north through east; a cloud free region, or dry slot; and a sharp end to the convection in the southwest sector. These features are quite similar to our observations and deductions from the composite moisture and thermal fields in sections 4.2 and 5.2 .

The outflow regime variations during the intensification and decay phases are more clearly seen in Fig. 5.37 , which has been provided by F. Lojoie (personal communication, 1982). It contains three short term composites of all available upper level aircraft, satellite wind and rawinds for the first part of the intensification period (Fig. 5.37a), during which the central pressure fell 12 mb ; the second part of the intensification period (Fig. 5.37b), during which the central pressure fell 15 mb ; and the initial decay period (Fig, 5.37 c), during which central pressure rose 13 mb . Also, shown in Fig. 5.38 are the corresponding divergence patterns on the poleward side of Hurricane Kerry. At the commencement of reintensification, then, a weak equatorward outflow is present. But the dominant feature is the strong poleward outflow into the divergent region ahead of an approaching westerly trough. Intensification continues as the westerly trough amplifies, the subtropical jet moves past the cyclone, and the outflow strengthens considerably. By February 20, however, the upper level trough has moved past the cyclone. Convergent southwesterly flow has cut off the poleward outfiow channe1. Hurricane Kerry begins to decay.

No comparable low level circulation variations were observed during this time (apart from a general increase in the cyclonic winds). Thus, these case study results provide good support to our composite conclusions that interactions with the subtropical jet stream dominate

Fig. 5.38. Divergence patterns derived from the Hurricane Kerry from the Hurricane Kerry composite outflow layer wind fields in Fig. 5.37: a) $16 / 00-17 / 12 Z$, b) $18 / 00-19 / 12 Z$, and c) 20/00-21/12Z. (After Lajoie, personal communication 1982).

Fig. 5.38. Divergence patterns derived from the Husricane Kerry from the Hurricane Kerry composite outflow layer wind fields in Fig. 5.37: a) $16 / 00-17 / 12 \mathrm{Z}$, b) $18 / 0(1-19 / 12 \mathrm{Z}$, and c) 20/00-21/12Z. (After Lajoie, personal communication 1982).

The convective signatures for February 15 and 19 (Fig. 5.36) show a major cloud band from north through east; a cloud free region, or dry slot; and a sharp end to the convection in the southwest sector. These features are quite similar to our observations and deductions from the composite moisture and thermal fields in sections 4.2 and 5.2 .

The outflow regime variations during the intensification and decay phases are more clearly seen in Fig. 5.37 , which has been provided by F. Lojoie (persoal commanication, 1982). It contains three short term composites of all available upper level aircraft, satellite wind and rawitds for the first part of the intensification period (Fig. 5.37a), during which the central pressure fell 12 mb ; the second part of the intensification period (Fig. 5.37b), during which the central pressure fell 15 mb ; and the initial decay period (Fig. 5.37c), during which central pressure rose 13 mb . Also, shown in Fig. 5.38 are the corresponding divergence patterns on the poleward side of Hurricane Kerry. At the commencement of reintensification, then, a weak equatorward outflow is present. But the dominant feature is the strong poleward outflow into the divergent region ahead of an approaching westerly trough. Intensification continues as the westerly trough amplifies, the subtropical jet moves past the cyclone, and the outflow strengthens considerably. By February 20, however, the upper level trough has moved past the cyclone. Convergent southwesterly flow has cut off the poleward outfiow channel. Hurricane Kerry begins to decay.

No comparable low level circulation variations were observed during this time (apart from a general increase in the cyclonic winds). Thus, these case study results provide good support to our composite conclusions that interactions with the subtropical jet stream dominate
in determining intensity changes for tropical cyclones in the southwest Pacific region, It is also notable that following this sequence of events Kerry s pent a further 10 days over tropical waters (Fig. 5.34) and continued to decay. After crossing the coast, Kerry moved back over the ocean just ahead of an approaching westerly trough and rapidly intensified fc: a brief period before being destroyed as the trough impinged upon it.

5.7 Summary

In this crapter we have described a number of features of hurricanes in the Australian/southwest Pacific region.

We have shown that hurricanes occur almost exclusively between November and lay, with an early season peak occurrence in December. Hurricanes in the southwest Pacific region then reach a second peak in February. Those in the northwest Australian region occur most frequently in January and March with a distinct minimum in February. The overwhelm: ngly preferred location is just off the northwestern Australian coast with a secondary maximum in the southeastern Coral Sea. Major hurricares display similar characteristics to the overall hurricane clas sification. But, notably, nearly half the major hurricanes in the entire Australian region are found just off the northwestern $A_{\text {ustral }}$ coast and make 1 andfall on that coast at or near maximum intensity.

Hurricanes in the northwest Anstralian region move almost exclusively westward. This is partially due to the general easterly enviromental winds there, and partially a result of higher latitude, eastward movilg systems being removed by the Australian continent.

Those hurricanes in the southwest Pacific region have a slight preference for eastward movement, but tie low latituc 3 , intensifying systems generally nove westward.

We have separately examined the structure of iniensifying and decaying oceanic hurricanes (at least 1000 km from tle Australian coast); of hurricanes just off the east and west Australian coasts; and of recurving major hurricanes and supertyphoons.

As with the tropical storms in Chapter 4, all ccnposite hurricanes throrghout the region, and Hurricane Kerry, are very large, have a deep equatorial inflow, and display a characteristic beta effect distortion. This is, however, modified by coastal funnelling in he East Coast Hurricane.

A comparison of intensifying and decaying ocean: churricanes also showed the dominating influence of the subtropical j, t. In the intensifying hurricane, the upper westerlies impinge to within 6° 1atitude of the center. Thus, they do not affect thi core region directly but provide an intense outflow channel to tle southeast. When the westerlies move over the hurricane (or the hurri ane moves under the westerlies) it is sheared off and rapidly decays. Tese composite conclusions are supported by our case study of Hurri ane Kerry. In addition, the composite intensifying hurricane is di tinguished by a marked inflow near 400 mb , a stratospheric inflow an a very weak vertical wind shear in the lower troposphere.

Hurricanes just off the west and east Australia coasts are affected considerably by the continent. The climato ogical upper 1 evel westerly trough over the Coral Sea (section 1.2) ten so weaken east coast cyclones and move them away from the coast. A an advection of
dry continent 1 air around the northern perimeter tends to cut off the tropical mois ure supply to these systems. In general, the dryness of the continent 1 air has little, if any, direct affect on west coast hurricanes. \therefore ather, these systems protect themselves by maintaining a strong influx of tropical moisture over much of northern Western Australia. I : is the hot temperature of the air over the northwestern deserts that tas the major influence. We have shown that this produces a distinctly :old cored structure below 700 mb . Further, as west coast hurricanes adect the hot desert air off the coast, the normal meridional terperature gradient is reversed, and a deep easterly flow is maintained ac oss the hurricane core. Thus, the observed consistent westward traj ctory in this region is at least partially due to the cyclone/conti, tent interaction.

Our comp rison of the dynamic features of recurving major hurricanes an supertyphoons showed a lot of similarities and some interesting d fferences. The Australian system is larger and stronger during intens tification. But it shrinks to the decaying stage whereas the typhoon gows and strengthens further. The large initial size of the Australia, system appears to be due to angular momentum imports by a strong outer egion low level inflow on both poleward an equatorward sides during he pre-storm (Love, 1982) and storm stage. The developing major harrica e is also in close proximity to the subtropical jet at all stages.

6. TROPICAL CYCLONE INTENSIFICATIOI

Having established some of the major structural ind climatological differences between intensifying and decaying systems in the Australian/southwest Pacific region, and between trop: cal storms, hurricanes, and major hurricanes, we proceed naturally to the question of how and why such differences are established. In 'hapter 1 we defined three separate "intensity" modes: intensity (maximum wind speed or central pressure); strength (average relativ angular momentum inside 300 km radius); and size (extent of gale force winds or outer closed isobar). In this chapter we shall first reviev the current knowledge of mechanisms leading to intensification, s rength and size changes. We shall then describe the ways in which cy lones can interact with their environment to produce these changes. Fin 11 y , we shall discuss the applicability of these conclusions to cyc one evolution in the Australian/southwest Pacific region, and propose tentative model of the major intensification process.

6.1. Background

6.1.1 The Role of Moist Convection.

> "the spirit of CISK as the cooperative intensification theory is valid and alive": Ooyama (1982).

The intensification and maintenance of the high inergy core of a tropical cyclone is a very complex process, involving interactions
between many scales. One mechanism, which has been sumarized by Ooyama (1982) and forns the basis of extensive numerical modelling work, is the non-linear cocperative interaction between the cyclone and cumulus scales. Basically, the clouds are arranged into consistent and organized patterns by the relative vorticity and inertial stability (rotational stiffness) associated with the vortex. Entrainment into the clouds drives a secondary circulation with a deep inflow layer in the low to middle troposphere and a shallow, upper level outflow. Conservation f angular momentum then results in a strengthening of the lower and mid, le tropospheric cyclone and upper anticyclone. Note, however, that the portion of the secondary circulation driven by boundary laye: friction does not contribute directly to intensification - it provides at best sufficient angular momentum to offset surface dissipation. It does, however, indirectly aid the intensification process by suly $\mathrm{pl}_{\mathrm{l}} \mathrm{p}$ ing some of the moisture convergence required to maintain the onvection.

The clous themselves are crucial to the whole process; they not only provide :he release of latent heat which drives the secondary circulation, ut also they support a local recycling of mass. This recycling seres two functions: the first is to provide warming which, for a given vitex structure, forces a sufficient secondary circulation to maintain a thermal balance; and the second is to help the system preserve enex etic balance against the secondary circulation export of moist static n nergy. Gray (1979, 1982) has noted that oceanic evaporation a $1 d$ sensible heat flux associated with the primary circulation a.one are unable to balance the observed export. Gray then suggested tha: cloud induced recycling provides the required extra
energy flux. In essence, he believes taat the anticyclonic vertical wind shear organizes mesoscale cumulonimbus cloud lines; these in turn extract high entha"py air from the boundary layer, replace it with 10 w enthalpy mid-tropospheric air, and thus locally enhance the sea surface evaporation above that available from the steady primary circulation. Holland and Black (1983) and B1ack et al. (1983) have shown that such recycling occurred in Hurricane Kerry. However, thougl this is a necessary ingredient of the intensification process it is probably not a primary cause.

The character and effectiveness of the cumulus-cyclone interaction also changes as the cyclone develops. During the initial stages of cyclone development, the rotational Froude number (a masure of the ratio of the characteristic scale of the system to the Rossby radius of deformation) is much less than unity. Any perturbations in the mass field are largely dispersed by gravity-inertia waves. Recycling occurs locally and only a very weak secondary circulation can be maintained on the cyclone scale. During the tropical storm stage, tle Froude number approaches unity, the convection becomes more organizer, and the increasing inertial stability restricts the secondary irculation and rapidly increases the efficiency of heating in the nastent eye region, as shown by Schubert and Hack (1982a,b). Schubert and Hack also showed that, cace formed, the eye and maximum wind region act to stabilize the cyclone.

Shapiro and Willoughby (1982) have demonstrated tle non-linearlity of the interaction. They used Eliassen's balanced vor ex model (Eliassen, 1951) to show that a localized heat source or convective band) outside the radius of maximum winds may cause a iecondary eyewall
and belt of ma cimum winds to form. This secondary eye wall dissipates the primary ey: wall and maximum wind region and temporarily catses a decrease in th: intensity of the cyclone. The cyclone then reintensifies as the new band of maximum winds contracts inwards as a result of acceleration of the wind just inside the radius of maximum winds - a process described by Gray and Shea (1973) and Pearce (1981). Recent observations of this process occurring in tropical cyclones are provided by Willoughby et al. (1982).

6.1.2 The Role of the Environment.

> "all thi $1 g s$ considered, the most important factors appear tc be: a) the area influenced by the initial convergence of very lumid air determining in part the amount of air evicted upward; t) the temperature of the environment, influencing the upward convection velocity; and c) the facilities for disposal of air aloft": Depperman (1947).

Cyclone Iormation: Even though the cyclone intensification is driven by moist convection and its non-1inear interaction with the vortex, the rate and extent of this intensification is regulated by the environment. As Gray $(1968,1975)$ has summarized, certain minimum requirements nust be met for genesis and subsequent intensification. These include an initial surface disturbance; a sea surface temperature of at least $26^{\circ} \mathrm{C}$ and a deep thermocline to prevent cooling should upwell:ng occur; a minimum 1atitude of 5° and an environment with cyclonic vort: city to provide the required background absolute vorticity; a onditionally unstable and moist environment to allow convection to occur; and a weak vertical wind shear at the disturbance center to ena le the deep convection to provide a coupling between the
lower and upper troposphere. Such conditions allow f n accumulation of enthalpy to occur over the surface disturbance.

However, while these provide the usual minimum ronditions, they are by no means sufficient. McBride and Zehr (1981) comjared composite developing and non-developing weather systems over tle tropical Atlantic and northwest Pacific. They concluded that the only significant difference was that, in the mean, developing cyclone: are immersed in a region of stronger low level cyclonic vorticity and tronger upper level anticyclonic vorticity. McBride and Keenan (1982), lowever, found that little confidence could be placed in this differenti: 1 on a case by case basis in the Australian region. Love (1982) in a coi bined observational and modelling study found that tropical cyclone form tion in the western Pacific Ocean was as sociated with more vigorous Hadly circulations in both hemispheres. An important component was provid dy a cold surge moving equatorwards in the winter hemisphere. This roduced high pressures on the equator upstream of the development region, followed by a down-the-pressure-gradient acceleration of the mon;oonal westerlies prior to cyclone formation. Forecasters in both hem spheres have also developed a rule of thumb that anticyclogenesis polerard of an existing disturbance, with an accompanying trade wind surge, ras very favorable for development (Norton, 1947; Wilkie, 1964).

The $10 w$ level import, and upper level export of angular momentum by these processes can provide a rapid development of tie type of formation environment described by McBride and Zehr (see, e.g. Holland, 1983a; Lee, 1982). But the important question of how of ten such surges occur without subsequent formation of a tropical cyclone bas yet to be resolved.

Hurricanes, or very good facsimiles thereof, also occasionally form in far more aciverse conditions than those prescribed by Gray. Since the advent of satellites a number of hybrid systems have been observed forming at high latitudes, in barochinic environments, and with cold sea surface temperatures (see, eg, Erickson, 1967). Though direct observations are lacking, these systems develop many of the characteristic cloud features of hurricanes in the deep tropics (Hebert and Poteat, 1975). Rasmussen (1979) also indicates that some polar lows, which fcrm within outbreaks of arctic air, are very similar to tropical hurricanes in structure and energetics. Yet they form in highly baroclinic environments and over oceans with sea surface temperatures a; low as $10^{\circ} \mathrm{C}$!

The major mechanisms leading to the formation of these hybrid and polar $10 w$ systams appears to be a marked upper level divergence (usually associated witi strong cyclonic vorticity advection) and the advection of cold air over a warmer (though still quite cold by normal standards) ocean surface. Thus, the air/sea temperature difference still maintains a conditional1r unstable atmosphere and sufficient sea surface enthalpy f1ux for a con'ectively active system. The east coast 'bomb' or rapidly deepening cyclane (e.g. Sanders and Gyakum, 1980) is a good example of the importance of these sea to air fluxes in such circumstances.

Sea Surfa: Temperatures and Intensity Change: The air/sea temperature di ference will also be a major factor in determining the ultimate possi le intensity of the tropical cyclone. As has been discussed by M11er (1958) and Ooyama (1969), the upper level warm core in the develop: ng cyclone stabilizes the inner convective region. Thus, for a given aiy/sea temperature difference and conditional instability
of the environment, a cyclone will reach an intensity at which the core region is neutrally stable to moist progesses. Any convective forcing will then stop. Of course, the actual intensity of tie cyclone at this stage is a function of both the horizontal dimension and magnitude of the upper tropospheric warm core. Thus, cyclones of lifferent size, strength and ultimate intensity are possible for the ame air/sea temperature difference.

The interdependence of intensity and air/sea tem serature difference has led a number of people to suggest that mesoscale shanges in sea surface temperature may cause concomitant changes in ropical cyclone intensity (see e.g., Per1roth, 1967, 1969). However, Ramage (1974) strongly disputed this and provided examples of conti qued, or even commencement of, intensification as typhoons moved ov ${ }^{r}$ cooler waters. This is supported by our observations of ocasional crelones in the Autralian region which move hundreds of kilometers inland while still maintaining a mid- to upper tropospheric hurricane structure. (McBride and Keenan, 1982, include an example of cyclone Madge which traversed the entire continent while still maintaining organizef convective bands and an eye.) As Ooyama (1982) has suggested, it is reasonable to expect a mature cyclone, which has reached its ultimate intensity for the current conditions, to change rapidly in response to sea surface temperature variations. But it is unlikely that a developing cyclone, and especially one subject to other strong external forcing mechanisms, will be so effected.

Upper Tropospheric Environment/Cyclone Interactions and Cyclone
Intensity Change: Holland (1983a) described Lagrangian (moving with the cyclone) angular momentum budgets for a number of con posite northwest

Pacific cyclone; of different intensities. This research supported the findings of a n mber of previous authors that the major environmental interaction was provided by eddy fluxes in the upper troposphere. We also showed that the relative positions and movement of the cyclone and environmental features was important in determining the result of this interaction.

This upper tropospheric cyclone/environment interaction during intensificatior is by far the most observed and discussed process in the 1iterature. A synthesis of the many papers on this topic indicates that the three synof tic models, two of which are shown in Fig. 6.1, are the most important for rapid intensification and/or the development of very intense system:. We shall only mention each briefly here and reserve a complete discu;sion of the underlying physics to sections 6.4 and 6.5.

In the fi :st model, which seems to mainly occur in the north Atlantic, a co.d upper tropospheric 1 ow and the cyclone come into close proximity. This may occur from any combination of development or relative movemint. A sudden filling of the cold low, with strong outflow from tie cyclone into its center is often associated with rapid development of an intense hurricane. Rieh1 (1959, 1979) suggested that this is due te a spontaneous collapse of the cold low. A solenoidal circulation is then generated with subsiding cold air in the low and rising warmair in the cyclone. The original potential energy is converted to linetic energy of the overturning solenoid, or secondary circulation. The cyclone then "intensifies" by a low level import and upper level ex port of angular momentum (depending on the scale involved a strength or size change may be the more likely outcome).

Fig. 6.1. Two synoptic models of favorable subtropilal upper level flow patterns for tropical cyclone intensifica ion (after Sadler, 1978). STR is the SubTropical Ridge, SER the SubEquatorial Ridge, and TUTT the Tropical Upper Troposiheric Trough.

The second model (Fig. 6.1a) involves the develipment of a strong outflow channel to the westerlies as an upper level, subtropical jet type, trough approaches or develops to the west of tle cyclone. We have already seen that this is the predominant mechanism $: n$ the Australian/southwest Pacific region. McRae (1956) at d Ramage (1959) (see also Tsui et al., 1977) proposed that cyclonic $\begin{gathered}\text { orticity advection }\end{gathered}$ downstream of this developing, or approaching trough provides mass divergence over the cyclone. They hypothesized that as a result the surface pressures fall and the cyclone intensifies. However, no observations that the upper divergence actually excecded lower compensating convergence have been provided. Ramage (1974) further suggested that the accompanying poleward streaming cirrus cloud is indicative of a ventilation of excess heat away from the cyclone. This presumably allows further intensification by reducing the inner circulation subsidence warming (Rieh1, 1954), though Ramage did not elaborate on the underlying mechanisms. We shall exfnine this interaction further in later sections.

As a corollary to this second model, should the cyclone move under the high speed westeries around this upper trough, its vertical structure and pper warm core will be disrupted. A rapid decay to a weak, shallow eepression will then occur. We have seen this effect in the non-develoling tropical storm and decaying hurricane composites of Chapters 4 and 5.

The third model (Fig. 6.1b) is largely a northwest Pacific phenomenon in bich the cyclone moves into an advantageous position relative to th: Tropical Upper Tropospheric Trough, or TUTT, (Sadler, 1967). Sadier $(1967,1978)$ noted that this is normally associated with intensification of the typhoon. Sadler also suggested that the underlying mecianism was an establishment of two outflow channels, one to the easterl.es and a second to the westerlies. These supposedy provide enhanc dentilation of excess heat from the cyclone. But, as with Ramage (1'74), no supporting discussion of how this leads to intensificatiol was given.

Chen (198:) has conducted a detailed global study of outflow configurations for all intensifying tropical cyclones during the FGGE year. His obs:rvation is that most of the intense and rapidly deepening systems confor: to the above three synoptic models. But the weaker tropical storm; and minimal hurricanes tend to be associated with a variety of oth:r upper level flow patterns and generally constrained outflow configirations.

Dyamic I 1 stability and Cyclone Intensification: In addition to these synoptic models, the possible development of regions of dynamic instability hare been investigated by Sawyer (1947), Kleinschmidt (1951), Alaka (1962), Yanai (1964), and Black and Anthes (1971). In the
absence of any external forcing mechanisms or source; conservation of angular momentum in the outflowing air will produce egions of strong anticyclonic vorticity. If this anticyclonic vortic ty exceeds the cyclonic Coriolis component, the outflowing air will become dynamically unstable (see section 6.4 for a more complete discus;ion) and tend to spontaneously accelerate outward. The consequential mass divergence may cause surface pressure falls and cyclone intensifica:ion. Dynamic instability occurs consistently in numerical models e.g., Ooyama, 1969; Anthes, 1972; Kurihara, 1975; Kitade, 1980). But ex ensive areas of dynamic instability have not been observed, despite areful analyses by A1aka (1962) and B1ack and Anthes (1971).

Summary: In summary, then, we have shown that revious studies on the role of the environment in intensity change clea: ly indicate the importance of interactions in the upper tropospheric outflow layer. The consensus is that the 'necessary' climatological conditions summarized by Gray (1968), once satisfied, do not di: ferentiate between weak and intense hurricanes; indeed in some cases hur ricanes may form under far more adverse conditions. Further, except or the special case of a hurricane at its ultimate intensity, sea surfact temperature variations of a few degrees are probably not a major factor in determining intensity change.

To onr knowledge, no one has explicitly described the physical processes behind strength and strength change; thougl a number of papers on "intensity change" may have actually been descrining strengthening. However, Merrill (1982) has recently examined the side change process. His preliminary conclusions were that size change re:ults from a sustained environmental interaction in the lower trojosphere.

We shall discuss this topic further from separate climatologial, observational ani theoretical viewpoint in the following sections.

6.2 Climatology

At this stage of our investigation we have not been able to develop a climatology of tropical cyclone size or strength change in the Australian region. Further, as we have previously noted in section 2 , data deficiencie; prevent an adequate documentation of cyclone intensities over the southwest Pacific region east of 165° E. Thus, we limit our presentation here to a clinical description of the intensity and intensity change features of tropical cyclones in the Australian region (west of $165^{\circ} E$). A discussion of possible physical processes behind these features will be given in sections 6.3 and 6.4 .

6.2.1 Intensity and Intensity Change.

The maximum intensity distribution for tropical cyclones over the Australian region is shown in Fig. 6.2. The distribution curve gives the number of cyclones with minimum central pressures lying in overlapping 5 mb bands (1 mb resolution), and has also been smoothed by a running 5 point mean. We see that over the entire region 45% of tropical cyclones reached hurricane intensity and $\mathbf{1 5 \%}$ became major hurricanes. The proportions for the north/west Australian region and the southwest Pacific taken separately are similar. However, in the north/west Australian region most tropical storms are found in the Gulf of Carpentaria and most hurricanes off the northwest Australian coast. Hurricanes with central pressures less than 940 mb al so occurred exclusively off the northwest Australian coast; the corresponding lack

Fig. 6.2. Maximum intensity distribation of tropica: cyclones in the Australian region. The ordinate gives the number of observations in 5 mb bands and the curve 1 as been smoothed by a 5 point running mean.
of very severe cyclones over the Coral Sea may be real or it may be a result of the possible data bias in this region desc:ibed by Holland (1981).

Of particular interest in Fig. 6.2 is the prese ice of three distinct peaks at 990,970 and 950 mb . The location of these peaks precisely at the ten millibar values is probably due to a propensity for analysts to round of the maximum intensity values (ote, for example, the small peak at 980 mb). Nevertheless, we conside: that the general increase in occurrence near 970 and 950 mb is meteor logically significant and shall consider this feature further n section 6.5.

Figure 6.3 contains the maximum intensity distr bution of origin 1atitude. No trend can be discerned in the north/we; Anstralian region, and in the Coral Sea region the wide scatter and small number of

Fig. 6.3. Maxinum intensity distribution of origin latitude for tropical cyclones in the Australian region. 95% confidence intervals are shown by cross bars; cross bars with open ends that indicate no statistical confidence can be placed in the observation.
data points prevent us from attaching any statistical significance to the trend for ore intense cyclones to originate at lower latitudes. However, signidicant trends emerge if we separate tropical storms from hurricanes and plot minimum central pressure against origin latitude. As may be seen in Fig. 6.4, the most intense hurricanes tend to originate arou: $10^{\circ} S$ in the Coral Sea region and at a higher latitude of $15-18^{\circ} \mathrm{S}$ in the north/west Australian region. Notably, in both regions cyclon s which originate at very low latitudes do not become as intense as those which originate at higher latitudes.

As shown in Fig. 6.5 there are also significant trends in the maximm intensity distribution of intensification period and mean intensificaticn rate (from origin to maximum intensity). Comparing tropical storns (980-995 mb) to major horricanes ($<960 \mathrm{mb}$), we see that

Fig. 6.4. Origin 1atitude distribution of minimum cantral pressures for tropical storms and hurricanes in the Australian region. 95% confidence intervals are also shown.

Fig. 6.5. Maximum intensity distribution of: a) Intensification Period in days; and b) Mean Intensification Rate for tropical cyclones in the Australian region. 95% confidence intervals are also shown by cross bars; cross bars with open ends indicate that no statistical confidence can be placed in the observation.
the major hurricanes typically take twice as long to reach maximum intensity and also intensify at three times the rate of tropical storms. Because of the limited data points, no statistical significance can be placed on the trencs below 940 mb ; yet it is interesting that below 970 mb the time to maximum intensity, and the intensification rate curves are distinctly out of phase. This implies that either the ultimate intensity of each cyclone was somehow predetermined (regardless of intensification rate), or that whatever processes calase rapid intensification also hasten the eventual destruction of the cyclone. We shall return to this important point in section 6.4 .

The latitudinal distribution of the local rates of intensification (6 hour resolution and exclusive of landfalling storins) of those cyclones which became hurricanes is shown in Fig. 6.5. In both regions decaying systems dominate polewards of $22^{\circ} \mathrm{S}$. In the Coral Sea region the average intensification rate is essentially constant equatorwards of $20^{\circ} \mathrm{S}$, whereas in the north/west Australian region a significant maximum occurs between $15-20^{\circ}$ S. By comparison, tropical storms (not shown) al so have a preponderance of decaying systems polewards of $20^{\circ} \mathrm{S}$. But equatorward of this latitude they exhibit an almost zero net intensification rate, a result of deepening and filling systems occurring in nearly equal proportions. Thus, while hurricanes typically decay in the subtropics, a large proportion of tropical storms decay over the tropical oceans.

The mean meridional and zonal motion for tropical storms and hurricanes is contained in Table 6.1. In both regions hurricanes move more rapidly westward than tropical storms, and in the southwest Pacific tropical storms tend to move eastward during intensification.

Fig. 6.6. Latitudinal distribution of local intensification rates for the complete life cycle of hurricanes in the Australian region. 95% confidence intervals are also shown.

Surprisingly, hurricanes in both regions move poleward faster on an average than tropical storms. Revelle (1981) obtained different results for the entire southwest Pacific from 1969-1979. He found that tropical storms (which he defines as being greater than $25 \mathrm{~ms}^{-1}$ maximum wind speed) moved eastward at $3.6 \mathrm{~ms}^{-1}$ and poleward at $2.6 \mathrm{~ms}^{-1}$ while hurricanes move westward at $0.8 \mathrm{~ms}^{-1}$ and poleward at $1.9 \mathrm{~ms}^{-1}$. As we have already shown in section 4.1 , this difference is due to the distinct increase in poleward and eastward motion for tropical storms east of $165^{\circ} \mathrm{E}$.

TABLE 6.1
Mean zonal (V_{E}) and meridional (V_{N}) motion ($m s^{-1}$) during the intensification period of tropical storms and hurricanes in the north/west Australian region and southwest Pacific region west of 165° E.

REGION INTENSITY MOTION

		V_{E}	V_{N}
North/west	Tropical Storms	-1.1	-1.0
Australian	Hurricanes	-2.0	-1.5
Region			

Southwest	Tropical Storms	0.5	-2.0
Pacific Region	Hurricanes	-0.6	-2.4

A quite important finding of this study is the distinction between track types and cyclone intensity shown in Fig. 6.7. This figure contains the maximum intensity distribution of four of the five track types defined in section 1.1. The southward moving cyclones were very few in number and thus not included. We also requited that the recurvature point for recurving cyclones be near the point of maximum intensity (if not the cyclone was placed in one of the other categories, i.e. a recurving cyclone in which recurvature occurred three days after maximum intensity would be classified in Fig. 6.7 as a westward moving cyclone). We see that tropical storms are comprised of roughly equal numbers of recurving, westward and eastward moving, and erratic cyclones. But most of the hurricanes, and almost all the major ones, came from the recurving category. In addition, many of the westward moving hurricanes displayed evidence of missed recurvature during intensification. This provides further confirmation of our composite

Fig. 6.7. Percent frequency of maximum intensity for tropical cyclones in the westward, eastward, erratic and recurving movement classes (see text for definitions).
study conclusions that the intensification to hurricane or major hurricane stage occurs during an interaction between the cyclone and an approaching westerly trough.

6.2.2 Rapid Intensification

Periods of extreme rapid intensification are certainly underestimated in the Australian region. This results from the almost universal use since 1966 of satellite techniques (Anderson et al., 1974; Dvorak, 1975) i: which intensity change is limited as much as possible to two or three characteristic rates. Hence, using the Dvorak (1975) rapid intensification curve as a basis, we define rapid intensification as any period ia which the central pressure fell by at least 6 mb in a 6 hour period and a rapid intensification cycle as the period in which the
central pressure continued to fall at a minimum rate of 6 mb for subsequent 6 hour periods. The distribution of total central pressure fall during these rapid intensification cycles is shown in Fig. 6.8. A large number of single event 6 mb falls were recorded; and some of these were quite suspect, occurring at landfall or as the cyclone crossed an observation point. The largest sustained rapid pressure falls were two observations of 48 mb over periods of 36 and 42 hours; nothing even approaching the occasional northwest Pacific pressure falls of $40-90 \mathrm{mb}$ in 24 hours (Ho1liday and Thompson, 1979) has been recorded in the Australian region.

The distributions of central pressure, latitudn, and month at which rapid intensification commenced are shown in Figs. ©.9, 6.10 and 6.11. Rapid intensification typically started around 995 mb for both single and multiple period cycles and in 75% of cases ended within 12 hours of maximum intensity. A secondary peak may be seen at the $970-975 \mathrm{mb}$ central pressure band and almost no rapid intensification cycles began below 970 mb . The mean latitude of commencement is near $15^{\circ} \mathrm{S}$ and the distribution is skewed towards higher 1atitudes. A.l 1 of the 1 ow latitude observations occurred in the early or late part of the season, but the general distribution is normally distributei. throughout the season.

The mean and median cyclone speeds at the start of rapid intensification were 4.1 and $3.6 \mathrm{~m} \mathrm{~s}^{-1}$ respectively; these are slightly slower than the mean speed of all hurricanes. With regard to direction of motion: 41% recurved within 24 hours of the rapid intensification cycle; 10% displayed evidence of a missed recurvatur: 16% moved continuously westward; 21% moved eastward, the majority of which

Fig. 6.8. Distiribution, in 6 mb classes, of total falls in central pressure during rapid intensification cycles for Australian region hurricanes.
accelerated by more than $5 \mathrm{~m} \mathrm{~s}^{-1}$ within 24 hours of the rapid intensification cycle; 6% moved continuously southward; and 6% were distinctly erratic. These proportions are quite similar to the hurricane distribution in Fig. 6.1, an expected result since most hurricanes experience a period of rapid intensification.
6.3 The Physics of Cyclone/Environment Interaction

The manner in which a cyclone will respond to a given environmental (or internal) forcing is believed to be dictated by its basic structure, with the dominant features being the ratio of inertial to static stability and, to a lesser extent, the baroclinity.

Fig. 6.9. Distribution, in 5 mb classes, of central pressure at which rapid intensification commenced and for: 1) all occurrences, 2) multiple period occurrences in which rapid intensification was maintained for at least 12 hours.

Fig. 6.10. Distribution, in one degree classes of the latitude at which rapid intensification commenced and for: 1) all occurrences, 2) multiple period occurrences in which rapid intensification was maintained for at least 12 hours.

Fig. 6.11. Seasonal distribution, in one month classes, of the month in which rapicly intensifying cyclones occurred and for: 1) all rapidly intensifying cyclones, 2) those cyclones in which rapid intensification continued over more than one 6 hour period.

Physically, if we have an axisymmetric system, parcels leaving a constant forcing region (Fig. 6.12) are able to move horizontally or vertically depending on the inertial and static stabilities. For horizontal motion the radial gradient of angular momentum will cause an acceleration in the azimuthal wind speed, an increase in the cyclostrophic a:ad Coriolis forces and a resistance to farther horizontal motion (we neglect for simplicity the transient features of the geostrophic adjustment problem). The vertical density stratification in a statically stable atmosphere will also resist vertical motion. Mass continuity, however, requires that a circulation be completed. Then, as shown in Fig. 6.12, the induced circulation is determined by the relative effects of the inertial and static stabilities. For a relatively weak inertial stability a long horizontal circulation will occur and the effects will be felt some distance from the forcing

Fig. 6.12. A schematic of the secondary circulations arising from a specified forcing in a region of weak and strong inertial stability compared to the static stability.
regions. A relatively strong inertial stability, however, will constrain the circulation to the near vicinity of the forcing. A similar result to that shown in Fig. 6.12 will occur: for a vertical forcing, such as a heat source. As has been shown by E1iassen (1951), baroclinity will also tilt the circulation axes in fig. 6.12 as parcels tend to follow the sloping isentropic surfaces. Boundary conditions will further distort the circulations, as may be seen in the work of in Willoughby (1979), Schubert and Hack (1982a) and Shepiro and Willoughby (1982).

As an example let us consider the Large Northwest Pacific Typhoon in Fig. 6.13 (Merril1, 1982). This is almost identical to the oceanic hurricane described in Chapter 5, and has a basic structure which is

Fig. 6.13. Axisymmetric vertical cross-section of azimuthal winds ($\mathrm{m} \mathrm{s}^{1}$) in the Large Northwest Pacific Typhoon.
typical of all hurricanes (eg. Gray, 1979). Core region winds were added to the axisymmetric cross section in Fig. 6.13 by presuming a maximum wind sped of $40 \mathrm{~m} \mathrm{~s}^{-1}$ at 50 km radius and 850 mb . The azimuthal winds were then interpolated to a 10 km by 30 mb grid using a 5 node bicubic spline.

The resulting inertial stability cross-section (obtained from Eq. A3.15 of Appendix 3) is shown in Fig. 6.14. Note how the lower levels are remarkably stable out to a large radius, whereas the upper levels are only weakly stable. Since the static stability (not shown) is essentially constant up to the stratospheric 'lid', this varying inertial stability characteristic provides a definite constraint on the secondary circulations which can arise from any imposed forcing. For

Fig. 6.14. Axjsymmetrif vertical cross-section of inertial stability ($\mathrm{I}^{2}, 10^{-8} \mathrm{~s}^{-2}$) in the Large Northwest Pacific Typhoon. The stippled region is less than $f_{0}{ }^{2}$.
example, we would expect a low level environmental forcing at, say, 8^{0} latitude radius to effect only the outer circulation. A similar upper level forcing may produce an effect in the central region.

A semi-quantitative indication of the likely response to such a forcing may be obtained from a diagnostic solution cf Eliassen's (1951) balanced vortex equations as described in Appendix 3. These equations form the basis of early balanced hurricane models (Coyama, 1969; Sundqvist, 1970) and have been used by Willoughby (1979), Cha11a and Pfeffer (1980), Smith (1981), Schubert and Hack (1982a), and Shapiro and Willoughby (1982) to examine secondary circulations and balanced response to sources of heat and momentum. We say semi-quantitative because the results are strictly applicable only to a balanced, perfectly axisymmetric system. Willoughby (1979) has shown that the
lower level inner circulation is axisymmetric to a first approximation. But the upper levels, and in many cases the outer circulation, are often highly asymmetric. We shall consider the effects of these asymmetries presently, but at this stage will confine our discussion to the response of an axisymmetric vortex to a core region heat source, and to outer region upper and lower momentum sources.

Core Region Heat Source. The secondary circulation response to an imposed heat soarce of maximum 10K/day and distributed as shown in Fig. 6.15 is given in Fig. 6.16a. In agreeement with earlier work by Willoughby (1979), we see that two gyres are formed: with subsidence in the eye region, ascent in the heated region, and subsidence outside. As we have intimated in our previous discussion of moist convective interactions, a deep low level inflow layer and shallower, more intense upper outflow layer is established. Of most interest, however, is the horizontal constraint on the outer circulation by the high inertial stability. Strong subsidence occurs just outside the heated region and the radial circulation becomes negligible beyond $2-3^{\circ}$ 1atitude radius. Similar results have been obtained by Smith (1981).

Envixonmental Forcing: The response to an environmental imposition of an upper level outflow is simulated by the upper momentum forcing profile in Fig. 6.15. The maximum amplitude was chosen so that a radial outfiow of $1-2 \mathrm{~m} \mathrm{~s} \mathrm{~s}^{-1}$ was generated at 190 mb and 6° 1atitude radius. The resulting secondary circulation is shown in Fig. 6.16b. Notable features are the long shallow outflow layer, the deep inflow 1 ayer, and the inflow in the stratosphere. This environmental forcing has a substantial effect on the core region, even to the extent of generating upper tropospheric and lower stratospheric subsidence in the eye region.

Fig. 6.15. Distributions of heat and momentum sources used in diagnosing the hurricane responses shown in Fig. 6.16.

By comparison, a lower level forcing with the same distribution (Fig. 6.15) produces a different response. As may be seen in Fig. 6.16 c , a stronger radial flow occurs at 6° radius. But the high inertial stability in the lower troposphere (Fig. e.14) restricts the extent of the environmental forcing and its direct influence on the core is relatively smal1. If moist processes were included in a conditionally unstable atmosphere, this extent would probably be less.

6.4 Synthesis: The Intensity Change Process

6.4.1 Axisymmetric Effects

As we have discussed in section 6.1 , moist convection is the primary driving mechanism in hurricane intensification. But there is substantial and convincing evidence that the rate ef intensification, and ultimate intensity, are largely controlled by the environment.

Fig. 6.16. Streamfunction fields showing secondary circulation responses to the heat and moment source distributions in Fig. 6.15: a) core region heating response; b) upper level environmental momentum forcing response; c) lower level environmental momentum forcing response.

Previous studies, including those of hrricane-1ike subtropical and polar 1 ow systems, together with our Australian region climatology, composite study of developing and major hurricanes and model diagnosis, indicate that for intensification the most effective cyclone/environmental interaction occurs in the upper tropospheric outflow 1ayer. By comparison, these observations, pilus the preliminary investigation by Merrill (1982), indicate that size change results from interactions in the 1 ower troposphere.

The diagnosed secondary circulations from our application of Eliassen's balanced vortex equations are summarized in Fig. 6.17, and Fig. 6.18 also contains a schematic summary of the mujor secondary circulation features in intensifying systems over tho

Australian/southwest Pacific region. Taken together, these secondary circulations indicate that the above synoptic conclusions may be physically valid, at least insofar as linear environrental interactions with the axisymmetric component of the hurricane circulation is concerned.

As we have shown in Fig. 6.17, the strong 1 ower level inertial stability inside $200-300 \mathrm{~km}$ constrains the horizontal extent of the secondary circulation response to a core region heating. By specifying a heated region of $50-150 \mathrm{~km}$ radial extent we produced a secondary circulation which was negligible beyond $250-300 \mathrm{~km}$. A narrower heat source in the eyewall region would produce a much more constrained circulation. Thus, even though the observed inner region outflow maximum in Fig. 6.18 may be convectively driven, the long sustained outflow and secondary outer region maximum cannot be so explained.

Fig. 6.17. Schematic summary of the secondary circulations resulting from inner core convective heating and outer region momentum forcing.

Fig. 6.18. Schematic summary of the observed axisymmetric secondary circulation in intensifying Australian/southwest Pacific region tropical cyclones.

We also believe that this constrained circulation response causes the donut shaped subsidence region whici surrounds the eyewall at the end of the intensification stage of many intense huricanes.

Since the inertial stability in a hurricane derreases with height and the static stability increases at the tropopause, the hurricane response to an upper level environmental forcing is quite different from that at lower levels. As we show schematically in Fig. 6.17, the upper level forcing extends a secondary circulation into the inner region of the cyclone. It thus may affect the core region directly by providing a long outflow channel, a mid to upper tropospheric inflow, and possibly by warming due to lower stratospheric inflow and entanced subsidence in the eye. If the forcing is increasing with time a sustained upper level divergence may be also maintained over the hurricane core. Further, if we combine the secondary circulations arising from this upper level forcing and the core region heating a close approximation to the observed mid to upper tropospheric circulation in Fig. 6.18 is achieved. The subsiding branch is then well removed from the core region and spread over a wide area. Then long wave radiational cooling can effectively balance the subsidence warming, and the debilitating effect of excess subsidence drying near the eye is removed. Differential angular momentum transports between the outflow layer and the radial inflow response near 400 mb (Fig. 6.18) will al so generate the observed strong upper tropospheric vertical wind shear (e.g., Fig. 5.10). This helps maintain and increase the observed warm core maximum near 300 mb . By comparison our model results and observations in Figs. 6.17 and 6.18 indicate that a 1 ow level environmental forcing does not directly affect the core region. Rather, it provides an import of the
substantial amount of angular momentum needed to provide the quite large (by other ocean basin standards) size and strength of the intensifying Australian/southwest Pacific region tropical storm and hurricane. A linear combination of this low level environmental forcing and the core region convection produces little, if any, extra effect. Howeyer, following the work of Schubert and Hack (1982a,b), the concomitant increase in inertial stability helps to organize the inner region moist convection. It also increases the efficiency of primary circulation ajustment to the convective heating. Thus, the outer region size change may lead indirec:ly to a strengthening and intensification of the tropical cyclone

Recent numevical modeling results by Challa and Pfeffer (1980) provide some conlirmation of these diagnostic results. They used Sundqvist's (197)) axisymmetric model (which is based on Eliassen's balanced equatio: s) to examine tropical cyclone intensification under different impose I environmental forcing profiles. Though their discussion centered on asymmetric effects, their modelling results really were a response to an axisymmetric forcing. An upper level axisymmetric forcing, then, produced an intensity change with very little size charge. In contrast a low level axisymmetric forcing produced a substantial size change, consequential intensity change, and development of much stronger system. Compared to a reference run without forcing, Challa and Pfeffer found that the environment forcing produced a more rapid intensification and more intense systems. They also noted that even with subcritical sea surface temperatures (and presumably weakr r convection) intensification could be maintained by the environmental fring.

6.4.2 Environmental Forcing and Asymmetric Effects

Since the observed secondary circulations in intensifying tropical cyclones require scme form of upper tropospheric, outer region forcing, we proceed naturally to the question of how this can be achieved. Other important questions involve the validity of our line ir, axisymmetric diagnosis, the effects of asymmetries, and the mechaiisms whereby the core region and environment become coupled. A compl te answer to these questions requires far more research than we have do ie in this study, together with better outflow layer observations. Horever, our present knowledge does enable us to speculate on some of the more likely processes.

Low Level Forcing: Let us first consider the 1 w level inflow into the outer regions of the intensifying storm (Fig. 6. 8). We have shown in Chapters 4 and 5 that this is maintained by a comsined equatorial influx from the monsoonal westerlies and a subtropicil influx from the trade wind easterlies.

Love (1982) has examined the role of the equato:ial surge in the establishment and development of pre-tropical storm lepressions. He proposed, and produced convincing supporting evidenc , that this resulted from a surge originating in the winter hemi phere. The basic argument is that the cold winter hemisphere surge cr ates a high pressure region over the equator. In these low lati udes, an unbalanced, down the pressure gradient surge is then developed which extends into the vicinity of the incipient depressio. Subsequent pressure falls in the developing disturbance could a so help maintain or enhance such a process.

The initiation of the subtropical trade wind surge has long been a forecasting rule for tropical depression intensification in the Australian regiol. (e.g., Wilkie, 1964). It is a quite transient effect associated with trong anticyclogenesis poleward of the depression.

Both inflow mechanisms seem to be operating equally in our composite tropicil storm of Chapter 4. But this is probably an artifact of the compositi g process. It is more likely that the equatorial surge will be more imprtant in low latitude systems and the trade wind surge will predominate at higher latitudes.

Upper Level Forcing: A number of forcing mechanisms may operate in the outflow layer of tropical cyclones and thus contribute to the observed variety of outflow configurations around the world (Chen, 1983). We shall only consider three. The first is the subtropical jet/cyclone outflow interaction, which we have shown to be the predominant meckanism in the Australian/southwest Pacific region. The second is the development of regions of inertial instability, which seems to be the main mechanism in numerical models. And the third is the weaker equa orial outflow, which we have also observed in our composite study

A plausibl: explanation for the development of the poleward outflow jet lies in the reduction of inertial stability and the divergence fields associatod with the subtropical jet. The high speed westerlies moving into nea: proximity with the cyclone core develop a strong anticyclonic shear and substantially reduce the already weak inertial stability on th \geqslant cyclone's poleward side. They may even produce transient regions of instability, though these have never been observed.

Following our observations of Hurricane Kerry : n Figs. 5.37, 5.38, a possible interaction scenario might follow the sclematic depiction in Fig. 6.19. Substartial divergence will develop in he hatched region when an anticyclonically curved jet strak lies sou heast of the incipient hurricane (McRae, 1956). Should there be a concomitant amplification of the upstream trough and movement towards the cyclone, this divergence will be further enhanced (Ramage 19:9, 1974). In the statically stable, low inertial stability atmospher which the juxtapositioning of the cyclone outflow and subtrop:cal westerlies has developed, this divergence can be partially compensi.ted by horizontal as well as vertical motion. Thus, the cyclone outflow turns, accelerates, and forms a strong outflow channel into the diverge:it region. The initialization of this outflow channel may be aided by a transient establishment of an inertially unstable region betw en the cyclone and subtropical jet. But once the channel is establish d the inertial stability actually increases slightly.

As we show in Fig. 6.20, the compensating retu n flow tends to occur immediately above and below this shallow outf. ow channel.

Thus, even though the cyclone/environment inte action is quite asymmetric, our simple axisymetric diagnosis in th: previous section appears to be physically valid. Note, however, tha: much of the compensating motion for the divergence region in Fis. 6.19 is actually provided by the westerly winds and nearby vertical notion. But, there is also a large volume reduction from the interaction region to the cyclone core. Hence, only a very small proportion f the interaction region mass flow is required to produce a substantial core region response. From an axisymmetric viewpoint, an otherise uncompensated

Fig. 6.19. An illustration of the manner in which the subtropical westerlies and cyclone may interact to produce an extended poltward outflow channel.

Fig. 6.20. Meridional cross-section poleward of the Pre-hurricane Trolical Storm showing the marked lower stratospheric and 400 mb return flows above and below the divergent flow at 200 mb .
$1 \mathrm{~m} \mathrm{~s}^{-1}$ variation in radial wind at an fnteraction cadius of 6° Iatitude would induce a $10-12 \mathrm{~m} \mathrm{~s}^{-1}$ radial wind ε the maxim m wind radius. Hence, almost undetectable axisymmetric outflow variations in the outer circulation could still be responsible for large eye region changes. There are, further, probably non-linear interactions which could not possibly be discerned in an axisymmetric model. Because of the scales involved, the initial coupling must occur by a chance interaction between initially independent systems. But once the coupling occurs the subtropical and cyclone systems may interact to their mutual enhancement. For example once the outflow forms it will provide strong warm air advection ahead of the trough, which, together with the warm cyclone core, can enhance the baroclinicity of the sold upper level trough. Confluence between the cyclone outflow and westerlies may also provide a strong frontogenetic influence. Thus, bacoclinic, or barotropic, processes may amplify the upstream trough, which increases the downstream divergence, which further enhances tie outflow channel, and so on. It is also possible that the warm cyclore outflow could initiate a perturbation in the nearby upper level sabtropical westerly flow.

Studies of intensity change by advanced numeri:al models have relied almost entirely on internal processes and hare certainly produced intense hurricanes. As has been shown by Anthes (1:72), these hurricane models develop an asymetric outflow, with strong j:ts, by generating regions of inertial instability. Kitade (1980, Fig 14) shows that 1arge areas become unstable and DeMaria (1983) find; that the local anticyclonic vorticity may approach twice the magni ude of the Coriolis vorticity. Yet, even though the outflow region is unly wakly stable in
nature, there has been no proof that large areas of instability develop: Alaka (1962) pre:ented a detailed analysis of the outflow layer of the developing hurricane Carla and could find at best very small, and presumably trans ent, instability regions; Black and Anthes (1971) found none. It is posible that the strong outflow near 2° 1atitude radius in Fig. 6.18 is parially due to inertial instability in the unresolved core region. Th s possibility is supported by the associated strong inflow maxima neir 400 mb and in the lower stratosphere which would be the expected ressonse to a forced outflow at $150-200 \mathrm{mb}$. But it is highly unlikely :hat the observed outer region outflow arises from sustained inerti 11 instability. The logical conclusion, then, is that without any envi conmental interaction, numerical models must take the alternative, and presumably more difficult, path of developing large regions of instability.

In addition to the major poleward outflow channel, our Australian/southest Pacific region composites also display a weaker, high level equatorward outflow. This seems to be a consistent feature of most tropical cyciones in all ocean basins. Chen (1983) has shown that for the FGGE year at least 50% of all tropical cyclones had some form of equatorward outflow channel.

Taken alone, this is a physically reasonable result. Other things being equal the inertial stability should be weaker on the equatorward side. Thus wealer environmental features, such as an equatorial easterly jet, may induce a strong response. However, the convective feeder band emarating from lower latitudes will also contribute to the maintenance of his equatorward outflow jet. Lee (1982) has shown that the total convertive effect in tropical cyclones is a downgradient
rearrangement of angular momentum. Essentially, lower level cyclonic angular momentum is deposit in the uppe: outflow layer. Lee also presented a trajectory analysis of the sutflow regions of a composite northwest Pacific typhoon and showed a southwesterly 'jet' with air flowing across absolute angular momentum surfaces. Since this jet also 1ies over the general position of the major equatorial feeder band, Lee arrived at the reasonable conclusion that the convective cells maintain an infusion of more cyclonic air from below. This continuous source then allows the air to flow across the absolute angular momentum surfaces.

Both our observations and the modelling results of DeMaria (1983) provide confirmation of these conclusions. DeMaria conducted two parallel experiments, one with and one without momentum transports in his cumulus parameterization scheme. With momentur transports a strong equatorward jet developed over the major feeder band. Without such transports a weaker and more constrained outflow resulted. Observationally, it is notable that our composites show a weak equatorward outflow concentrated near the tropopause where the deep convective detrainment is largest. It is also strongest over the mean convective region (as indicated by the 500 mb moistare fields) and weakens rapidly on leaving that region.

6.5 Summary

In this chapter we have investigated the major mechanisms associated with the intensification and decay of tropical cyclones in the Australian/southwest Pacific region.

Following Merrill (1982) we have separated tropical cyclone intensification i ato three modes: an acceleration of the maximum winds with no change ir outer circulation, which we refer to as intensification; an acceleration of the outer circulation with no change in maximum winds, which we refer to as size change; and an overall increase of relaiive angular momentum in the core region, which we refer to as strength clange. We have shown diagnostically and observationally that size, strenth and intensity change arise from different environmental processes. Specifically: inner core convection and upper tropospheric courlings with the environment can directly affect intensity change lower level couplings can produce an initial size change followed sy a non-1inear feedback and eventual strength and intensity change. The dominant parameter in producing these differential res onses is the variations of inertial stability within the cyclone.

In our obse rvations for the Australian/southwest Pacific region, we find agreement with recent work by Love (1982) and earlier forecasting rules (e.g. Wilkie, 1964), that the early intensification period follows a size change from low level cyclone/environment interactions; specifically by surges from the monsoonal westerlies and trade wind easterlies. Intensification past the tropical storm stage, and particularly the development of major hurricanes, seems to require a favorable coupling with the subtropical jet stream. This coupiing is similar to that described by McRae (1956) and produces a long sustained outflow channel to the southeast. The observed coupling requires a precise juxtapo:itioning of the cyclone and subtropical jet. Should
they be too far apart, a coupling will not occur. Should they approach too closely, the cyclone will be destroyed.

By comparison. we have noted that numerical models, which do not have the above environmental interactions, tend to create outflow jets by the development of large regions of inertial instability. Except, perhaps, for the inner core region, such inertiallr unstable regions have not been observed in nature.

Substantial questions still remain on the linsages and highly nonlinear and asymmetric processes which accompany thase cyclone/moist convection/environment interactions. These are th topic of ongoing research.

7. TROPICAL CYCLONE MOTION

> "Some vill be found to be relatively simple systems moving straight away under a definite wind anl pressure pattern that is not changing. These are easy, but there are others so complicated, so buff:ted by changing currents or opposing forces, that forecasting is very uncertain and trying' : Norton (1947)

Tropical cyclone motion is a complex, non-1inear geostrophic adjustment process which results from an interaction between the cyclone circulation, the environmental wind field, the earth's vorticity field, the underlying sirface and the fields of moist convection. Though the detailed physics, and particularly the non-linear interactions, are poorly understoo at this stage, we have recently indicated (Holland, 1982, 1983b) tha the dominant mechanisms appear to be the interactions with the environuental wind field (including asymmetries) and with the earth's vorticit: field. In this chapter we shall summarize and extend this preliminary theoretical work and discuss the results in terms of tropical cyclone observations in the Australian/southwest Pacific region. No atteipt is made to completely survey the considerable literature on this topic. For the interested reader, excellent surveys may be found in yeorge and Gray (1976), Bureau of Meteorology (1978), WMO (1979) and Chan (1982).

7.1 Background and Theory

7.1.1 Isolated, Axisymmetric, Barotropic Vortex on a β Plane With no Friction

The frictionless horizontal equations of motiol in cylindrical coordinates are given by

$$
\begin{align*}
& \frac{d u}{d t}-\frac{\mathbf{v}^{2}}{r}-f v=-\alpha \frac{\partial p}{\partial r} \tag{7.1}\\
& \frac{d v}{d t}+\frac{u v}{r}+f u=-\frac{\alpha}{r} \frac{\partial p}{\partial \theta} \tag{7.2}
\end{align*}
$$

where u, v are the radial and azimuthal wind compononts and the other symbols have their usual meaning (c.f. Appendix 1).

Let us first consider an isolate vortex which las both axisymmetric wind and pressure fields. Since the Coriolis force faries with latitude this vortex carnot be ingradient wind balince. Xf we let Eradicht wind balance be satisfied due east and wes of the certer, trot from Eq. (7.1), if we let fobe baluated at the cy lone center and as sunie a constant $B=\mathcal{F}_{0}$.

$$
\begin{align*}
\frac{\partial u}{d t} & =\frac{y^{2}}{r}+\left(f_{0}+f_{0} r \cos \theta\right) v \cdots \alpha \frac{\partial y}{\partial y} \\
& =v \rho_{0} r \cos \theta \tag{7.3}
\end{align*}
$$

Then, the vortex will experience an outward radial coceleration in its polewaxd sector and an inward radial acceleration i its equaturward soctor from the unbalanced Coriolis force. The net result is a prowist :ccelcration of the vortex. If we integrate lia. (T, 3) over the virtex domain we got a poloward acceleration per unit mass given by

$$
\begin{equation*}
a=\frac{\beta}{\pi R^{2}} \int_{o}^{R} \mathrm{vr}^{2} \mathrm{dr} \tag{7.4}
\end{equation*}
$$

where R is the racial extent of the vortex. This is the result obtained by Rossby (1948), and which has been used for many years to explain the observed poleward drift of cyclonic vortices and equatorward drift of anticyclonic vortices. However, the result is merely a geostrophic adjustment to an nitially unbalanced vortex and there appears to be no evidence that atm spheric vortices actually exist in such a continuous state of imbalanc:.

Let us therefore consider an axisymmetric vortex that is in gradient balance. From Eq. (7.1) this implies that the radial pressure gradient varies azimuthally according to

$$
\begin{equation*}
\alpha \frac{\partial p}{\partial r}=\frac{v^{2}}{r}+f_{0} v+v \beta_{0} r \cos \theta \tag{7.5}
\end{equation*}
$$

hence if we assune no horizontal density variations and take an azimuthal derivalive, and a radial integration:

$$
\begin{equation*}
\left(\alpha \frac{\partial \mathrm{p}}{\partial \theta}\right)_{r=R}=-\beta_{o} \sin \theta \int_{o}^{R} r v d r \tag{7.6}
\end{equation*}
$$

substituting Eq. (7.6) into (7.2) and noting $u=0$ we have

$$
\begin{equation*}
\frac{d v}{d t}=\beta_{o} \frac{\sin \theta}{R} \int_{o}^{R} x v d r \tag{7.7}
\end{equation*}
$$

and since there are no advective terms ($u, \partial v / \partial \theta=0$) the LHS is equal to the local time derivative. We can see from the $\sin \theta$ term on the RHS that the acceleration is cyclonic to the west and anticyclonic to the east. Thus, the initial effect on the vorter in this case is to move it westward.

If we presume that the vortex remains in a balinced state the beta plane effect can be more easily seen from the vorti:ity equation. We start with the frictionless, divergent barotropic vorticity equation in cylindrical coordinates

$$
\begin{equation*}
\frac{\partial \zeta}{\partial t}=-u \frac{\partial \zeta}{\partial r}-\frac{v}{r} \frac{\partial \zeta}{\partial \theta}-v_{n} \beta-\frac{\zeta+f}{r}\left(\frac{\partial r u}{\partial r} \ldots \frac{\partial v}{\partial \theta}\right) \tag{7.8}
\end{equation*}
$$

where § is the relative vorticity and v_{n} the meridional component of wind speed. Then, for a symmetric vortex on a beta plane we have zero $u, \partial \delta / \partial \theta$ and divergence $(\partial r u / \partial r+\partial v / \partial \theta)$, and

$$
\begin{align*}
\frac{\partial \delta}{\partial t} & =-v_{n} \beta_{o} \\
& =+v \beta_{0} \sin \theta \tag{7.9}
\end{align*}
$$

The $\sin \theta$ term provides a cyclonic vorticity clange to the west and anticyclonic to the east. Thus, the vortex initial:y drifts westward and we have the same result as for Eq. (7.7). The q quivalence between Eqs. (7.7) and (7.9) may be seen by first noting thi.t, for our axisymmetric vortex $\underset{\rho}{\boldsymbol{\gamma}} \frac{1}{r} \frac{\partial r v}{\partial r}$. Then, from Eq. (7.9

$$
\frac{\partial}{\partial t} \frac{1}{r} \frac{\partial r y}{\partial r}=v \beta_{o} \sin \theta
$$

or

$$
\frac{\partial}{\partial r}\left(\frac{\partial r \psi}{\partial t}\right)=v r \beta_{o} \sin \theta
$$

and hence

$$
\frac{\partial v}{\partial t}=\beta_{0} \frac{\sin \theta}{R} \int_{0}^{R} r v d r
$$

which is the same as Eq. (7.7).

The advantage of using the vorticity equation is that following the approach suggested by Holland (1983b) we can explicitly calculate the initial speed and direction of motion of the vortex (non-linear effects will be considerec later). To do this we assume that the vortex will move toward the rigion of maximum vorticity change. The direction and speed of motion w. 11 then be given by the solutions to

$$
\begin{gather*}
\frac{\partial}{\partial \theta}\left(\frac{\partial \zeta}{\partial t}\right)^{\prime}=0 \tag{7.10}\\
\mathrm{~V}_{\mathrm{c}}=-\left[\left(\frac{\partial \zeta_{\partial t}}{\partial t}\right) \cdot /\left(\frac{\partial \xi_{s}}{\partial r}\right)\right]_{\theta_{\mathrm{m}}} \tag{7.11}
\end{gather*}
$$

where θ_{m} is the solution to Eq. (7.10), \varliminf_{s} is the vorticity associated with the symmetric vortex, and the prime indicates that any azimuthally symmetric terms, which can alter the size, strength or intensity but not the initial moticn tendency, have been neglected.

We next assime that the tropical cyclone may be approximated by a modified Rankine vortex. (A justification for using the Rankine vortex may be found in appendix 4.) Then:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{s}}=\mathrm{c} / \mathrm{r}^{\mathrm{X}} \quad \mathrm{r}>\mathrm{I}_{\mathrm{m}}, \quad 0<\mathrm{x}<0.8 \tag{7.12}
\end{equation*}
$$

$$
\mathbf{u}_{s}=-\gamma \mathbf{v}_{s} \quad \gamma>0 \text { Northern Hemisphere }
$$

$$
\begin{equation*}
\gamma<0 \text { Southern Hemisphere } \tag{7.13}
\end{equation*}
$$

where u_{s} and v_{s} are the radial and azimuthal wind components of the symmetric cyclore; c, x and γ are constants which define the intensity, radial profile :hape and divergence for the cyclone; and r_{m} is the radius of maximum winds. If we substitute Eqs. (7.12) and (7.13) in the

For a uniform basic current the radial dependence arises solely from the interaction between the vortex and the gradient of errth vorticity. Hence we can also simplify our discussion, without loss of generality, by only considering an isolated axisymmetric vortex (n a beta plane.

For a vortex we use the axisymmetric portion of the AUSOS oceanic hurricane (Appendix 2) shown in Fig. 7.2. The $800-3(0 \mathrm{mb}$ azimuthal wind profile is approximated by

$$
\begin{equation*}
\mathrm{v}=\mathrm{c}_{1} \mathrm{r}^{-\mathrm{x}}-\mathrm{c}_{2} \mathrm{r}^{\mathrm{y}} \tag{7.22}
\end{equation*}
$$

where $x=0.5, c_{1}=-7,218, y=2.0, c_{2}=-4.4 \times 10^{-12}$, and a maximum wind of $40 \mathrm{~ms}^{-1}$ at a radius of 32.6 km is assumed. This profile is almost exactly a modified Rankine vortex inside $200-400 \mathrm{~km}$. Outside this region the $c_{2} r^{y}$ term compensates for the tendency of the modified Rankine vortex to overestimate the actual winds. As we show in Appendix 4, Eq. (7.22) can approximate the actual wind profilts very well.

Outer Region Distortion and Induced Poleward Molion: Figure 7.3 shows the local vorticity changes resulting from applying Eq. (7.9) to the axisymmetric portion of AUSO5 on a beta plane valid at $18.2^{\circ} \mathrm{S}$ (the mean latitude of the composite hurricane). We can sfe that there is no beta effect due north/south of the center, where the winds are zonal. The vorticity changes are largest due east/west wherf the meridional wind component is maximum, and decrease with increasing radius.

The resulting radial deformation of the vortex cbtained by applying Eq. (7.11) at all θ, is shown in Fig. 7.4. There is obviously a tendency for considerable distortion. The vortex elongates on the western side and compresses on the eastern side, and the effect is maximum at about 6° latitude radius. The reasons for this distortion are more clearly seen in the zonal cross-section of lig. 7.5. At point

fig. 7.2. Axisymnetric radial profiles of pressure weightod average azimetial winds over three levels in the AlSos brymenc composite.

A the vorticity change is quite large, but, because of rhe ctrof
vorticity gradiert there only a very small conpensating vorter mothoa occurs. At point \bar{j}, the vorticity change is smaller that at poitt A.
but. hecause of ine weaker vorticity gradient, a nuch larger
compensating vor'ex motion is required.
If we next assume that the inner region does mot distor: and moves exactly with the 2 latitude radius vortex ring (nore on this ateri. the net distoritin of the outer regions will be as shown by for sifolet area in Pig, 7.5. The vortex becones more cyctonic to the west arim bos oyctonic, and mossibly antioyclonic to the cast.

Fig. 7.j. local change of relative vorticity ($10^{-10} \mathrm{~s}^{-2}$) resulting from the beta effect on the oceanic husticane, AUSO5

Fig. 7.4. Deformation (in units of $m s^{-1}$ radial peed) resulting from the beta effect on the oceanic hurricale, AUSOS.

Fig. 7.5. Zonal (ross section through the oceanic hurricane, AUSO5 showinf: the initial vorticity profile (-); the vorticity profil, after 1 day of uncompensated distortion (-) ; and the ou er region vorticity changes on the assumption that no inner :egion distortion occurs (hatched).
the initial vorte: to be made up of a package of Rossby waves, then the beta effect will :ause the longer waves to move westward more quickly than the shorter yaves. Thus, a wave separation will occur. The longer waves will congrejate to the west of the vortex and cause an elongation of the vortex the ce. The shorter waves will congregate to the east, causing a vortex sompression and possibly anticyclogenesis there.

Now we know that the circulation around a given area, A, is equal to the integrated vorticity over that area:

$$
\begin{equation*}
C=\int_{\mathrm{A}} \oint \mathrm{dA} \tag{7.23}
\end{equation*}
$$

Hence the vortex distortions shown in Fig. 7.5 wi.l introduce a cyclonic gyre to the west and anticyclonic gyre to the eas. As has been noted by Anthes (1982, p. 107), these gyres introduce a poleward steering current over the cyclone center. Then, the cycloie, which was initially moving due westward, turns and accelerates poleward.

Thus, the poleward drift of tropical cyclones is cansed by the development of a poleward steering current, not by maintaining the vortex in a continuously unbalanced state, as was suggested by Rossby (1948) .

Of course these distortions do not continue unabated, for they would soon destroy the cyclone. Rather, any distortion immediately activates the advection and divergence terms in E_{f}. (7.8). These then begin to compensate for such distortion. Numerical modelling experience (c.f., Holland, 1983b; DeMaria, 1983; or Fig. 7.7) indicates that the cyclone quickly gains a steady state with the advection and divergence cancelling the beta effect distortion. The moticn then reduces to a quasi-1inear combination of the westward, beta effect, and a poleward advection by the induced steering current. Actu\& tropical cyclones (Fig. 7.6) also tend to move along smooth, consi:tent tracks with no evidence of any domination by uncompensated non-j inear processes.

Non-linear processes may become important during a period of changing environment, such as at recurvature, bus, as we shall show in section 7.2 .2 , recnrvature can certainly be expli.ined from linear processes alone. There are, however, a number o: erratically moving cyclones, such as Edith (\#2) and Cynthia (\#8) in Fig. 7.6, which may be dominated by uncompensated, evolving non-1inear rocesses. We shall not consider these types of motion further in this clapter.

Fig. 7.6. Australian region tropical cyclone tracks for July 1966 to June 1967 (from Lourensz, 1981).

The net distorting effect on the vortex may be seen quite clearly in Fig. 7.7. This figure contains the results of f and β plane integrations of a nondivergent barotropic model from an initially axisymmetric vortex by DeNaria (1983). Also shown is the AUS05 850 mb wind field. We (an see that no distortion occurs during the f plane integration. On the β plane, however, the cyclone elongates to the west and compresses t_{0} the east, with anticyclogenesis farther to the east. Similar modelinif results have been presented by Anthes (1972) and Anthes and Hoke 1975), who also showed that introducing divergence tends to accentulte the beta effect distortion.

The actual vind field for AUS05 is strikjngly similar to the \vDash plane vortex, as indeed are all composites presented throughout this study. This implies that the asymmetries are largely induced by the
f plane

β plane

Fig. 7.7. Vortices resulting from integrations of a nondivergent barotropic model from an initially axisymmetric vortex on f and β planes (upper) (after De Maria, 1983) together with the AJSO5 850 mb wind field (lower).

Fig. 7.8. An illustration in support of the discussion on observed cyclone distortion. Cross-hatching indicates typical regions of deep moist convection.
beta effect distortion. However, recent work by other authors indicates that additional processes act to reinforce this distortion. In a detailed case stucy of the boundary layer characteristics of hurricane Kerry, Holland ank Black (1983) and Black et al. (1983) suggested that the convergence 01. the eastern side was driven equally by surface frictional dissipition, and by vertical recycling of high momentum air aloft and low momintum air downards by deep convection and boundary 1ayer roll vorticus. By comparison, the region to the west of the hurricane was vir ually free of convection. The divergent flow in this western sector wa; partially supported by subsidence of higher momentum air into the bounlary layer, partially by transient high speed surges from the impinging trade wind regime and partially by a boundary layer decoupling from c)ld upwelled oceanic water. Lajoie (personal
communication, 1982) further considers that asymmotric upper level convergence regions (such as the observed confluence between the hurricane outflow and subtropical westerlies in Clapters 4 and 5) also have an important effect. He has suggested that :he subsidence and lower level divergence underneath such uppex convirgence regions may introduce additional vortex distortion.

An illustration of the total process is then given in Fig. 7.8. An interaction between the cyclone and the gradient of earth vorticity produces the characteristic distorted shape. But to the north and east, advection of moist tropical air, together with enhanced boundary layer convergence from the beta effect, generates considerable moist convection (c.f. our structure discussion in Chapters 4 and 5). Inside $300-400 \mathrm{~km}$ radius, this moist convection, together with the development of horizontal roll vortices, then removes momentun from the boundary layer to further enhance the convergent flow (Holland and Black, 1983; Black et al., 1983). On the western side, the drier subtropical air, together with subsidence from conservation of potential vorticity, effectively suppress convective activity. These, and transient surges from the trade wind regime act to reinforce the cbserved low level divergent flow.

The Effective Radius and Core Movement: In describing the outer region distortion and subsequent cyclone motion inder a combined beta effect and non-linear generation of a poleward steering current, we implicitly assumed that the inner $200-300 \mathrm{~km}$ retsined a quasi-symmetric shape with little distortion. This assumption is consistent with observations that the inner few hundred kilometejs of a tropical cyclone
maintains an axisynmetric identity even under quite adverse conditions (c.f. Willoughby, 1979).

The conservative processes which maintain this identity are perhaps most simply viewed in terms of the high core region inertial stability in tropical cyclones (c.f. Appendix 3 and the discussion in section 6.3). The radial profile of inertial stability for AUS05 (which is typical of all hurricanes) is shown in Fig. 7.9, together with some other dynamic parameters for comparison. We can see that there is a sharp increase in stability $200-300 \mathrm{~km}$ from the center. Inside this radial band the isertial stability is typically one to two orders of magnitude larger han the earth vorticity. Thus, horizontal deformations are very strongly resisted. Outside this radial band the inertial stability and earth vorticity have the same magnitude. Thus, considerable disturtion may (and, as we have shown, does) occur.

When we take Eqs. (7.20) and (7.21) and solve for radius using observations and 1 known cyclone motion, we also find that a single radial band dominates for each cyclone. This band typically lies in the range 200-400 km (Holland, 1983b). Hence, the cyclone/environment interactions which lead to motion are maximized at a radial band approximately coincident with the rapid change in gradient of inertial stability. As we show in Fig. 7.10, the motion may then be conceptually viewed as a moving envelope at what we have described as the effective radius of interaction (Holland, 1983 b). At this effective radius the cyclone/environmental interactions dominate in determining the subsequent motion. Inside, the high rotational stiffness prevents any

Fig. 7.9. Radial profiles of relative angular monentum (M_{r}), absolute angular momentum (M_{a}), absolule vorticity (G_{a}), and inertial stability (I) for tle $800-300 \mathrm{mb}$ layer in the oceanic hurricane AUSO5.

Fig. 7.10. A simple schematic of cyclone motion n a beta plane under a basic current (after Kolland, 1983b).
significant distor ion and the center slavishly follows the outer envelope.

Of course, th: contact between the center and envelope is not a rigid one. Rather, the center has a limited degree of freedom to move within the envelopz constraints. Thus, as we have suggested in Holland (1983b), internal perturbations, and subsequent oscillations of the center may provide the observed oscillatory track of many tropical cyclones.

This concept of steering by cyclone/environmental interaction at an envelope defined $t y$ the region of rapid increase in inertial stability predicts that: 1) intensity variations will not affect the motion; and 2) vortex size anc strength changes will affect the motion by changing the effective rad:us. These predictions are consistent with general observations that no track changes accompany cscillations in central pressure or maximuminds in hurricanes. Confirmation has also been provided in recen: modelling experiments by DeMaria (1983). DeMaria made a control, n ndivergent barotropic integration of an initially axisymmetric vortix on a beta plane. He then repeated the experiment with two new vortices. In the first experiment the intensity was changed by doubling the maximum winds and keeping the outer circulation unchanged. In the second experiment the size was changed by a 20% increase of winds outside the maximum wind belt with almost no intensity change.

The resultirg trajectories are shown in Fig. 7.11, together with insets showing tle three initial azimuthal wind profiles and the position differesces from the control experiment. We can see that the substantial intensity change made almost no trajectory difference. But

DISTANCE WEST (km)

Fig. 7.11 Beta plane trajectories for a control experiment (C), an intensity change experiment (I) and a size/strength change experiment (S). Insets show the initial azimuthal wind profiles and the position separation with time (after DeMaria, 1983).
the modest size/strength change caused the largel vortex to move westward and poleward faster than the reference vortex. The increase in westward motion arose from the stronger beta effect on a larger effective radius. And the extra poleward motion arose from a stronger (in absolute terms) outer region distortion, and thus generation of a meridional steering current.

The Geostrophic Adjustment Problem: Througlout our discussion in this and other sections we have completely neglected the transient geostrophic adjustment aspects, and, in using thf vorticity equation approach, implicitly assumed an instantaneous $10(\%$ adjustment of the mass to the wind fields. However, Schubert and lack (1982a,b) and

Schubert (much personal communication, 1981, 1982) have shown that the decreasing Rossby radius of deformation (a ratio of the speed of gravity waves to the system vorticity, which indicates the degree of partitioning of perturbations to inertial and gravity wave modes) in mature hurricanes considerably reduces the efficiency of mass adjustment to wind field chavges. If we neglect the beta effect, presume a barotropic vortex and introduce a uniform basic current, Eqs. (7.16) and (7.17) indicate tiat the vortex mass and circulation move together with no adjustment requirements. But non-1inear effects, such as the westward beta drift, horizontal or vertical basic current or vortex asymmetries, and asymmetric fields of moist convection, involve wind field accelerations and subsequent mass adjustments (or vice versa).

Intuitively, the imperfect mass adjustment, with some energy being lost to gravity uaves, should reduce the non-linear effects. But further coupling: or feedbacks could conceivably cause larger changes. Any complete undtrstanding of cyclone motion must include an assessment of these adjustmint effects. However, such work is beyond the scope of our present study and we simply presume a perfect adjustment throughout.

7.1.4 The Effec:s of Basic Current Asymmetries

Following Holland (1983b), if we introduce basic current asymmetries defined by any combination of constant vorticity and divergence and use Eqs. (7.8) to (7.13) the linear cyclone motion tendency will be given by solutions to

$$
\begin{align*}
& r^{3} \beta_{o}\left[\xi_{1} \cos \theta_{m}+\left(2 \delta_{o}+\delta_{1}\right) \sin \theta_{m}\right] \\
& +r^{2} \beta_{o} v_{s}\left[\cos \theta_{m}-\gamma(2-x) \sin \theta_{m}\right] \\
& +r\left(1-x^{2}\right) v_{s}\left[\left(\xi_{o}-\xi_{1}\right) \cos 2 \theta_{m}+\left(\delta_{1}-\delta_{o}\right) \sin 2 \theta_{m}\right] \\
& -\bar{V}_{B}\left(1-x^{2}\right) v_{s} \sin \left(\theta_{m}-\alpha\right)=0 \tag{7.24}\\
V_{c}= & \bar{V}_{B} \cos \left(\theta_{m}-\alpha\right)+\frac{\beta_{o} r^{2}}{\left(1-x^{2}\right)}\left[\gamma(2-x) \cos \theta_{m}+\sin \theta_{m}\right] \\
& +\frac{\beta_{o} r^{3}}{v_{s}\left(1-x^{2}\right)}\left[\xi_{1} \sin \theta_{m}-\left(2 \delta_{o}+\delta_{1}\right) \cos \theta_{m}\right] \tag{7.25}
\end{align*}
$$

where δ_{0}, ξ_{1} and δ_{0}, δ_{1} are the constant meridional and zonal conponents of vorticity and divergence respectively, and $\overline{\mathrm{V}}_{\mathrm{B}}$ is the symmetric component of the basic current. Complete details on the derivation of these equations, and their solution procedures, are given in Holland (1983b). In essence, Eq. (7.24) is solved iteratively for the direction of cyclone motion, θ_{m}; Eq. (7.25) is then solved directly for the cyclone speed, V_{c}.

These equations enable us to examine some of the effects that basic current asymmetries will have on tropical cyclone motion. A number of these effects are illustrated in Fig. 7.12, which is based on the quantitative results given in Holland (1983b, Fig. 6 and Table 4). The first two compartments illustrate the effect of ircreasing or decreasing the basic current speed while holding the directicn constant. The last six compartments illustrate the effects of introdicing various basic current asymetries without changing the azimutha: average.

BASIC CURRENT				
Configuration	Southwestword		Southeastward	
Increase Basic Culrent Speed	Direction	Speed + +	Direction $\stackrel{+}{+}$	Speed $\stackrel{++}{+}$
Decrease Bosic Current Speed	- ---7	--	$=$	--
Cyclonic Wind \qquad Shear	+ /ft	-	${ }_{+}^{+}$	--
Anticyclo ic Wind Shear \qquad		+	-	-
Downstreım Speed H Divergenc? Divergencs \downarrow		+ +	++	++
Downstreum! Convergerice ${ }^{\text {¹ }}$	$-\quad+--\quad+$	--	$=$	--
Downstre: im Confluence	0 /t	-	++	-
Downstre:1m	$-\quad \varepsilon=-/ 7$	+		+

Fig. 7.12. An illustration of the tropical cyclone motion changes resulting from varying the basic current speed or from introducing asymmetries without changing the mean basic current. The heavy arrow indicates the basic current velocity; the thin arrow indicates the cyclone velocity for a uniform basic current; and the dashed line indicates the new cyclone velocity arising from the imposed asymmetries.

We must emphasize that these are linear, iniiial motion tendencies only and in some cases non-1inear effects may sigificantly alter the longer term motion. Nevertheless, some very intesesting physics may be seen in Fig. 7.12.

As we have already seen in Fig. 7.1, since tle westward beta drift is essentially a constant for a given vortex size and effective radius, increasing the speed of a uniform basic current will not only increase the cyclone speed but reduce the angular deviation. Similarly, decreasing the basic current increases the angulas deviation. And the effects are more pronounced for a southeastward moving cyclone.

Introducing a cyclonic wind shear increases the advection of vortex vorticity on the left side and also slightly incriases the beta effect (since there are weaker poleward basic current wilds on the western side). However, for both southeastward and southyestward mean basic currents the additional vorticity advection dominstes over the beta effect and the cyclone backs and slows down. Introducing an anticyclonic wind shear has the opposite effect ard the cyclone veers; though we note that the concomitant weakening of the beta effect reduces the veering considerably on the southeastward basic current situation.

Introducing downstream speed divergence increases the vorticity advection ahead of the cyclone, increases its specd and causes it to back in direction as the relative beta effect is ieduced. Downstream speed convergence has the opposite effect. These linear results are, however, probably an overestimate since they also contain a concomitant cyclone distortion. Non-linear effects associatec with this distortion may also cause the cyclone to move more rapidly poleward by the processes described in section 7.1.3.

A downstream confluence in the basic current will weaken the beta effect slightly for the southwestward situation and increase it for the southeastward situgtion. It will also concentrate the vorticity advection along thi mean basic current direction. As a result very little change occus s in the motion under a southwestward basic current. but under a souther stward basic current the cyclone backs and slows down. A downstrean diffluence has the opposite effect and produces a notably large veer: ing in the southeastward moving cyclone.

We shall show in section 7.2 that these basic current asymmetry effects can have a substantial impact on the observed movement of tropical cyclones.

7.1.5 The Sensitivity of Cyclone Notion

In Molland (1:83b) we defined the motion of a cyclone to be insensitive when i: reacts in a damped manner to basic current vatiations or shot: lived asymetries. Cyclones which overreact to such variations were said tc be sensitive. We then showed that the imposition of the reta effect and asymmetries in the basic flow conld result ir differcol degrees of sensitivity depending on the direction and speed of the basic current.

This study revealed an important difference in the sersitivity of westward and eastward moving cyclones. Westward moving cyclones wert shown to be quite insensitive to either andom perturbations or bas aurent changes. iut eastward noving cyclones were siown th be atite sensitive and prore to overreacting fo such changes.

For example, the theory predicts that cyciones moving on a

half) of any changes in basic current direction. Their direction of motion is also only marginally affected by changes in basic current speed. By comparison, cyclones moving in an east/scutheastward direction will deviate by up to twice the change in basic curcert direction. They are al so very sensitive to changes in basic current speed. We have already seen an indication of these differences in fig. 7.12. Notice how the direction and speed changes arising from introduced basic current asymetries tend to be larger for the southeastward case.

The physics behind these different responses are quite simple and may be seen in the schematic in Fig. 7.1. A (non-divergent syoletie under a northwestward basic current will deviate to the left from de beta effect. If we change the basic current to a southwestward direction, the beta effect deviation will be to the right. Thus, a 90° backing of the basic current only induces around 45° backing in cycrone direction. The opposite occurs in going from a southeastward to northeastward basic current. In this case a 90° backing can indues a 180° change in cyclone direction.

We have also shown in Molland (1983b) that eastward and slow noving cyctones are much more sensitive to random perturbations than those movitug westward or fanidy. This may be seen in Fig. 7.13, which shows the azimuthal variation of voricity change for a concergent Southern Hemisphere cyclone under different basic currents. A cyctone with a relatively fiat vorticity change maximum will be duite senstive to imposed perturbations and thus may undergo large ehenges in the aifection of motion. As the vorticity ckange maximin becomes stronger

DIRECTION (deg)
 DIRECTION (deg)

Fig. 7.13. Azimt thal variation of vorticity changes at an effective radois of 300 km for a typical, convergent Southern Hemisphere tropjcal cyclone under basic currents of $2.5,5$ and 10 m s (after Liolland, 1983b).
and sharper this sensitivity will decrease. Figure 7.13, then, indicates that westward moving cyclones are less sensitive than southward or eastward moving cyclones, and that the sensitivity decreases in all cases as the basic current increas:s. For low wind speeds, eastward moving cyclones are highly sensitire to minor perturbations in any direction, whereas those movin: westward will only respond to perturbations very close to the directiol of motion. Notice also in Fig. 7.13 that the addition of the beta effect results in a different response to perturbations on either side of the storm motion. Westward moving Southern Hemisphere :yclones will respond more to a given perturbation on the left hand than \sin the right hand side of the direction of storm motion. Southward a deastward moving storms will respond more to perturbations on the risht hand side.

These linear theory results are in good qualititive agreement with our general observations that westward moving cyclones tend to follow smoother and more consistent tracks than those moving eastward. We shall also provide quantitative observational confirmation in section 7.2.

7.1.6 The Effect of Surface Friction

Throughout our discussion in previous sections we have neglected any effects of surface friction. This is because friction is a difficult, if not impossible, mechanism to incorporate into our analytical treatment. An analytic study by Kuo (1569) and numerical, f plane modelling experiments by Jones (1977) indicate that surface friction will cause the cyclone to move a few degrees (~5) to the left
of the basic curreat in the Southern Hemisphere and to the right in the Northern Hemispher ${ }^{\text {. }}$

The frictionally induced deviation is therefore generally smaller than the beta effect and the effect of significant asymmetries in the basic current. Jt is within the noise level of our data and our inability to precisely determine an effective radius. Thus, its neglect should have very little impact on our discussion or conclusions.

7.2 A Comparison of Theory and Observations

7.2.1 On Determiring a Steering Current

"It is setter to use points outside the immediate vicinity of the storm; 200 or more miles alead are usually best": Norton (1947)

We have showi in section 7.1 .5 that the azimuthally averaged winds around a cyclone ray not be sufficient to accurately describe its motion; the horizontal asymmetries may also be important. We must next address the quest: on of what horizontal and vertical domain should be used. That the alswer is not obvious may be seen in the proliferation of domains used iuthe literature. For example: in the horizontal George and Gray (.976) used a domain $1-7^{\circ}$ latitude radius from the center, Brand et .11. (1981) used $200-300 \mathrm{~km}$, and Chan and Gray (1982) used a radial banl at $5-7^{\circ}$ latitude radius; in the vertical Rieh1 and Shafer (1944) use $1700,500 \mathrm{mb}$, Simpson (1946) used the "top of the vortical circulation', Sanders and Burpee (1968) used a surface to 100 mb deep layer mean, and other authors have used almost every possible combination of levels or layers in between (c.f. George and Gray, 1976, for a complete survey).

In the horizontal, a basic current defined by the wind field over a radial band centered on the effective radius, say $200-300 \mathrm{~km}$, would be ideal; since we have shown that this is the region in which the cyclone interacts with the environment to produce an overall motion. But there are normally very few observations in this region. Fortunately, however, as may be seen in Fig. 7.14, the radial variations in the normal and parallel components of the mean basic current are generally quite small. Hence, we shall use the wind field averaged over a $5-7{ }^{0}$ latitude radius band. This is consistent with the work of Chan and Gray (1982), and agrees with the above conclusion by Grady Norton. It also ensures sufficient observations for an accurate determination of the wind asymmetries, which should be relatively indepındent of the choice of mean vortex. When applying the model in Eqs. (1.24) and (7.25) we then simply interpolate to the effective radius.

In the vertical, two parameters need to be cousidered: the vertical structure of the mean vortex and the vertical shear of the basic current. As may be seen in Fig. 7.2 or Appe idix 4 , even though the absolute values differ, the low, middle, or uper level gradients in azimuthal winds, and also in vorticity, are very similar. Thus, the vorticity advection by a vertically uniform basic surrent will cause little, if any, tilting of the cyclone. This diff:rential motion is relatively small and may easily be compensated by rertical transports in deep cumulus clouds (Lee, 1982).

A moderate vertical shear in the basic curren: may similarly be compensated by cumulus transports. Since the radisl gradient of vorticity is nearly uniform with height, the cyclone should then move with the mass-weighted vertical average of the bas.c current. Of
course, if the verical wind shear becomes too large, the convection can no longer "integrate" to remove the motion differential and the cyclone will be de;troyed. Huntley and Diercks (1981) show some interesting exampl si of this tilting effect. They observed that weak tropical cyclones, with little convection near the center, generally tilt in the direction of the vertical wind shear and towards the major convective region. Such a tilt can exceed 100 km between the surface and 700 mb . As the cyclones intensify, and convection becomes well established around the center, the tilt tends to disappear. Unfortunately, we cannot directly incorporate the data rich boundary and outflow layers into this vertically integrated estimate of the basic current. This is because the asymetric inflow/outflow jets, which do not contribute to the motion, can significantly distort the basic current evaluations.

That a distortion of the basic current occurs may be seen in Fig. 7.14, and in Fig. 7.15, which shows the mean parallel and normal wind components averaged over $5-7^{\circ}$ latitude radius for the five motion composites (AUS12 to AUS16) discussed in the next section. We can see that the basic surrent in the $800-300 \mathrm{mb}$ layer is reasonably consistent and linear with height and radius, even when there is considerable vertical shear. Fowever, large, and as George and Gray (1976) show, occasionally erratic, changes can occur in the surface- 850 mb and 250 100 mb layers (at 100 mb we can also see the effect of the stratospheric easterlies). Num rical modeling experience (DeMaria, 1983) is that these boundary anc outflow layer asymetries have an insignificant effect on the cyclone motion. Hence, their inclusion in the basic current evaluation will merely introduce unwanted noise.

Fig. 7.14. Axisymmetric cross-sections showing the environmental wind components normal (VN) and parallel (VEM) to the southward moving tropical cyclone AUS12. Hatchitg indicates regions where the cyclone is moving to the left of and slower than the environmental wind.

Fig. 7.15. Vertic:ll profile of environmental wind components normal (VN) a d parallel (VP) to the direction of motion of the AUS12 : o AUS16 compesite cyclones at a nominal radius of 6° latitule. A positive $V N$ or $V P$ indicates an environmental flow t, the right of or faster than the cyclone velocity.

To illustrate this point, let us assume that the observed wind at some point (after ve have removed the mean vortex) consists of an asymmetric inflow jet component ${\underset{\sim}{V}}^{\text {IN }}$ and a basic current component ${\underset{W}{B}}$. Then, from the vorticity equation, if we neglect tilting and frictional effects on the basic current

$$
\begin{equation*}
\frac{\partial \zeta}{\partial t}=-{\underset{\sim}{V}}^{V_{B}} \cdot \nabla(\xi+f)-(\xi+f) \nabla \cdot{\underset{\sim}{B}} \tag{A}
\end{equation*}
$$

Where ω is the vertical motion and $\underset{\sim}{F}$ is the frict:onal dissipation at the surface. Term A, the advection and divergence of vorticity by the basic current, provides the major component of $\partial \delta, \partial t$ and hence cyclone motion. The inflow jet, however, is flowing into the cyclone in such a way that the anticyclonic vorticity advection is : argely compensated by convergence, tilting and friction. Thus, there is little, if any, vorticity change and Term B is nearly zero. A sirilar explanation may be applied to the outflow jets. When we incorporite inflow/outflow asymmetries into the basic current for use in Eqs (7.24) and (7.25) we neglect these compensating effects, and thus introduce unnecessary noise into our data.

The orientation and strength of the inflow of outflow jets are determined by boundary 1 ayer interactions with the moving cyclone (Shapiro, 1983); the distribution of convection (:ection 7.1.3); and, as we have discussed in Chapter 6, the surrounding elvironmental flow patterns which provide enhanced outflow channels. It is therefore possible that techniques could be derived to remore these asymmetries and allow better use of the data rich boundary anc outflow layers. However, at this stage we shall simply use a mass-weighted $800-300 \mathrm{mb}$ average to define the basic current.

7.2.2 Observations

We sha11 use the AUS12 to AUS16 motion compo:ites and the AUSO1 to AUS03 major recurving hurricane composites to compare the observed cyclone motions under different basic currents wi:h those predicted by the theory. A complete description of these composites is contained in Appendix 2. All cyciones have central pressures iess than 1000 mb and
those in AUS12 to 1 , move with speeds $1 e s s$ than $7.5 \mathrm{~m}^{-1}$. Further: AUS15 and AUS16 contain tropical cyclones which moved continuously towards the west, of which those moving between northwest and southwest comprise AUS16 and those moving between west and south comprise AUS15; AUS12 contains cyclones moving continuously between southwest and southeast; AUSI3 and AUS14 contain cyclones which moved continuously eastward, of which those moving between south and east comprise AUS13 and those moving between southeast and northeast comprise AUS14. The speed and direction distributions of the cyclones in each of these composite categorirs are shown in Fig. 7.16 .

We have alreally described the AUS01 to 03 composites in Chafter 5. They are made up 0 : a single set of major hurricanes which recurved at or near maximum in:ensity. Of these: AUSO1 is the tropical storm stage moving between west and south; AUS02 is the hurricane stage at or just before recurvature; and AUSO3 is the filling stage, after recurvature but still at hurricane intensity.

Since our theory and the numerical modeling work discussed in section 7.1 .3 indicated that intensity or intensity change have no significant effect on motion, no account was taken of intensity in AUS12 to AUS16 (aside foom removing the early tropical depression stages). One concern is thilt we have also not taken account of size in these composites. We hive previously shown that strength or size changes may alter the beta ef iect component of cyclone motion, however, the present lack of information on these parameters in the Australian/southwest Pacific region does not allow us to quantify these effects at this stage.

Fig. 7.16. Direction and speed distributions of the cyclones that comprise the AUS12 to AUS16 composites.

Table 7.1 contains the mean basic current and cyclone parameters for these motion conposites, together with observed and predicted cyclone deviations Erom the basic current. Note that the observed deviations for for the AUS12 to AUS16 composites are calculated from the separately composited V_{p} and V_{N} components. Hence they may differ slightly from an algebraic subtraction of the cyclone and basic current velocities. Since V_{p} and V_{N} were not composited for AUSO1 to AUS03 we estimated the deviations using the mean direction and mean absolute speed of the cyclores. For the predicted deviations in Table 7.1 we used the mean latilude of each cyclone and assumed constant cyclone parameters of $\gamma=-0.03, x=0.5$, effective radius of 250 km and cyclone size and strength liefined by a $6 \mathrm{mis}^{-1}$ cyclonic azimuthal wind at 6^{0} latitude radius. Ve also provide a comparison between the motion predicted by the a: imuthally averaged basic current and beta effect alone (column A) a:ld that predicted by the complete current including asymmetries (columi B). These asymmetries may be seen in Figs. 7.17 and 7.18.

We can, of coirse, produce an exact agreement between observations and theory by selecting the appropriate effective radius for each case. However, as may be seen in Table 7.1 , simply using a standard cyclone introduces very few errors. In fact the excellent agrement indicates that the major mechanisms responsible for moving these steady cyclones are contained in Fqs. (7.24) and (7.25). The dominant mechanism is the advection of cyclone vorticity by the basic current. The largest consistent deviation from this dominant motion is provided by the beta effect (column A) Except for AUS14 and AUS02, AUS03, basic current asymmetries were veak (Figs. 7.17 and 7.18) and their inclusion produced

TABLE 7.1

Vital statistics on the AUS12-16 and AUS01-03 motion composites. The table gives: the $800-300 \mathrm{mb}$ mean direction (α) and speed (V_{B}) of the basic current and its components parallel (V_{p}) anc normal (V_{N}) to the direction of cyclone motion (V_{p}, V_{N} components wese not composited for AUS01-AUS03); the $800-300 \mathrm{mb}$ mean radial wind (u), azimuthal wind (v) and convergence (γ) into the cyclone at 6° latituce radius; the mean direction $\left(\theta_{m}\right)$ and speed $\left(V_{c}\right)$ of the cyclone; and the observed and predicted deviations of the cyclone from the basic current. Column A is the predicted deviations using the mean basic curient only, column B incorporates the basic current asymmetries shown in Figs. 7.17 and 7.18.

Compusite	$\begin{aligned} & \text { Lat } \\ & \left({ }^{\prime \prime}, j\right) \end{aligned}$	Betsic Current				Cvelone					1it. Devi.ution			Spal Heviation		
(a)																
AlIS16 Westward	16.2	117	2.1	2.7	-0.2	-0.2	-6.1	-0.03	108	3.8	-4	. 9	-9	1.3	!.	1.5
AUS. 15 Southwest wird	16.7	137	2.5	2.7	0.0 .9	-0.2	-6.3	-0.03	121	3.5	. 18	-18	-19	1.1	1.0	1.14
AttS 12 Sumblard	19.1	220	1.5	3.0	-1.9	--0.4	-5.4	-0.01	175	3.1	- 32	-29	-33	-0.3	$\cdots{ }^{-1}$	0. 0
Al!s1s southenst.ward	19.7	233	4.9	4.7	-2.0	-0.2	-5.0	-0.04	208	3.2	. 23	- 16	-20	-1.1	-1. 1	1.4
AUS 14 Bastward	17.5	257			-0.3	-0.2	-4.3	-0.0.5	25%	3.9	-3	-6	--3	-1.2	1.7	-1.1
(b)																
Autsol. TS betore recurvatate	1, ${ }^{\text {a }}$	135	2.4	*	*	-0.2	-6.0	-0.03	123	3.,	1.3	-7	-15	1.1	3.0	1.3
Auso? Hutricalle nesar rourvature	17.3	193	3.2	*	*	-0.2	- 5.7	-0.04	167	3.7	26	$\cdots 3$	-12	0.5	0.0	0.2
Aus03 liatricing at ter terurvaturu	29.5	$\therefore 00$	5.5	*	*	-0.1	-5.1	-0.02	202	$\therefore .0$	-2	-26	-1.4	-0. 5	--1). 5	-0.0

only a slight improvement in accuracy. Moderate symmetries wero
present in AUS14 (Fig. 7.17), but they were zonal: y orientated and had
little effect.

By comparison, the recurving AUSO2 and AUSO3 composites provide an excellent example of the importance basic current asymmetries can have.

Almost no change in basic current direction or be effect occurred between $\operatorname{AUSO2}$ and $\mathrm{AUSO3}$. . Rather, recurvature was accomplished entirely by an increase in wind speed and the development $s f$ asymmetries, with

Fig. 7.17. Basic currents and cyclone motion for AUS12 to AUS16. Each inset contains the $800-300 \mathrm{mb}$ mass-weighted mean current at eight octants and a nominal radius of 6° latitude; the azimethally averaged basic current is shown at the cyclone center; and the direction of cyclone motion is indicated by the dashtd arrow. Speed convention is one barb $=1 \mathrm{~m} \mathrm{~s}^{-1}$ and acturl speeds are al so shown.

Fig. 7.18. Basic currents and cyclone motion for AUS01 to AUS03. Each inset contains the $800-300 \mathrm{mb}$ mass-weighted mean current at eight octants and a nominal radius of 6° latitude; the azimuthally averaged basic current is shown at the cyclone center; and the direction of cyclone :otion is indicated by the dashed arrow. Speed convention is on : barb $=1 \mathrm{~m} \mathrm{~s} \mathrm{~s}^{-1}$ and actual speeds are also shown.
the major turning being due to the strong conflue ice and downstream divergence (compare Fig. 7.13 with the AUSO2 and .UUSO3 plan views in Fig. 7.18).

7.3 Summary

In this chapter we have examined the mechani s of tropical cyclone motion from a theoretical and observational viewprint to expand the preliminary work by Holland (1982, 1983b). By ut ilizing linear analytic
solutions to the frectionless, divergent, barotropic vorticity equation on a beta plane, we have shown that the major linear components of cyclone motion are in advection by the (asymmetric) basic current, together with a wes ward deviation arising from an interaction between the cyclone and the earth's vorticity field. This motion is provided by interactions in a ridial band some $200-300 \mathrm{~km}$ from the center, just outside the high inertial stability core region. It appears that the cyclone center slavishly follows this outer envelope, presumably due to a strong inertial coupling, though the precise mechanisms are not known. Possible non-linear and surface frictional effects have also been discussed. However, the close agreement between the linear theory and observations indicates that cyclone motion is largely a linear process. We have furthor shown that the combination of a basic current advection and beta effect makes westward and rapidly moving cyclones quite insensitive 10 environmental perturbations. But eastward and slowly moving cycls nes are quite sensitive and will tend to overreact to imposed perturbations.

A detailed surmary of these results may be found in section 8.4 .

8. SUMMARY

In this paper we have documented the completcd first stage of a collaborative project between Colorado State University and the Australian Bureau of Meteorology to study tropical cyclones in the Australian/ southwest Pacific region. We have ustd a variety of sources to gather all available cyclone and environmental data for the period 1958-1979. Further, we have adopted Professor Gra's compositing routines to a Southern Hemispheric perspective, ard have incorporated new statistical and climatological techniques. Tlese new techniques have been very useful in the stratification and alalyses stages.

Using these data and new routines, we have piovided a comprehensive description of the major climatological and structural features of tropical storms and hurricanes throughout the region. We have further documented some interesting environmental effects, and examined the mechanisms associated with intensity change and mction.

8.1 C1imatology

The tropical cyclone season extends primarily from November to May, though unseasonal cyclones occasionally occur in cther months. Within the season, tropical storms rise to a mid-season naximum followed by a secondary, late season peak. Hurricanes, however, exhibit an early season maximum and those in the northwest Australjan region have a mid. season minimum. We have attributed this mid-seascn minimum (which does not appear in the tropical storm distribution) majnly to the detrimental
effect of the Austrilian continent. As the monsoonal trough extends poleward over northern Australia, most cyclones form very close to the coast and in the Guif of Carpentaria. They thus often suffer a premature demise. lowever, changing environmental flow fields, with many cyclones formi:g under a strong upper level easterly flow, may also have an effect.

The Anstalian continent also contributes to distinctive variations in the spatial dist:ibutions of tropical storms and hurricanes. Tropical cyclones hive been observed throughout the region from 105° E to 150° w but the occur:ence peaks, and relative hurricane/tropical storm proportions, vary considerably. The highest tropical storm frequency occurs in the land-locked Gulf of Carpentaria, with secondary maxima in the Coral Sea and off the northwest Australian coast. By comparison, hurricanes have a v əry high frequency off the northwest Australian coast, occur only ozcasionally in the Gulf of Carpentaria, and are spread more widely throughout the southwest Pacific. The relative proportions of huriicane to tropical storm occurrence are 70/30 off the northwest Australian coast, $20 / 80$ in the Culf of Carpentaria, and $50 / 50$ in the southwest Pacific. These proportions reflect both the number of systems and their lifetime.

We have thus cbserved a unique situation in that botb the highest frequency and propirtion of intense systems occurs off the west coast of a major continent. Indeed, around 40% of all major kurricanes in the entire region occu just off, and make landfall on, the northwest Australian coast. Contributing factors to this behavior include: the warm ocean tempera ures there; the interaction with hot continental air. which helps steer :yclones along and just off the Australian coast
(section 8.2); and the prevailing flow fields, in which the cyclone is embedded in a deep 1 ow level tropical environment but can still interact with the subtropical westerly flow in the upper toposphere (section 8.3).

The overall proportions of major hurricanes, all hurricanes, and tropical storms in the Australian region is $15 / 45^{\prime} 55$ respertively. Insufficient information was available to enable is to distinguish major hurricanes east of $165^{\circ} \mathrm{E}$, but Revelle (1981) founl similar proportions there for the period 1969-1979. The most intense hurxicanes came from the recurving motion category. They typically or ginated near $10^{\circ} \mathrm{S}$ in the Coral Sea region and near $15-18^{\circ} S$ in the nort west Australian region; but many weaker tropical cyclones also fosm at these latitudes. The more intense systems generally intensify at a faster rate and take longer to reach maximum intensity; but this trend is less obvious for the very intense major hurricanes. Overall, then, tropical storms often form and decay over tropical waters, or over Aust:alia; hurricanes tend to intensify while moving polewards to $20-25^{\circ} \mathrm{S}$ th:n decay rapidiy by crossing the coast, by becoming entangled in the strongly sheared subtropical westerlies or by moving over a cold osean surface.

Rapid intensification is certainly underestiated throughout the region. But those cyclones which follow the Dvorak (1975) rapid intensification curve typically come from the recurving motion category. Their rapid intensification cycle also starts either near 990-995, or 970 mb and ceases within 12 hours of maximum intensity. The seasonal and latitudinal distribution of rapid intensification events is similar to that for tropical cyclones generally.

Tropical cyclotes in the southwest Pacific region also move very differently to the lassical pattern in other ocean basins. That is, the largest proport.on tend to move eastward, or erratically; and, indeed, tropical st rms move almost exclusively eastward. This peculiar motion is a respons: to the low latitude, upper tropospheric westerlies and strongly shearel environment in this region. The Gulf of Carpentaria also has a majority of erratic and eastward moving systems. But most tropical criones off the northwest Australian coast move along the classical westward track or recurving parabola. This west coast movement is partially due to the prevailing flow there and partially due to interactions between the cyclone and the hot, dry air mass over northern Australia (section 8.2).

8.2 Structure

We have separately examined the structure of developing and nondeveloping oceanic tropical storms; of intensifying and decaying oceanic hurricanes; of huricanes just off the east and west Australian coasts; and of recurving major hurricanes and supertyphoons.

These cyclones have many similar features to those of the well documented northwest Pacific and North Atlantic systems. They are moist and warm cored, with a maximum temperature anomaly near 300 mb . An upper tropospheric anticyclone overlies a 1 ow and mid-1evel cyclonic circulation which txtends beyond 1500 km radius. The vertical wind shear is concentrated near 300 mb in developing systems and spreads to lower levels as the cyclones decay. The secondary circulation displays the classical bounclary layer inflow and upper tropospheric outflow regimes. Secondar: inflow maxima occur in the lower stratosphere and
near 400 mb , especially in developing cyclones, and there j.s evidence of a weak outflow near 600 mb in some cyclones.

The low level circulation also exhibits a distinctive distortion, with a cyclonic extension to the west and convergonce/anticyclogenesis to the east. We have surmized that this is the risult of an interaction between the cyclone and the earth's vorticity fie: d which is reinforced by the concomitant development of a moist tropical feeder band on the equatorward and eastward side. Holland and Black (1983) and B1ack et. a1. (1983) provide a more quantitative discussion of these features.

There are further, a number of regional pecuriarities which arise from the monsoonal environment, the close proximily of subtropical jet westerlies, and the effects of the Australian con inent.

In the low levels, a distinct outer region inflow maximum is observed at the tropical storm stage. This inflor maximun arises from the development of surges in the monsoonal wester:ies, as has been previously discussed by Love (1982), and/or trade wind easterlies. It leads to the characteristic large size of these systems, and, we believe, provides an optimum environment for deve: opment through the tropical storm stage.

The prevailing low latitude subtropical jet vesterlies in this region, and especially over the southwest Pacific. provide very characteristic upper tropospheric structures. Developing tropical storms and intensifying hurricanes are typically lose to, but not under, this westerly flow and are located between upstream trough and downstream ridge axes. Thus, in our mean composi es we observe a marked confluence zone between the hurricane outflow and impinging westerlies some 600 km to the west and southwest of the centir. We aiso observe a
long, intense outflow jet to the southeast. By comparison, decaying hurricanes, and especially non-developing tropical storms, over the southwest Pacific lie under the upper level westerlies. They are strongly sheared with convective activity displaced to the east and strong subsidence to the west. Indeed, in the soutnwest Pacific they will ofter appear as a low level exposed circulation just west of a large convective $r \in g i o n$.

Cyclones just off the east and west Australian coast are also distinctly affecter by the continent. In east coast hurricanes the low level winds are funcled along the Great Dividing Range. Hence, there is 1 ittle inland ponetration of moist tropical maritime air below 850 mb. Rather, dry continental air, which is advected off the continent and around the equitorward perimeter, tends to cut off the hurricane's tropical moisture supply. During the peak of the cyclone season a semi-permanent uppir level anticyclone is also located over central northern Australia by the monsoonal convection. The concomitant downstream trough over the Coral Sea then maintains an adverse, strongly sheared enviroment for most east coast storms. It also tends to steer them away from the coast.

West coast hirricanes are not so adversely affected. Rather, they are embedded in a deep tropical environment, moisture extends well inland over northestern Australia, and the core is protected from the dry continental ajr. An unusual interaction does occur, however, as the hot continental $a: r$ is advected of f the coast on the cyclone's poleward side. Firstly, tlis produces a distinctly cold-cored structure below 700 mb . Secondy it introduces an equatorward directed temperature gradient, which, :rom thermal wind considerations (and observations),
maintains a deep easterly flow over the cyclone core. Thus the cyclone/continental interaction helps maintain a ong westerly trajectory, just off the northwest coast.

8.3 Intensity Change Mechanisms

We have adopted the suggestion by Gray (persinal commenication, 1982) and Merrill (1982) and separated tropical cyclone "intensification" into three modes: an intensit:' change, which is an increase in maximum winds; a size change, which i: an increase in outer circulation alone; and a strengthening, which is a overall increase in core region winds.

After an extensive literature survey, we concluded tbat the current state of the science is that virtually no specifis work has been done on strengthening or size change mechanisms. (Though some of the work on "intensification" may be more readily applicable to these two modes.) The general concensus on intensity change is that it requires a benevolant environment (conditionally unstable atnosphere, warm ocear, etc; see, eg., Gray, 1968). Intensification then proceeds by both a cooperative interaction between the moist convection and cyclone scales (the CISK process) and a cooperative interaction letween the cyclone and synoptic scales of motion. The CISK process has teen the subject of extensive observational and, especially, numerical modeling research. But work on the cyclone/ environment interaction las been largely limited to documentation of different observations.

We have made a simple examination of the ways in which a cyclone can interact with its environment by using observations and a linear diagnostic version of Eliassen's balanced vortex qquations. This has
lead us to the conclusions that: 1) upper tropospheric interactions can directly affect intensity change; 2) lower tropospheric interactions will directly produce a size change which, by subsequent nonlinear interactions, may indirectly affect intensity change, or strengthening. The inertial stability dominates in determining these different responses. In the low levels, the cyclone is very stable out to large radii, thus horizortal motion is constrained and large accelerations may result from an imposed forcing. By comparison, the outflow layer has a quite low inertial stability, thus long radial trajectories are possible and an outer region, forcing may directly affect the core region. We have also ;how that inner core convective heating may directly affect intensity ciange. But the constrained secondary circulation is unlike that typically observed for intensifying hurricanes. Numerical models, which rely on the convective processes alone, tend to generate large inertially unstable regions followed by a sustained outflow. Such large regions of inertial instability have not been observe in nature. We thus believe that intensification from the tropical storm to finimal hurricane may be, and in many cases probably is, accomplished by CISK type processes alone. However, the initial develcpment, intensification psst the minimal hurricane stage, and rapid intensification, lormally require some form of beneficial dynamical interaction betwetn the cyclone and its environment.

We have ther fore proposed that tropical cyclone development and subsequent intens fication in the Australian region typically proceeds as follows. Angu ar momentum transports by an initial surge in the monsoonal westerlies and/or trade wind easterlies generates a large, inertially stable monsoonal depression or shear zone. Provided this
depression is in the benevolent environment described by Gray (1968), it can then loosely organize the fields of moist convection. This convection may in turn help intensify the depression by core heating and surface pressure falls (initially very weak), by an inward contraction of the maximum wind region, and by a vertical recycling of heat and momentum and enhanced oceanic evaporation. The mcre intense depression is then able to better organize the convective fields, and so on. Though this cooperative interaction is initially very inefficient, the efficiency increases exponentially as the system strengthens or intensifies. Thus, a strong monsoonal depression which has developed over northern Australia may rapidly intensify on noving over the ocean. Of course, this development and intensification may be prematurely aborted by adverse environmental factors. The cyclone may move over 1and; or it may be sheared of by impinging strong upper tropospheric westerly winds (as we have documented in the soutlwest Pacific), or by easterly winds (as occasionally happens in the nof thern Australian region).

An equatorward outflow channel will normally develop during the early formation stage. This will be located just under the tropoparse and will be maintained by vertical cyclonic monen un transports in the monsoonal "feeder band".

Further intensification past the minimal hur \cdot icane stage in the Australian/southwest Pacific region then usually wccurs as a result of a cooperative interaction between the cyclone and eaviroment in the outflow layer. We believe that this interaction itarts duting the tropical storm stage and proceeds as follows. A :hance passage of a subtropical jet streak $600-800 \mathrm{~km}$ poleward of the cyclone and/or
development of a westerly trough $800-1000 \mathrm{~km}$ upstream of the cyclone reduces the already low inertial stability in the outflow regime. It also generates a civergent area poleward and eastward of the cyclone center. The initi: $11 y$ constrained anticyclonic flow over the cyclone then turns and accelerates southeastward to develop a long intense outflow channel. Iore region inertial instability, created by active convection in the :ascent eye region, with possible transient inertial instabilities asso iated with the passage of the jet streak, may aid this initial coupl ng.

Once establis.ed, this enhanced outflow may invigorate the core region convection, provide an inward contraction of the maximum wind region, and thus ittensification. The outflow is also partially compensated by an $n f 1$ ow below the jet and in the lower stratosphere. Differential angulir momentum transports by the outflow and lower inflow generate a strong ertical wind shear between 400 and 150 mb and enhance the warm core development near 300 mb . The stratospheric inflow and concomitant eye region subsidence may further enhance the warm core development and provide further intensification (especially past the hurricane stage where wind to mass field adjustment becomes quite efficient).

The long outflow channel also allows compensating subsidence to occur over a large area. This reduces the debilitating subsidence heating and drying just outside the eyewall region that would result from the constrailed circulation response to an increase in eyewall convection alone.

Of course, tle cooperation is almost certainly mutual. The cyclone outflow ahead of he westerly trough provides a strong warm advection.

The temperature gradients may be further enhanced iy the frontogenetic effect of the confluent outflow and westerly wind egimes. Thus, baroclinic or even barotropic processes may intens.fy the trough/subtropical jet couplet. It is even possib.e that the cyclone could initiate a perturbation in an initially zonal subtropical westerly flow.

This coupling is usually of short duration, siy one to two days. It ceases when the trough moves past and cuts off the outflow channel to leave a slowly decaying cyclone (as happened with furricane Kerry); or more typically when the westerlies move over the cyclone center and strong shearing followed by rapid decay occurs.

8.4 Motion Mechanisms

In Chapter 7 and Holland (1983b) we used a conbined theoretical ard observational study to examine the major mechanisns of trorical cyclone motion.

In essence, we have shown that cyclones move by an interaction between the cyclone, the basic current, and the earth's vorticity field; and, to a lesser extent, by an interaction betwee, the cyclone and the earth's surface. The precise details of these in eractions are not well. understood, but the dominant mechanisms appear to be: 1) an advection of the tropical cyclone vorticjty field by the un: form component of the basic current: 2) a differential advection and divergence of earth vorticity by the cyclone circulation, which cause a west/southwestward deviation from the basic current in the Southern Xemisphere; and 3) differential effects of basic current asymmetries which may on occasion cause large motion changes.

An initially : ymmetric vortex on a f plane with no friction will remain symmetric ald simply be advected in a balanced state with the basic current.

The cyclonic : otation across a gradient in earth vorticity, or β, will distort the c! clone by causing an increase in cyclonic vorticity to the west and anticy clonic vorticity to the east. We believe that this beta effect is als enhanced by the convective activity resulting from a concomitant advect on of moisture into the convergent eastern and equatorward quadrant. However, the distortion is not unbounded; nor is it uniform. Rathe our observations from nature and numerical model experiments indica that tropical cyclones generally maintain a consistent, or slorly varying shape, suffer very little core region distortion, and more along relatively straight tracks. We consider that any tendency for core region distortion is inhibited by the strong inertial stability there. Outside 300 km , or so, the much lower inertial stability allows more distortion to occur; but this distortion normally maintains a quasi-steady state with the compensating effects of relative vorticity advection and divergence.

The beta effert then provides two components of motion: westward and poleward. The differential advection of earth vorticity, which distorts the cyclone, also moves it westward. The zonally orientated cyclone/anticyclons couplet associated with the distortion further introduce a poleward steering current over the cyclone core. However, in an observational study this extra poleward component is merely part of the derived basic current. Thus, the only observed beta effect is a westward deviatior.

Of course, even though we have concentrated on the beta effect in this study, a gradient of relative vorticity will lave a similar effect; though additional asymmetric advective processes mast then be taken into account.

We have also described the linear motion response to a number of current asymmetries and shown that they may be very important. We have also shown that basic current changes and random perturbations may affect some cyclones more than others. Specifically: our linear results indicate that westward and rapidy moving syclones are quite insensitive to such effects; eastward and slowly moving cyclones are quite sensitive and large changes may result from relative minor perturbations. We consider that this provides a partial explanation for the observed steady motion of westward moving cyc1ones, and for the lijgh proportion of erratically moving cyclones over the Gulf of Carpentaria and southwest Pacific Ocean.

We have suggested that the cyclone motion resalting fron these (and other) mechanisms is determined by the interactions in a radial band between the inextialiy stable inner region and distorted outer region. We call this band the effective radius of interaction, and have provided numerical modelling evicence that it is a function of size and strengtly but not of intensity. Further research is required to see whether this findiag is consistent with observations.

As a corollary to this effective radius concept we have also speculated that the of ien observed trochoidal motion of hurricanes is due to random perturbations, and subsequent oscillations of the center within the constraint of the slowly moving outer \in nvelope.

In relating these theoretical results to observational studies we have given careful consideration to the determination of a steering current. We first determined the environmental winds by extracting the axisymmetric cyclone from all observations. Since in an axisymmetric sense there ther appears to be little horizontal variation of these winds out to 6° latitude radius, we followed the recommendation of Chan and Gray (1982) and used the average of all observations in a $5-7^{\circ}$ latitude band. This provides more observations and a better definition than regions closer to the cyclone center. In the vertical, we have shown that the azinuthal wind and vorticity gradients are surprisingly consistent. Thus, under a vertically uniform basic current only minor differential motion will occur. We have assumed that this differential, together with that arising from a moderate vertical basic current shear, can be compensated by cumulus transports. Then the cyclone can be expected to move with the mass-weighted deep layer mean basic current. Unfortunately, however, we have also shown that additional asynmetries are present in the boundary layer inflow and upper tropospheric outflow layer regimes. These asymmetries are not a part of the advecting current and hence merely introduce unwanted noise.

Hence, we remove the axisymmetric cyclone from the $800-300 \mathrm{mb}$ mas s-weighted mear of the average winds over $5-7^{\circ}$ latitude radius to define a basic current. Linear interpolation is then used to determine the current at the effective radius of interaction.

After calculating this steering current in a number of carefully stratified composites we have shown that there is good agreement between our simple theory and the observed motion of tropical cyclones. We have also shown that the current asymmetries cannot always be neglected. In
one example, recurvature was accomplished by a comb ned increase in basic current syeed and development of asymmetries rithout any change in its direction. Much more research is needed before the complete effects of different basic current asymmetries (vertical as well as horizontal) will be fully understood.

8.5 Further Research and Forecast Implications

We have described a number of interesting featares of tropical cyclones in the Australian/southwest Pacific region, and of the ways in which these cyclones intensify and move. But this vork is by no mears complete: the energetics and diurnal modulation of these cyclones have yet to be docunented; and more research is required on the specific mechanisms responsible for cyclone formation, irtensity, size and strength change, and movement.

We also hope that the information presented ir this paper will lead to an improvement in the overall understanding that forecasters have on tropical cyclones in the Australian/southwest Pacific region; and especially of the ways in which these systems intersify and nove. But history has shown that there is a long, and often nachievable, step between improved understanding and better forecasts. Further, ir some cases we have merely filled in details on events tlat were already known to occur as a logical consequence. For example, forcasters have known for years that cyoione formation often follows a t:ade wind surge; we have only frovided some physics of why this should be so.

Nevertheless. we believe that these results, :nd future research based on them, hold some promise for forecast improment. We also
believe that this forecast improvement will occur mainly in the ' difficult' situations of recurvature, rapic intensification, etc.

Structure and Enegetics. We have provided a conprehensive description of the gross structural features of tropical cyclones throughout the Ausiralian/southwest Pacific region. The logical rext steps are to compale these cyclones to those in other ocean basins, and to examine their ex.ergetics and diurnal modulation. A comparison with other regions could provide valuable information on the relative effects of different envircments. The energetics examination was originally a component of this irst stage; but it was deleted to keep the report to a reasonable lengtl. Further work and publications on this energetics component are planied. Most of our upper wind observations are taker four times daily aid extend across a major continental area as well as an unirterrupted o:ean. Hence, our basic data set, and compositing routines, are well suited to a detailed examination of the diurnal modulation of ocealic and continental weather systems of different intensities and lerels of organization. We envisage that this will become a major are of research on this project.

Intensity Change. In Chapters 4, 5, and 6 we have documented a consistent upper tropospheric coupling between the cyclone outflow and subtropical jet during intensification. This interaction is especially apparent during the development of intense systems.

Though the linkage is an observed fact, our present understandixg of the underlying nechanisms is somewhat tentative. Further research towards delineating these mechanisms, and their relative importance, is needed and recommended. Such research should incorporate both observational and numerical modelling approaches. Observational
research, incorporating wherever possible all cyclone regjons around the globe, should attempt to discern the modes of interaction, obtain statistics of their occurrence, describe their lifecycle and energetics. A combine numerical modeling and observational study could then examine the physical linkages in each mode.

It is also possible that a quantitative intensity forecasting scheme comld be developed for use with upper tropospheric cloud winds. Unpublished real time calculations by the author daring the 1981 Atlantic hurxicane season indicated that outward, jet-like surges in the outfiow layer orten preceded intensification bursts by around 12 hours. Similarly, a sudden reduction in these jets often preceded decay. Since there are usually sufficient upper cloud wind observations to detect such variations, further applications orientated research could lead to the development of a good, objective intensity change forecast technique.

These upper tropospheric interactions might also provide the basis for a hurricane modification program. Should further work confirm that such interactions are indeed necessary for the development of intense hurricanes, an examination of possible ways in which the interactions could be aborted would be desirable. Such methods might involve the carbon black approach suggested by Gray (1973), of they might require hitherto unthought of procedures. This is a longer term project, but one with intriguing and potentially beneficial possibilities.

Size and Strength Change. It is likely that a better understanding of the concepts of size and strength will lead to an improved quality of cyclone warnings. We also believe that size and trength changes are important components of the formation and early dovelopment stages.

This and previ ous studies suggest that size change is a result of lower tropospheric anvironmental interactions. We have also intimated that strength change results from an internal rearrangement of angular momentum following size change. But the actual physical processes have barely been touched upon. A similar modus operani to that suggested for intensity change is therefore recommended here.

Motion. Forecasting motion has been described as the most important meteorological decision facing any tropical cyclone forecaster (Simpson, 1971). Frrors in forecasting intensity, strength or size are not nearly so critical as placing the cyclone in the wrong place. As such this topic has also been subject to intense applied research culminating in a number of forecast techniques (WMO, 1979; Neumann and Pelissier, 1981; Keenan, 1981).

Can the results presented in Chapter 7 then be of any use in forecasting cyclone motion? Possibly. We are attempting to extend this basic approach to :earn more about the mechanisms of cyclone motion. We are also experimen ing with the use of Eqs. (7.24 and 7.25) in a forecast mode. Horever, potentially more profitable lines of operational resear:h would be to use our current findings in the development of sta:istical techniques; as a differentiator of "difficult" forecist situations; or as an input to the information required by advanc:d numerical models.

Some very sophisticated statistical forecasting techniques have been developed for tropical cyclone forecasting. Yet they all have less skill than simple ersistence and climatological techniques equatorward of 25° 1atitude ($N: u m a n n$ and Pelissier, 1981; Keenan, 1981). One contributing facto: to this 1 ack of skill might lie in our finding that

REFERENCES

Alaka, M. A., 1962: On the occurrence of dynamic instability in incipient and developing hurricanes. Mon. Wea. Rev., 90, 49-58.

Anderson, R. K., J. P. Ashman, F. Bittner, G. R. Farr, E. W. Ferguson, V J. Oliver and A. H. Smith, 1974: Applicatiors of meteorological satellite data in analyses and forecasting. ESSA Tech. Rept., NESC 51, 338 pp .

Anthes, R. A., 1972: The development of asymmetries in a threedimensional numerical model of the tropical cyclone. Mon. Wea. Rev., 100, 461-476.

Anthes, R. A., 1982 Tropical cyclones: their evclution, structure and effects. Meteor. Monographs, Vol. 19, No. 41, AMS, Boston, MA, ISBH 0-933876-54-8, 208 pp .

Anthes, R. A. and J. E. Hoke, 1975: The effect of horizontal divergence and latitudinal variation of the Coriolis parameter on the drift of a model hurricane. Mon. Wea. Rev., 103, 757-763.

Atkinson, G. D., 1971: Forecasters' guide to tropioal meteorology. Tech. Rept. 240, Air Weather Service (MAC), Vnited States Air Force, 360 pp .

Barclay, P. A., 1972: Radar observations of tropical cyclones Althea and Ada: estimation of maximum wind speed fren radar echo motion. Proc. of 15 th Radar Met. Conf., Champagne, IL, USA, October 1972, Amer. Meteor. Soc., Boston, MA, USA, 107-110.

Bath, A. T., 1957: The Mackay cyclone of 21 Januaxy 1918. Aust. Met. Mag. . No. 19, 46-59.

Be11, G. J., 1981: Operational forecasting of trofical cyclones: Past, present, future. Aust. Met. Mag., 27, 249-258.

Bjerines, J., 1966: A possible response of the atrospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18. 820-829.

Black, \mathbb{P}. G. and R. A. Anthes, 1971: On the asymmetric structure of the tropical cyclone outflow layer. J. Atmos. Sci., 28, 1348-1366

Rlack, P. G., G. J. Holland and M. D. Powel1, 1983: Boundary layer dynamics in hurticane Kerry, II: Meat and mcisture badgets. Submitted to ${ }^{\text {J }}$. Atmos. Scj.

Hond, H. G. and A. T. Rainbird, 1956: Surface structure of tropical cyclones, with particular reference to those of 1955-1956 in the Australian region. Proc. of the Trop. Cyclone Symp., Brisbane, Bureau of Meterrology, P.0. Box 1289K, Melbourne, Vic 3001, Australia, 159-170.

Brand, S., C. A. Buenafe and H. D. Hamilton, 1981: Comparison of tropical cyclone movement and environmental steering. Mon. Wea. Rev., 109, 908-909.

Broadbridge, L., 198: : The 1978 - 1979 Australian region tropical cyclone season. Aust. Met. Mag., 27, 131-146.

Brunt, A. T., 1958a: The Crohamhurst storm of 1893. Proc. of Conf. on Estimation of Extreme Precipitation, Melbourne, 22-24 April, 1958, Bureau of Mete rology, P.0. Box 1289 K , Melbourne, Vic 3001, Australia, 191-228.

Brunt, A. T., 1958b: Notes on the Mackay storm of February 1958. Ibid., 229-244.

Brunt, A. T., 1966: Rainfall associated with tropical cyclones in the northeast Australian region. Aust. Met. Mag., 14, 85-109.

Brunt, A. T., 1968: Space-time relations of cyclonic rainfall in the northeast Australian region. Civ. Eng. Trans. Instn. Eng. Aust., April 1968, 4C-45.

Brunt. A. T., 1969: Low latitude cyclones. Aust. Met. Mag., 17, 67-90.
Brunt, A. T. and J. Hogan, 1956: The occurrence of tropical cyclones in the Australian region. Proc, of the Trop. Cycl. Symp., Brisbane, December 1956. Bureau of Meteorology, P.O. Box 1289K, Melbourne, Vic 3001, Aus:ralia, 5-18.

Bureau of Meteorclosy, 1956: Proc. of Tropical Cyclone Symposium, Brisbane, 195;. Bureau of Meteorology, P.0. Box 1289K, Melbourne, Vic 3001, Aus:ralia, 5-18.

Bureau of Meteorolozy, 1978: The Australian Tropical Cycione Forecasting Manua1. Bureau of Meteorology, P.o. Box 1289 K , Melbourne, Viz 3001, Australia, 274 pp.

Cha11a, M. and R. Pfeffer, 1980: Effects of eddy fluxes of angular momentum or model hurricane development. J. Atmos. Sci., 37, 1603-1618.

Chan, J. C. L., 1982: On the physical mechanisms responsible for tropical cyclone motion. Dept. of Atmos. Sci. Paper No. 358, Colo. State Univ., Ft. Collins, CO, 200 pp .

Chan, J. C. L. and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 1354-1374.

Chen, Lian-shou, 1983: Global view of the upper level flow patterns associated with tropical cyclone intensity ciange during FGGE. Dept. of Atmos. Sci. Paper (in preparation), Colo. State Univ., Ft. Collins, CO, 80523 .

Chong, K. L., J. T. Steiner and J. W. Hutchings, 1:80: Regression prediction of tropical cyclone motion in the southwest Pacific. Aust. Met. Mag., 28, 7-18.

Coleman, F., 1972: Frequencies, tracks and intensties of tropical cyclones in the Australian region, 1909-1969 Met. Summary, Bureau of Meteorology, P.0. Box 1289K, Melbourne, Vic 3001, Australia, 42 pp . plus 44 figs.

Crutcher, H. L. and L. R. Hoxit, 1974: Southwest lacific and Australian area tropical cyclone strike probabilities. USA Naval Weather Service Command, US Dept. of Commerce, 208 F .

Crutcher, H. L. and R. G. Quale, 1974: Mariners' vorld wide climate guide to tropical storms at sea. NAVAIR 50-[C-61, US Naval Weather Service, Environmental Detachment, Ashevil1e, NC, 114 pp plus 312 charts.

DeMaria, M., 1983: Experiments with a spectral trupical cyclone model Dept. of Atmos. Sci. Report, Colo. State Unirr., Ft. Collins, CO. (In preparation).

Depperman, C. E., 1947: Notes on the origin and s:ructure of Philippine typhoons. Bu11. Amer. Meteor. Soc., 28 , 399-404.

Dexter, P. E., 1981: Optimum instrument spacing for cyclone interception in the Australian tropics. Aus: . Met. Mag., 29, 3138.

Dexter, P. E. and K. B. Watson, 1975: Extreme wave heights in the Australian tropics. Tech. Rept. 17, Bureau of Meteorology, P. O. Box 1289 K Melbourne, Vic 3001, Australia, 12 pp . plus appendices

Director of Meteorology, 1970: Report by Director of Meteorology on Cyclone Ada. Bureau of Meteorology, P.O. Bo: 1289K, Melbourne, Vic 3001, Australia, 38 pp .

Director of Meteorology, 1972: Report by Director of Meteorology on Cyclone Althea. Australian Government Publi;hing Service, Canberta, Australia, 61 pp .

Director of Meteorology, 1977: Report on Cyclone '?racy December 1974. Australian Government Publishing Service, Ca:lberra, Australia, \&'? pp.

Director of Meteorology, 1979: Cyclone Joan, Decenber 1975. Bureat of Meteorology, P.O. Box 1289K, Melbourne, Vic 3001, Australia, 40 pp .

Dobson, T., 1853: Anstralasian cyclonology. William Pratt and Son, Hobart, 103 pp

Dobson, A. J. and J. Stewart, 1974: Frequencies of tropical cyclones in the northeaste n Australian area. Aust. Met. Mag., 22, 27-36.

Dropco, K. M., 1981: Tropical cyc1one intensity change - A quantitative forecasting scieme. Dept. of Atmos. Sci. Paper No. 333, Colo. State Univ., F:. Collins, C0, 89 pp .

Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rey., 103, 420-430.

Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Nory., 5 , 19-60.

Erickson, C. D., 1967: Some aspects of the development of Eurricane Dorothy. Mon. Wea. Rev., $95,121-130$.

Falls, R., 1970: On the formation, structure and decay of an intense monsoon depression. Synoptic Analysis and Forecasting in the Tropics of Asia and the Southwest Pacific. Proc. of the Regional Training Seminar, Singapore, December 1970, WMO No. 321, 403-420.

Fitz Roy, Admiral R., 1863: The weather book: A manual of practical meteorology. Longman, Green, Roberts and Green, London, 464 pp .

Frank, W. M., 1976: The structure and energetics of the tropical cyclone. Dept. of Atmos. Sci. Paper No. 258, Colo. State Univ., Ft. Collins, $80,180 \mathrm{pp}$.

Frank, W. M., 1977a The structure and energetics of the tropical cyclone, I: Storm structure. Mon. Wea. Rev., 105, 1119-1135.

Frank, W. M., 1977b The structure and energetics of the tropical cyclone, II: Dynamics and energetics. Mon. Wea. Rey., 105, 1136-1150.

Gabites, J. F., 195i: A survey of tropical cyclones in the South Pacific. Pro: of the Trop. Cyc1. Symposium, Brisbane, December 1956, Bureau)f Meteorology, P.0. Box 1289K, MeIbourne, Vic 3001, Australia, 19-24.

Gentilii, J., 1971: Dynamics of the Australian troposphere. Climates of Australia and New Zealand. Ed. J. Gentilli, Elsevier: Publishing Co., Amsterdam-London-New York, 53-117.

George, J. E. and W. M. Gray, 1976: Tropical cyclone motion and surrounding parameter relationships. J. Appl. Meteor., 15, 12521264.

Gibbs, W. J., 1955: Theory of formation, deepenitg and filling of tropical cyclones. Working Paper 5, in Repl. of Tropical Cyclone Conf., Brisbane, 1955, Bureau of Meteorology, P.0. Box 1289K, Melbourne, Vic 3001, Australia, 94-106

Gibbs, W. J., 1956: Two cases of cyclogenesis in tropical latitudes. Proc. of Tropical Cycione Symposium, Brisbare, December 1956, Bureau of Meteorology, P.O. Box 1289K, Me1bcurne, Vic 3001, Australia, 275-288.

Giovanne11i, J., 1952: Les cyclones tropicaux en Nouvelle-Caledonie au cours d'un siecle (1852-1951). Nouvelle-Caledonie et ependences Service Meteorologique, 25 pp .

Giovannelli, J. and J. Robert, 1964: Quelques asfects es depressions et cyclones tropicaux dans le pacifique sud-oest. Monographie de la Meteorologie Nationale, 33, Paris, 24 pp .

Gomes, L. and B. J. Vickery, 1976: On the prediction of tropical cyclone gust speeds along the northern Australian coast. University of Sydney School of Civil Enginetring Research Rept. R278, 44 pp . plus appendices.

Gorshkov, S. G. (Ed.), 1976: World Ocean Atlas: Vol. 1, Pacific_Ocean. Library of Congress Cat. Card No. 76-375, $3 \leq 0 \mathrm{pp}$.

Gourlay, R. J., 1970: Microseismic storm of 17 January 1.970 recorded at Cairns. Met. Note, 37, Bureau of Meteorology, P.0. Box 1289k, Melbourne, Vic 3001, Australia, 9 pp.

Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669-700.

Gray, W. M., 1973: Feasibility of beneficial huriicane modification by carbon dust seeding. Dept. of Atmos. Sci. Iaper No. 196, Colo. State Univ, Ft. Collins, C0, 130 pp .

Gray, W. M. 1975: Tropical cyclone genesis. Deft. of Atmos. Sci. Paper No. 234, Colo. State Univ., Ft. Collirs, CO, 121 pp .

Gray, W. M., 1979: Hurricanes: their formation, structure and likely role in the tropical circulation. Meteorolcgy Over the Tropical Oceans. Royal Meteorological Society, James Glaisher House, Grenville Place, Brackne11, Berkshire, RG12 1BX, 155-218.

Gray, W. M., 1982: Tropical cyclone genesis and intensification. Intense Atmospheric Vortices, (Ed. L. Bengts son and J. Lighthil1), Springer Verlag (ISPN 3-540-11657-5), 3-20.

Gray, W. M., E. Buzz:11, G. Burton and Other Project Personne11, 1982: Tropical cyclo:e and related meteorological data sets available at CSU and their itilization. Dept. of Atmos. Sci. Paper, Colo. State Univ., F: Collins, C0, 186 pp .

Gray, W. M. and D. S Shea, 1973: The hurricanes inner core region, II: Thermal stability and dynamic characteristics. J. Atmos. Sci., 30, 1565-1576.

Hawkins, H. F. and D. T. Rubsam, 1968: Murricane Hilda, 1964: IT, The Structure and sudgets of the hurricane on October 1, 1964. Mon. Kea. Rey., 99, 427-434.

Hebert, P. J. and K. O. Poteat, 1975: A satel1ite c1assification technique for subtropical cyclones. NOAA Tech. Memo. NWS SR-83, US National Weather Service, Washington, DC, 25 pp .

Holland, G. J., 1978: Observations of a vortex embedded in a monsocnal flow. Aust. Met. Mag., 26, 19-24.

Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 1212-1218.

Holland, G. J., 1981: On the quality of the Australian tropical cyclone data base. Aust. Met. Mag., 29, 169-181.

Holland, G. J., 1982: Tropical cyclone motion: Environmental interaction plus a beta effect. Dept. of Atmos. Sci. Paper No. 348, Colo. State Univ., Ft. Collins, C0, 47 pp.

Holland, G. J., 1983a: Angular momentum transports in tropical cyclones. Quert. J. Roy. Meteor. Soc., 109, 187-209.

Holland, G. J., 1983b: Tropical cyclone motion: Environmental interaction plus a beta affect. J. Atmos. Sci., (February issue).

Molland, G. J. and I. G. Black, 1983: Boundary layer dynamics in Hurricane Keriy, I: Mesoscale structure. Submitted to J. Atmos. Sci.

Holland, G. J. and 3'. D. Keenan, 1980: Diurnal variations of convection over the Mariyime Continent. Mon. Wea. Rey.. 108, 223-225.

Holland, G. J. and C. S. Pan, 1981: On the broadscale features of tropical cyclone movement in the Australian region. Tech. Rept. 38, Bureau of Meteorology, P.0. Box 1289K, Melbourne, Vic 3001, Australia, 25 pp .

Holland, G. J., T. J. Keenan and G. D. Crane, 1983: The black hole in Hurricane Ker:y. Submitted to Mon. Wea. Rev.

Holliday, C. R. and A. H. Thompson, 1979: Climatological characteristics of rapidly intensifying typhcons. Mon. Wea. Rev., 107, 1022-1034.
H. M. Hydrographic Department, 1938: Admiralty Wezther Manua1 1938. HMSO, London, 496 pp .

Huntley, J. E. and J. W. Diercks, 1981: The occurience of vertical tilt in tropical cyclones. Mon. Wea. Rev., 109, 1689-1700.

Hutchings, J. W., 1953: Tropical cyclones in the southwest Pacific. N. Z. Gecgr., 9, 37 pp . (Also published as NZ let. Service Met. Office Note 37).

James Cook University of North Queensland, 1972: (yclone Althea - Part II_- Storm Surges and Coastal Effects. James Cook University of North Queensland, Townsville, Q1d, Australia, 215 pp .

Jones, R. W., 1977: Vortex motion in a tropical cyclone model. J. Atmos. Sci., 34, 1518-1527.

Keenan, T. D., 1981: An error analysis of objective tropical cyclone forecasting schemes used in Australia. Aust. Met. Mag., 29, 133141.

Kerr, T. S., 1976: Tropical storms and hurricanes in the southwest Pacific: November 1939 to April 1969. Misc. Pub. 148, New Zealand Meteorological Service, Wellington, IZ .

Kitade, T., 1980: Numerical experiments of tropical cyclones on a plane with variable Coriolis parameter. J. Meteor. Soc. Japan, 58, 471-488.

K1einschmidt, E., 1951: Grundlagen einere theorie der tropischen zyklanen. Arch. Met. Geophys. Bioklim., A, 4, 53-72.

Kuo, F. L., 1969: Motions of vortices and circulating cylinder in shear flow with friction. J. Atmos. Sci., 26, 390-398.

Kurihara, Y., 1975: Budget analysis of a tropical cyclone simulated in an axisymmetric numerical model. J. Atmos. £ci., 32, 25-29.

Lajoie, F. A., 1976a: On the direction of movement of tropical cyclones. Aust. Met. Mag., 24, 95-104.

Lajoie, F. A., 1976b: On the speed of movement of tropical cyclones. Aust. Met. Mag., 24, 105-110.

Lajoie, F. A., 1977: On the direction of motion of tropical cyclone Tracy. Tech. Rept. 24, Bureau of Meteorology, P.O. Box 1289K, MeIbourne, Vic 3001, Australia, 15 pp .

Lajoie, F. A., 1981: Cloudtop equivalent black-body temperatures and tropical cyclone forecasting in the Australian region. Aust. Met. Mag., 29, 73-88.

Lajoie, F. A. and I. J. Butterworth, 1982: Location of tropical cylones fron digital IF satellite data. Tech. Rept., Bureau of Meteorclogy, P.0. Eox 1289K, Melbourne, Vic 3001, Australia, (ir press).

Lajoie, F. A. and N. Nicholls, 1974: A re1ationship between the direction of mevement of tropical cyclones and the structure of theix cloud sy:tems. Tech. Rept. 11, Bureau of Meteorology, P.O. Box 1289K, Me 1lourne, Vic 3001, Australia, 22 pp.

Lee, C. S., 1982: Cimulus momentum transports in tropical cyclones. Dept. of Atmos Sci. Paper No. 341, Colo. State Univ., Ft. Collins, CO, 7: pp.

Leigh, R. M., 1969: A meteorological satellite study of a double vortex system over th: western Pacific Ocean. Aust. Met. Mag., 17, 4862.

Lourensz, R. S., 197': Tropical cyclones in the Australian region July 1909 to June 1775. Met. Summary, Bureau of Meteorology, P.0. Box 1289 K , Melbour ie, Vic 3001 , Australia, 111 pp .

Lourensz, R. S., 1981: Tropical cyclones in the Australian region July 1909 to June $1 \geqslant 81$. Ibid., 94 pp.

Love, G. B., 1982: The role of the general circulation in western Pacific tropical cyclone genesis. Dept. of Atmos. Sci. Paper No. 340, Colo. State Univ., Ft. Collins, CO, 215 pp .

Mackey, C. W. and H. F. Wittingham, 1956: Sea and swell in tropical cyclones. Prcc. Trop. Cyclone Symposium, Brisbane, Bureau of Meteorology, F.O. Box 1289K, Melbourne, Vic 3001, Australia, 413430.

Maher, J. V. and D. M. Lee, 1977: Upper air statistics, Australia, surface to $5 \mathrm{nb}, 1957$ to 1975. Met. Summary, Bureau of Meteorology, I.0. Box 1289R, Melbourne, Vic 300I, Australia, 202 pp.

Maragos, J. E., G. I. K. Baines and P. J. Beveridge, 1973: Tropical $^{\text {P }}$ cyclone Bebe oreates a new land formation on Funafuti Atoll. Science, 181, 1161-1164.

McBride, J. and R. 次hr, 1981: Observational analysis of tropical cyclone forma ion, Part II: Comparison of non-developing versus developing syitems. J. Atmos. Sci., 38, 1132-1151.

McBride, J. and T. J. Keenan, 1982: Cimatology of tropical cycione genesis in th: Australian region. J. C1imat., 2, 13-33.

McRac, J. N., 1956: The formation and development of tropical cyclones during the 1955-1956 summer in Australia. Pr c. of Trop. Cycl. Symp, Brisbanc, December 1955, Bureau of Met:orology, P.O. Box 12995, Melbourne, Vic 3001, Australia, 233-26:.

Merrill, R. T., 1982: A comparison of large and smill tropical cyclones. Dept. of Atmos. Sci. Paper No. 352, Colo. State Univ., Ft. Collins, CO, 75 pp .

Meteorojogisch Institunt, 1949: Seas around Austraida oceanographic and meteorologat data. Koninkklijk Nederlands Mateorologisch Instituut, $124,79 \mathrm{pp}$.

Mielke, P. W., K. J. Berry an E. S. Johnson, 1976: Multi-response permutation procedures for a priori classificition. Commun. Statist.-Theor. Meth., AS, 1409-1424.

Miller, B. 1. . 958 : On the maximum intensity of harricanes. J. Meteot., 15, 184-195.

Milton, D. 197 3: The rainfall from tropical cyclones in westem Australia. Geowest, 13 , Department of Eeography, Univ. of Western Austalia ISBNO 909678, $154,61 \mathrm{pp}$.

Neal, A. B, and W. R. Yikie, 1970: Features of tropical cyclones in the northeasteril Australian region as revealed by satellite cioud photogxaphs. Working Paper 126, Bureau of Meteorology, P. Box 1289 R . Meibourne, Vic 3001, Australia, 15 pp.

Neamann, C. J. and J. M. Pelissier, 1981: Models for the prediction of tropical eycione motion over the north Atlantic: An operational evaluation. Mon, Mea. Rey., 109, 522-538.

Neamant, B. W. and P. S. lpton, 1958: Microseisms associated with cyelones over northeast Australian waters. Aust. Met. Mag., 22, 24-35.

Neweil, R. E., J. W. Kidson, D. G. Vincent and G. J. Beer, 1972: The general circulation of the tropical atmosphese and interactions weh extratropical hatitides The MIT Press, MA: Vol. 1 (ISBN 0-$262-14012-8), 258$ pp.; Vol. 2 (ISBN 0-262-14020-9), 370pp.

Norton, G., 1947: 保uxicane forecasting (a solilocuy). Unpublished manuscrint, Copy Available from G. Molland, (2 pp.

Otiver ${ }^{J} ., 1974$: Tropioal cyclones as natural ha: ards: An evaluation of queensiand experience in its meteorological context. Aust. Pet 3ag., 22, 49-52.

Ooyma, स. F_{m}, 1969: Numerical simulation of the ife cycle of tropical cyclones. I. Atmos. Sci., $26,3-40$.

Ooyama, K. V., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60, 369-380.

Palmen, E. and C. W. Newton, 1969: Atmospheric circulation systems, their structure and physical interpretations. Int. Geoph. Series, Vol. 13, Acadcmic Press, NY, 603 pp .

Pearce, R. P., 1981: A dynamical analysis of hurricane intensification. Contributions to Atmospheric Physics, 54, 19-41.

Perlroth, I., 1967: Hurricane behavior as re1ate to oceanographic environmental conditions. Tellus, 19, 258-268.

Perlroth, I., 1969: Effects of oceanographic media on equatorial Atlantic hurr:canes. Tellus, 21, 230-244.

Piddington, H., 185: The sailor's horn-book for the 1 aw of storms. Williams and lorgate, London, (2nd edition), 360 pp .

Pisharoty, P. R. andS. B. Kulkarni, 1956: Interaction between tropical revolving stoms on either side of the equator. Proc. of Trop. Cyc1. Symp., Hirisbane, December 1956, Bureau of Meteorology, P.O. Box 1289K, Me bourne, Vic 3001, Australia, 289-294.

Ramage, C. S., 1959 Hurricane development. J. Meteor., 16, 227-237.
Ramage, C. S., 1968 Role of tropical Maritime Continent in the atmospheric cerculation. Mon. Wea. Rev., 96, 365-370.

Ramage, C. S., 1970 Meteorology of the South Pacific tropical and middie latitules, Scientific Explorations of the South Pacific, Nat. Acad. of Sciences, Washington, DC, 16-29.

Ramage, C. S., 1971: Monsoon meteorology. International Geophysics Series, Vo1. :5, Academic Press, London and New York, 296 pp.

Ramage, C. S., 1974: The typhoons of October 1970 in the South China Seas: Intensification, decay and ocean interaction. J. Appl. Meteot., 13. 139-751.

Rasmussen, E., 1979: The polar low as an extratropical CISK disturbance. Quart. I. Roy. Meteor. Soc., $105,531-549$.

Reid, W., 1838: An attempt to develop the law of storms by means of facts, arranged according to place and time; and hence to point out a cause for the variable winds with the view to practical use in Navigation. John Weale, London, 436 pp .

Revelle, C. G., 1981: Tropical cyclones in the sou hwest Pacific November 1969 to April 1979. Misc. Pub. 170, New Zealand Meteorlogical Service, Wellington, NZ , (ISSN 1110-6937), 53 pp.

Rieh1, H., 1954: Tropical meteorology. McGraw Hill 392 pp .
Rieh1, $\mathrm{H} ., 1959:$ On production of kinetic energy f:om condensation heating. The Atmosphere and the Sea in Motion, (B. Bolin, Ed.), Rockefeliex, Institute Press, 381-399.

Rieh1, H., 1979: Climate and weather in the tropici. Academic Press, (ISBN 0-12-588180-0), 611 pp.

Rieh1, H. and R. J. Shafer, 1944: The recurvature of tropical storms. J. Meteor., 1, 42-54.

Rooney, W., 1981: The Australian tropical cyclone season 1980-81. Aust. Met. Mag., 29, 143-153.

Rossby, C. G. and Collaborators, 1939: Relation between the intensity of the zeral circulation and displacements of the semi-permanent centers of action. J. Marine Res., 2, 38-55.

Rossby, C. G., 1948: On displacements and intensity changes of atmospheric vortices. I. Marine Res., 7, 175-187.

Sadler, J. C., 1967: The tropical tropospheric trcugh as a secondary source of typhoons and a primary source of trade wind disturbances. Rept. HIG67-12, Cambridge Research Laboratory, 44 pp.

Sadler, J. C., 1975: The upper tropospheric circulation over the global tropics. UHMET-75-05, Dept. Meteor., Univ. (f Hawaii, 35 pp.

Sadler, J. C., 1978: A role of the tropical upper tropospheric trough in early season typhoon development. Mon. Wga. Rev., 104, 12661278.

Sanders, F. and R. H. Burpee, 1968: Experiments is barotropic hurricane track forecasting. J. App1. Meteor., 7, 313. 323.

Sanders, F. and J. R. Gyakum, 1980: Synoptic-dynaric climatology of the 'bomb' Mon. Wea. Rev., 108, 1589-1606.

Sawyer, J. S. 1947: Notes on the theory of tropilal cyclones. Quart. I. Roy. Meteor. Soc. $73,101-126$.

Schubert, W. H. and J. J. Hack, 1982a: Inertial s:ability and tropical cyclone development. J. Atmos. Sci., 39, 16 37-1697.

Schubert, W. H. and J. J. Hack, 1982b: Transforme: Eliassen balanced vortex model. To appear in I. Atmos. Sci.

Schubert, W. H., J. J. Hack, P. L. Silva Dias and S. R. Fulton, 1980: Geostrophic adjustment in an axisymmetric vortex. ${ }^{\text {J. Atmos. Sci., }}$ 37, 1464-1484.

Shapiro, L, J., 1983: The asymmetric boundary layer flow under a translating lurricane. Submitted to \underline{J}. Atmos. Sci.

Shapiro, L. J. and H. E. Willoughby, 1982: The response of balanced hurricanes tc local sources of heat and momentum. J. Atmos. Sci., 39, 378-394.

Shea, D. J. and W. M. Gray, 1973: The hurricane's inner core region: I, Symmetric and asymmetric structure. J. Atmos. Sci., 30, 15441564 .

Sheets, R. C. and i. J. Holland, 1981: Australian tropical cyclones Kerry and Rosa, February-March 1979. NOAA Tech. Memo ERI AOML-46, National Hur :icane Research Laboratory, Gables No. 1 Tower, 1320 S. Dixie Fig zway, Coral Gables, FL, 33146, USA, 138 pp.

Simpson, R. H., 19.f6: On the movement of tropical cyclones. Trans. Amer. Geophys. Union, 27, 641-655.

Simpson, R. H., 1971: The decision process in hurricane forecasting. NOAA Tech. Memo., NWS SR-53, National Atmospheric and Oceanic Administration, Dept. of Commerce, Washington, DC, 35 pp .

Simpson, R. H., 1974: The hurricane disaster potential scale, Weatherwise, 27, 169-186.

Smith, R. K., 1981: The cyclostrophic adjustment of vortices with application to tropical cyclone modification. J. Atmos. Sci., 38 , 2021-2030.

Southern, R. L., 1981: The global socio-economic impact of tropical cyclones. Aust. Met. Mag., 27, 175-196.

Southern, R. L. ard A. N. Scott, 1976: The genesis and characteristics of tropical cyclones. Proc. Symp. on the Impact of Tropical Cyclones on Oil and Mineral Development in Northwest Australia, Perth, 1975, Australian Government Publishing Service, Canberra, Australia, $3-32$.

Spillane, K. T. and P. E. Dexter, 1976: Design waves and wind in the Australian ropics. Aust. Met. Mag., 24, 37-58.

Staff Members of he Eureau of Meteorology, 1975: Cyclone Tracy: An interim rep.rt. Tech. Rept. 14, Bureau of Meteorology, P.O. Box 1289 K , Me1bourne, Vic 3001, Australia, 55 pp.

Streten, N. A., 1970: A note on the climatology of the satelitite observed zone of high cloudiness in the centra South pacific. Aust. Met. Mag., 18, 31-38.

Sundqvist. H., 1970: Numerical simulation of the derelopment of tropical cyclones with a ten-level model, I. 'ellus, $22,359-390$.

Tsui, K. S., G. J. Bel1 and P. C. W. Fung, 1977: Chinge in intensity of typhoons which develop cloud-plume outflow alo't. Quart. J. Roy. Meteor. Soc., 103 , 151-156.

Visher, S. S., 1925: Tropical cyclones of the Pacific. Bulletin 20, Bernice P. Bishop Museum, Hawaii, 163 pp.

Visher, S. S. and D. Hodge, 1925: Australian hurriaies and related storms. Bulletin, 16, Bureau of Meteorology, '.O. Box 1289 K , Melbourne, Vic 3001, Australia, 54 pp.

Whittingham, H. E., 1958: The Bathurst Bay hurrican: associate storm surge. Aust. Met. Mag., 23, 14-36.

Whittingham, H. E., 1959: Storm surges along the Quensland coast. Aust. Met. Mag., 27, 40-41.

Whittingham, $A, ~ E ., 1960$: Tropical cyclones of the cortheast Australian region 1959-60 season. Aust. Met. Mag., 30, 1-38.

Whittingham, K. E., 1963: The Bathurst Bay hurrican:. Aust. Met. Mag., 42. 37 pp .

Whittingham, H. E., 1964: Cyclone passage over Weipı. Aust. Met. Mag., 44, 45-46.

Whittingham, E. E. and B. Swan, 1960: Location of a tropical cyclone by aircraft reconnaissance. Aust. Met. Mag., 31, 13-31.

Whittingham, H. E. and B. R. Aubrey, 1967: Radar watch on cyclone Barbara. Working Paper 101, Bureau of Meteorology, P.0. Box $1289 \mathrm{~K}, \mathrm{Me} 1 \mathrm{bourne}$, Vic 3001, Australia, 13 pp .

Wilkie, W. R., 1960: The application of radar to the detection of rain in tropical cyclones. Seminar on Rain, Vo1. 4, Session 6, Paper 5. Bureau of Metecrology, P.0. Box 1289K, Melbourne, Vic 3001, Australia.

Wilkie, W. R., 1964: Evaluation of methods of forecasting development and movement of cyclones in the northeast Australia region: 1952-63 season. Proc. Symp. on Tropical Metecrology, Rotarua, $N Z$, (Ed. J. N. Mutchings), New Zealand Met. Serivce, Wellington, NZ, 715-729.

Wilkie, W. R. and R J. Gourlay, 1971: Surface wind speeds near the centre of cyc: one Ada. Working Paper 137, Bureau of Meteorology, P.O. Box 12891: Melbourne, Vic 3001, Australia, 16 pp .

Williams, K. T. and W. M. Gray, 1973: A statistical analysis of satellite obs:rved trade wind cloud clusters in the western north Pacific. Tel us, 21, 313-336.

Willoughby, H. E., 979: Forced secondary circulations in hurricanes. J. Geophys. Rzs., 84, 3173-3183.

Willoughby, H. E., F. A. Clos and M. G. Shoreibah, 1982: Concentric eye walls, secondiry wind maxima, and the evolution of the harricane vortex. J. Atmos. Sci., 39, 395-411.

WMO, 1979: Operational techniques for forecasting tropical cyclone intensity and movement. WMO-528, Wor1d Meteorological Organization, Geueva, Switzerland, 138 pp .

Xu, Jianmin and W. M. Gray, 1982: Environmental circulations associated with tropical cyclones experiencing fast, slow and looping motion. Dept. of Atmcs. Sci. Paper No. 341, Colo. State Univ., Ft. Collins, CO, 273 pp.

Yanai, M., 1964: Formation of tropical cyclones. Rev. Geophys., 2, 367-414.

APPENDIX 1 - LIST OF SYMBOLS AND AC?ONYMS

A

B

1. Area
2. Static stability in Appendix 3

Baroc1inity
Constant which defines the cyclone : ntensity
Specific heat of dry air at constan 1 pressure

Inertial stability in Appenix 3
Thermal Forcing
Coriolis parameter

1. Frictional dissipation
2. Momentum forcing in Appendix 3

Internal stability
Unit vector in the local vertical
Ratio of gas constant to specific hat at constant pressure
Absolute angular momentum in Append: x
Absolute angular monentum
Relative angular monentum
Pressure, pressure coordinate
Component of the pressure field neeled to balance the basic current.

1. Moisture mixing ratio
2. Meat source in Appendix 3

Rađius

Effective radius
Radius of maximum winds

t	Time
T	Temperature
u	$=\mathrm{dr} / \mathrm{dt}$, Radial wind component
${ }^{4} \mathrm{~B}$	Radial component of basic current
${ }^{4}$	Axisymmetric radial wind component
v	$=r \mathrm{~d} \theta / \mathrm{dt}$, Aximuthal wind component
$\mathrm{v}_{\mathbf{s}}$	Axisymmetric azimuthal wind component
$\mathrm{v}_{\text {B }}$	Azinuthal component of basic current
$\mathbf{v}_{\mathbf{n}}$	$=d y / d t$, Northward component of the total wind
$\stackrel{\text { V }}{\sim}$	Winc velocity
V_{B}	Bas: c current speed
V_{β}	Beti: effect component of cyclone speed
V_{c}	Cyc.one speed of motion
V_{E}	Eas : ward component of the basic current
V_{N}	1. Northward component of the basic current 2. Component of the basic current normal to the cyclone motion
V_{p}	Component of the basic current parallel to the direction of zyclone motion
x	1. Eastward ordinate 2. Constant which defines the shape of the azimuthal wind profile
y	1. Northward ordinate 2. Constant which defines the shape of the azimuthal wind profile
α	1. Angle the basic current tenders with due north 2. Specific volume
β	$=\partial f / \partial y$, Meridional variation of Coriolis parameter
γ	Tengent of the constant inflow angle
δ_{0}	$=\partial \mathrm{V}_{\mathrm{N}} / \partial \mathrm{y}$, Meridional component of divergence
δ_{1}	$=3 \mathrm{~V}_{\mathbf{E}} / \partial \mathrm{x}$, Zonal component of divergence

θ	1. Azimuth, measured counterclockwise from due north 2. Potential temperature
θ_{E}	Equivalent potential temperature
θ_{m}	Direction towards which cyclone is noving
ζ	Vertical component of relative vortjcity
$\zeta_{\text {a }}$	Vertical component of absolute vortjcity
ζ_{s}	Axisymetric component of relative rorticity
s_{0}	$=-\partial V_{E} / \partial y$, Meridional component of relative vorticity
ζ_{1}	$=-\partial V_{N} / \partial x, \text { Zonal component of relstive }$
ψ	Streamfunction
ϕ	Geopotential
Φ	$\phi+\mathrm{r}^{2} \mathrm{f}^{2} / \mathrm{g}$ in Appendix 3
x	Momentum source in Appendix 3
${ }^{\omega}$	$=\mathrm{dp} / \mathrm{dt}$, Vertical motion in pressure coordinates
SER	Subequatorial Ridge
STR	Subtropical Ridge
TUTT	Tropical Upper Tropospheric Trough

APPE IDIX 2 - THE COMPOSITE STRATIFICATIONS

A2.1 Preamble

The purpose of this appendix is to provide salient details on the composites used in this study. Table A2.1 contains an abbreviated sumary of all comp)sites, and section $A 2.2$ gives the rationale behind each stratification.

Complete infornation on these composites are held on file with Professor Gray's project at CSU and with the author at the Australian Bureau of Meteorolcgy. In addition to the actual composite information described in Chapter 3, these files contain: 1) a listing of all cyclones in the stratification, together with position, intensity, motion, etc.; 2) a climatology of these cyclones, containing distributions of all related parameters; 3) a composite of the latitude, longitude, Julian $\mathfrak{c} a y$ number and their covariances for those cyclones which contribute data to each grid point; 4) basic statistics on the composite parameteis.

We again emphisize the point made in Chapter 3 that these composites are not generic. They have been derived for very specific purposes. A carefil examination of the above files should be made before they are usid for any other than their designated purpose.

Fig. A2.1. A listing of the salient details of thi composites used in this study. Under the purpose column: STR indicates a structure composite; INT an intensity andor intensification stratification; MOT a motion stratification; TMP indicates that thermal composites were possible; WND indicates that wind composites were made. The quality column gives a subjective estimate based on our analysis of each composite.

A2.2 Rationale for Each Composite

AUSO1, AUS02, AUSO3: Each of these composite; represents sequential intensity and motion stages of major re:urving hurficanes in the Australian region. In deriving them, we selec ed all recurving hurricanes in the Australian region for which the ninimum central pressure was less than 960 mb and occurred at, or fithin one day before, recurvature. Tropical cyclones which attained maximum intensity at landfall were excluded. The tracks were then trunsated at the first observation of a 995 mb central pressure, and either two days after maximum intensity or the first observation of 980 nb during decay (whichever came sooner). These cyclones were then separated into the
westward moving t:opical storm stage (AUSO1), the intensifying hurricane near recurvature :hase (AUSO2), and the decaying harricane after recurvature phase (AUS03).

The decay pe:iod cut off was to stop any undue bias by sheared off, but nonetheless ling lived and gradually weakening systems. We have also assumed that the strict selection criteria imply a consistent environment and tius minimize any windfield bias. However, since these cyclones occur on both sides of the Australian continent we cannot also produce acceptable thermal composites.

We have used these composites for structural comparisons and motion. But because of their homogeneity, time rates of change can be explicitly calculated. Thus, these composites will be of value in future budget studies.

AUS04: This composite was derived in an attempt to delineate the continental effects on cyclones off the east Australian coast. It contains all cyclones within about 500 km of the east coast, betweer 15 and $25^{\circ} \mathrm{S}$, and with central pressures of less than 990 mb . As such, AUS04 is quite asymmetric; there are many observations in the western semicircle, but few, and occasionally no, observations to the east. It delineates the bioad continental influences very well, but has no other use.

AUSO5, AUSOt, AUSO7, AUSO9: These are the eceanic cyclone composites which were derived to provide good thermal as well as wind information on tropical cyclones in the southwest Pacific region. To do this we selected all hurricanes in the southwest Pacific which were at least 1000 km from Australia, and ir which the intensifying hurricane phase occurred b:tween 10 and $20^{\circ} \mathrm{S}$. Early and late season hurricanes,
together with a couple at the eastern extremity of teregion, were also deleted. Four separate composites were then made: :he Steady State Oceanic IIurricane (AUS05) contains all deepening and decaying observations at hurricane intensity; the Developing loceanic Murricanc (AUS06) contains the deepening hurricane observation; the Decaying Oceanic Hurricane (AUS07) contains the decaying obse vations; and the Pre-hurricane Tropical Storm (AUSO9) contains the dereloping tropical storm observations.

The above precautions were taken in an attempt o ensure a stable thermal composite despite the strong latitudinal gralients in this region and the low level effects of the Australian continent. As we have seen in Chapter 4 and 5 , the result was some exiellent thermal composites with quite fine details. Since AUS09, AU306, and AUS07 all contain the same cyclones, we are also able to calculate time rates of change for future budget calculations. However, the lack of definitive intensity infcrmation in this region, especially fron earlier years (see Chapter 2), meant that not all observations could be incorporated. There is also some uncertainty about the exact points of transition to tropical storm, intensifying, and decaying hurricane. We do not believe that this uncertainty has significantly affected the resulting composites.

AUS08: This Non-developing Tropical Storm composite was derived for comparison with the AUS09 Pre-hurricane Tropical Storm. It contains the intensifying phase of tropical storms in the sorthwest Pacific which did not reach hurricane intensity. The same spatial and temporal constraints as for AUSO9 were applied. AUS08 is also subject to the
same intensity uncertainty and may contain some minimal hurricanes; again, we do not believe this has had a significant impact.

AUS10: This is a counterpoint to AUSO4 and delineates the continental effects on cyclones off the northwestern Australian coast. It contains cyclores within about 500 km of the coast, between 15 and $25^{\circ} \mathrm{S}$, and with certral pressures $1 e s s$ than 990 mb . AUS10 is also quite asymmetric, with almost no observations in the western sector. Thus, as with AUS04, it delineates the broad continental influences very well, but has no other ise.

AUS12, AUS13, AUS14, AUS15, AUS16: These are our first purely motion composites They were derived from steadily moving cyclones which suffered no major perturbations or change of direction. The tropical depressiun stages were deleted, as were all cyclones moving faster than $7.5 \mathrm{~m} \mathrm{~s}^{-1}$. AUS15 and AUS16 are made up from tropical cyclones which mored continuously westward, of which those moving between northwest and sonthwest comprise AUS16 and those between west and south compris? AUS15. AUS12 is made up from cyclones which moved continuously between southwest and southeast. AUS13 and AUS14 are made up from cyclones fhich moved continuously westward, of which those moving between south and east comprise AUS13 and those between southeast and northeast comprise AUS14.

We have presumed that the consistent long term tracks imply a consistent environmental wind field and thus minimize any bias problems. We have also taken no account of intensity, strength or size variations. We have shown in Chapter 7 that intensity variations should be of no consequence. Size or strength fluctuations in individual cyclones may have introduced some noise, but the total effect seems to be small. In
any case, we cannot at present differentiate size and strength change in the Australian/southwest Pacific region.

APPENDIX 3 - THE BALANCED VORTEX MODEL

We begin witt the Eliassen (1951) balanced vortex equations in the form:

$$
\begin{gather*}
\frac{m^{2}}{r^{3}}=\frac{\partial \Phi}{\partial r} \tag{A3.1}\\
\frac{\partial \Phi}{\partial p}=-\alpha \tag{A3.2}\\
\theta=\frac{p \alpha}{R}\left(\frac{p}{p}\right)^{K} \tag{A3.3}\\
\frac{d m^{2}}{d t}=2 m x \tag{A3.4}\\
\frac{\partial r u}{r \partial r}+\frac{\partial \omega}{\partial p}=0 \tag{A3.5}\\
C C_{p} \frac{d t}{d t}(\ln \theta)
\end{gather*}
$$

where $m=r v+f:^{2} / 2$ is the absolute angular momentum per unit mass, P $=\phi+f^{2} r^{2} / g, X$ ind Q are the momentum and heat sources, $d / d t=$ $\frac{\partial}{\partial \mathrm{t}}+\mathrm{u} \frac{\partial}{\partial r}+\omega \frac{\partial}{\partial \mathrm{p}}$ and :he other terms have their usual meaning.

The hydrosta:ic Eq. (A3.2) and the gas 1aw yield

$$
\begin{equation*}
-\frac{\partial}{\partial p} \frac{\partial \Phi}{\partial t}=\alpha \frac{\partial}{\partial t}(\ln \theta) \tag{A3.7}
\end{equation*}
$$

and the gradient wind Eq. (A3.1) yie1ds

$$
\begin{equation*}
\frac{\partial}{\partial r} \frac{\partial \Phi}{\partial t}=\frac{1}{r^{3}} \frac{\partial m^{2}}{\partial t} \tag{A3.8}
\end{equation*}
$$

Substituting Eqs. (A3.7), (A3.8) into Eqs. (A3 2), (A3.6) and (A3 .4) we have

$$
\begin{gather*}
-\frac{\partial}{\partial p} \frac{\partial s}{\partial t}+\alpha \omega \frac{\partial}{\partial p}(\ln \theta)+\alpha u \frac{\partial}{\partial r}(\ln \theta)=\frac{a Q}{C_{p} T} \tag{A3.9}\\
\frac{\partial}{\partial r} \frac{\partial p}{\partial t}+\frac{\omega}{r^{3}} \frac{\partial m^{2}}{\partial p}+\frac{u}{r^{2}} \frac{\partial m^{2}}{\partial r}=\frac{2 m 3}{r^{3}} \tag{A3.10}
\end{gather*}
$$

We next define a streamfunction ψ such that

$$
\begin{equation*}
u=\frac{\partial \psi}{\partial p}, \quad \omega=\frac{\partial r \psi}{\mathbf{r} \partial r} \tag{A3.11}
\end{equation*}
$$

The continuity Eq. (A3.5) is then satisfied. Substituting Eq. (A3.11) into Eqs. (A3.9), (A3.10) and eliminating time derivatives then gives the diagnostic equation in ψ

$$
\begin{equation*}
\frac{\partial}{\partial r}\left(A \frac{\partial r \psi}{r \partial r}+B \frac{\partial \psi}{\partial p}\right)+\frac{\partial}{\partial p}\left(B \frac{\partial r \psi}{r \partial r}+C \frac{\partial \psi}{\partial p}\right)=\frac{\partial E}{\partial r}+\frac{\partial F}{\partial p} \tag{A3.12}
\end{equation*}
$$

$A=-a \frac{\partial}{\partial p}(\ln \theta) \quad$ (Static Stability)
$B=a \frac{\partial}{\partial r}(\ln \theta)=-\frac{\partial m^{2}}{r^{3} \partial p}$ (Baroclinity)
$C=\frac{\partial m^{2}}{r^{3} \partial r}=\left(f+\frac{\partial r \underline{y}}{r \partial r}\right)\left(f+\frac{2 v}{r}\right)$ (Inertial Stability)
(A3.15)
$E=\frac{a Q}{C} \frac{Q}{T}$ (Thermal Forcing)
$F=\frac{2 m X}{r^{3}}($ Momentua Forcing $)$
(A3.17)

Equation (A3.12) was then solved in finite difference form using successive over-relaxation on a 33 x 151 grid with spacing of 30 mb in the vertical and 10 km in the horizontal. Boundary conditions were $\psi=$ 0 at the origin ard upper and lower boundaries, and $\partial \psi / \partial r$ constant at the outer boundary (which was sufficiently well removed to have no effect on the calculations).

APPENDIX 4 - AN ALTERNATE AXISYMMETRIC AZIMUTHAL WIND PROFILE FOR TROPICAL CYCLONES

A correction is applied to the well known modijied Rankine vortex to provide an accurate description of the azimuthal wind profile outside the inner core region. The effects on vorticity, asgular momentum, inertial stability and kinetic energy are described

A4.1. Description

The commonly used modified Rankine vortex

$$
\begin{align*}
v r^{X} & \left.=C_{1} r\right\rangle r_{m} \tag{A4.1}\\
\frac{v}{r} & =C_{2} r<r_{m} \tag{A4.2}
\end{align*}
$$

is based on the the assumption of constant relative angular momentum due to efficient horizontal transports in the inner region of tropical cyclones, with some modification due to frictional losses which increase as the square of the wind speed. This profile, with the shape typically defined by $0.4 \leq x \leq 0.6$, can very well simulate actual wind profiles in the inner core regions of tropical cyclones (Holland, 1980). But it becomes quite unrealistic in the outer regions where it considerably overestimates the observed wind speeds.

An alternative is therefore proposed in which the quasiconservative parameter is still relative angular momentum in the inner core but this is modified at larger radii. The suggested equation is

$$
\begin{equation*}
V=C_{1} r^{-x}-C_{2} x^{y} \tag{A4.3}
\end{equation*}
$$

where C_{1}, x define the intensity and shape of the inner core region and C_{2}, y define the deviation from the modified Rankire vortex in outer regions.

A4.2 Method of Sclution

We require data at two points in the core region, $r_{1}, v_{1}, r_{2}, v_{2}$ and at two points in the outer region $r_{3}, v_{3}, r_{4}, v_{4}$. Then from Eq. A4.1, since C_{1} is constant

$$
\begin{gather*}
x=\ln \left(v_{2} / v_{1}\right) / \ln \left(r_{1} / x_{2}\right) \tag{A4.4}\\
C_{1}=v_{1} r_{1} \tag{A4.5}
\end{gather*}
$$

For the outer reg:on, defining

$$
\begin{align*}
& \Delta_{3}=C_{1} r_{3}^{-x}-v_{3} \\
& \Delta_{4}=C_{1} r_{4}^{-x}-v_{4} \tag{A4.6}
\end{align*}
$$

we have similarly from Eq. A4. 3

$$
\begin{gather*}
y=\ln \left(\Lambda_{3} / \Delta_{4} / \ln \left(r_{3} / r_{4}\right)\right. \tag{A4.7}\\
c_{2}=\Lambda_{3} x_{3}^{-y} \tag{A4.8}
\end{gather*}
$$

A4.3 Pacific Typ 100 n Examples

The pressure weighted average tangential wind profiles for the WPD3d (Developing Tropical Storm), WPD4 (Steady State Typhoon), and WPD5 (supertyphoon) data sets (c.f. Gray et al., 1982) for SFC-850 mb, SFC-300 mb , and $250-150 \mathrm{mb}$ are given in Fig. 44.1 . Notice that the upper outflow layer has the same shape as the inflow layers and can be

Fig. A4.1. Azimuthaf wind profiles for the northwest Pacific developing tropical storm (WPD3D), steady state typhoon (WPD 4) and supertyphoon (WPD5).

described by Eq. A4. \therefore with suitably reduced empirical constants C_{1} and C_{2}.

Using typical p: rameters for the inner core region the rough best fit parameters in Eq. A4. 3 to the profiles for each cyclone are given in Tabie A4.1, together with mean error, standard deviation, and RNS error. (The standard deviation is presented purely as a measure of variance).

TABLE A4.1
Profile parameters ald errors from the application of Eq. A4.3 to northwest Pacific tripical cyclones.

Cyclone	Level	v_{m}	${ }_{1}$	天	${ }_{1}$	y	${ }^{c}$	Mean	$\begin{aligned} & \text { Error } \\ & \text { SD } \end{aligned}$	RMS
WPD5	SFC-850	60	$4)$	0.6	34,625	1.000	3.053×10^{-6}	0.2	0.9	0.8
	SFC-300	60	41	0.6	34,625	1.171	5.213×10^{-7}	-0.1	0.7	0.4
	250-300	20	4)	0.6	11,542	0.892	4.332×10^{-5}	0.3	1.1	1.1
WPD4	SFC-850	40	4)	0.5	8,000	1.26	8.293×10^{-8}	-0.3	0.5	0.7
	SFC-300	40	4)	0.5	8,000	1.14	6.911×10^{-7}	0.2	1.0	0.8
	250-300	13	5)	0.5	3,354	0.69	7.965×10^{-4}	-0.4	1.1	1.2
WPD3D	SFC-850	25	4)	0.4	1,733	1.95	4.917×10^{-12}	0.0	0.7	0.5
	SFC-300	20	6)	0.4	1,516	1.917	1.031×10^{-11}	-0.1	0.7	0.5
	250-300	5	1()	0.4	500	0.283	0.098	0.7	0.9	1.2

A4.4 Discussion

We saw in section A4.1 that Eq. A4.3, with suitably chosen parameters could acc rately describe the axisymmetric wind profiles of Pacific typhoons at large radii. In this section we briefly present and compare the profiles of azimuthal winds, vorticity, angular momentun inertial stability and kinetic energy for the WPD4 typhoon using Eq. A4.3, and the normal Rankine vortex Eq. A4.1 with $x=0.5$ and $x=1$.

The modified Rankine vortex, with $x=0.5$, has often ieen used to describe inner core winds and many people have used the full Rankine vortex, with $x=1$, in analytic work and in defining a symmetric storm.

Azimuthal Winds: The azimuthal winds for the three different profiles are shown in Fig. A4.2. We see that Eq. A4 1 with $x=0.5$ provides a fair description out to about 4° latitude radius but begins to diverge after that. The Rankine vortex, $x=1$, is a very poor fit to the observed data at all radii.

Relative Vorticity: Relative vorticity in an asisymmetric vortex is given by

$$
\begin{equation*}
\zeta=\frac{1}{r} \frac{\partial r V}{\partial r} \tag{A4.9}
\end{equation*}
$$

which on substituting Eq. A4.3 becomes

$$
\begin{equation*}
\zeta=\frac{1}{x}\left((1-x) C_{1} r^{-x}-(1+y) C_{2} r^{y}\right) \tag{A4.10}
\end{equation*}
$$

or from the modified Rankine vortex Eq. A4.1

$$
\begin{equation*}
\zeta=\frac{1-x}{r} c_{1} r^{-x} \tag{A4.11}
\end{equation*}
$$

The radial profiles of relative vorticity from these two equations are shown in Fig. A4.3. Surprisingly, Eq. A4. 1 with $x=0.5$ is a fair approximation, except that the observed anticyclonic vorticity outside 6° latitude radius is not duplicated. The cyclonic values given by Eq. A4.11 at these radii arise from the reduction in anticyclonic shear and higher cyclonic winds in Eq. A4.1 compared to Eq. Af. 3.

Fig. A4.2. Azimu hal wind profiles described by the three techniques of Eq A4.3, Eq. A4.1 with $x=0.5$ (modified Rankine vorte::), Eq. A4.1 with $x=1$ (full Rankine vortex).

Fig. A4.3. As Fi!. A4. 2 but for relative vorticity.

The Rankine vortex ($x=1$) has zero relative vurticity everywhere and provides no information on the actual vorticitics.

Inertial Stability: The inertial stability parameter is given by

$$
\begin{equation*}
\mathbf{I}^{2}=\left(\zeta_{5}+\frac{2 V}{I}\right)\left(\zeta_{2}+f\right) \tag{A4.12}
\end{equation*}
$$

The resulting profiles of inertial stability u;ing either Eqs. A4.1 and A4.11, or Eqs. A4.3 and A4.10 are shown in Fig. A4.4. Once again, the $x=0.5$ profile is a quite good approximation t, the actual profile. However, the $x=1$ Rankine vortex is quite poor and given a constant static stability and radial wind forcing, would all w air to flow in much closer to the center than would be possible fo: the observed profile.

Relative Angular Momentum: The relative angular momentum is given by

$$
\begin{equation*}
M_{\mathbf{r}}=V \mathbf{r} \tag{A4.13}
\end{equation*}
$$

and the resulting profiles are shown in Fig. A4.5. The $x=0.5$ profile is a quite poor approximation outside $2-4^{\circ}$ latitude radins and the $x=1$ profile, which has constant relative angular moment meverywhere, provides no useful information.

Kinetic Energy: The radial profiles of kinetiv energy/unit mass are shown in Fig. A4.6. The $x=0.5$ profile is a por approximation outside 4° 1atitude radius and the $x=1$ profile is a very poor fit at all radii.

Fig. A4.4. As Fig. A4. 2 but for the inertial stability.

Fig. A4.5. As Fig, A4.2 but for relative angular momentum.

Fig. A4.6. As Fig. A4. 2 but for kinetic energy.

A4.5 Conc1usion

The suggested correction to the modified Rankine vortex at large radii allows a very good fit to be made to the obstrved axisymmetric wind profiles in tropical cyclones. The modified lankine vortex with x $=0.5$ or thereabouts can describe the wind and dynimic profiles out to $4-6^{\circ}$ 1atitude radius with reasonable accuracy but :apidly becomes inaccurate at larger radii. The full Rankine vort x is a quite poor description of the observed momentum and dynamic f.elds at all radii.

CSU Dept. of Atmos. Sci. Report No.	Report Tit1e, Author, Date, Agency Support
104	The Mutual Variation of Wind, Shear and Baroclinicity in the Cumulus Convective Atmosphere of the Iurricane (69 pp.). W. N. Gray. February 1967. NSF Support.
114	Global View of the Origin of Tropical Disturbances and Storns (105 pp.). W. M. Gray. October 1967. NSF Support.
116	A Statistical Study of the Frictional Wind Veering in the Planetary Boundary Layer (57 pp .). B. Mendenhall. Decenber 1967. NSF and ESSA Support.
124	Investigation of the Importance of Cumulus Convection and Ventilation in Early Tropical Storm Development (88 pp.). R. Iopez. June 1968. ESSA Satellite Lab. Support.
Unnumbered	Role of Angular Momentum Transports in Tropical Storm Dis ipation over Tropical Oceans (46 pp.). R. F. Wachtmann. December 1968. NSF and ESSA Support.
Unnumbered	Mon1hly C1imatological Wind Fields Associated with Tropical Storm Genesis in the West Indies (34 pp.). J. W. Sartor. Decsmber 1968. NSF Support.
140	Chalacteristics of the Tornado Environment as Deduced from Prosimity Soundings (55 pp.). T. G. Wills. June 1969. NOAL and NSF Support.
161	Staiistical Analysis of Trade Wind Cloud Clusters in the Western North Pacific (80 pp.). K. Williams. June 1970. ESS/. Satellite Lab. Support.
----	A C. imatology of Tropical Cyclones and Disturbances of the Wesiern Pacific with a Suggested Theory for Their Genesis/ Maistenance (225 pp.). W. M. Gray. NAVWEARSCIFAC Tech. Paper No. 19-70. Novenber 1970. (Available from US Navy, Monierey, CA). US Navy Support.
179	A dagnostic Study of the Planetary Boundary Layer over the Oceins (95 pp.). W. M. Gray. February 1972. Navy and NSF Support.
182	The Structure and Dynamics of the Hurricane's Inner Core Are:i (105 pp.). D. J. Shea. April 1972. NOAA and NSF Supuort.

CSU Dept. of Atmos. Sci. Report_No..	Report Title, Author, Date, Agency Support
188	Cumulus Convection and Larger-scale (irculations, Part I: A Parametric Model of Cumulus Convection (100 pp.). R. E. Lopez. June 1972. NSF Support.
189	Cumulus Convection and Larger-scale lirculations, Part II: Cumulus and Meso-scale Interactions 63 pp.). R. E. Lopez. June 1972. NSF Support.
190	Cumulus Convection and Larger-scale lirculations, Part III: Broadscale and Meso-scale Considerations (80 pp.). W. M. Gray. July 1972. NOAA-NESS Support
195	Characteristics of Carbon Black Dust as a Tropospheric Ileat Source for Weather Modification (55 : p.). W. M. Frank. January 1973. NSF Support.
196	Feasibility of Beneficial Hurricane Jodification by Carbon Elack Seeding (130 pp.). W. M. Gray April 1973. NOAA Support.
199	Variability of Planetary Boundary Larer Winds (157 pp.) L. R. Hoxit. May 1973. NSF Support
200	Hurricane Spawned Tornadoes (57 pp.). D. J. Novian. May 1973. NOAA and NSF Support.
212	A Study of Tornado Proximity Data anl an Observationally Derived Model of Tornado Genesis (10 Lpp.). R. Maddox. November 1973. NOAA Support.
219	Analysis of Satellite Observed Tropi:al Cloud Clusters (91 pp.). E. Ruprecht and W. M. Grat. May 1974. NOAA/ NESS Support.
224	Precipitation Characteristics in the Northeast Rrazil Dry Region (56 pp.). R. P. L. Ramos. May 1974. NSF Support.
225	Weather Modification through Carbon Just Absorption of Solar Energy (190 pp.). W. M. Gray, W. M. Frank, M. L. Corrin, and C. A. Stokes. July 1974.
234	Tropical Cyclone Genesis (121 pp.). W. M. Gray. March 1975. NSF Support.

CSU Dept. o Atmos. Sci. Report No.	I'eport Title, Author, Date, Agency Support
---	Trojical Cyclone Genesis in the Western North Pacific (66 pp.). W. M. Gray. March 1975. US Navy Environmental Prediction Research Facility Report. Tech. Paper No. 16-75. (Available from the US Navy, Monterey, CA). Navy Support.
241	Trosical Cyclone Motion and Surrounding Parameter Relitionships (105 pp.). J. E. George. December 1975. NOA 1 Support.
243	Diucnal Variation of Oceanic Deep Cumulus Convection. Papər I: Observational Evidence, Paper II: Physical Hyp)thesis (106 pp.). R. W. Jacobson, Jr. and W. M. Gray. February 1976. NOAA-NESS Support.
257	Data Summary of NOAA's Hurricanes Inner-Core Radial Leq F1ight Penetrations 1957-1967, and 1969 (245 pp.). W. M. Gray and D. J. Shea. October 1976. NSF and NOAA Support.
258	The Structure and Energetics of the Tropical Cyclone (180 pp.). W. M. Frank. October 1976. NOAA-NHEML, NOAA-NESS and NSF Support.
259	Tyfhoon Genesis and Pre-typhoon C1oud C1usters (79 pp.). R. M. Zehr. November 1976. NSF Support.
Unnumbered	Severe Thunderstorm Wind Gusts (81 pp.). G. W. Walters. December 1976. NSF Support.
262	Diurnal Variation of the Tropospheric Energy Budget (1 $\angle 1$ pp.). G. S. Foltz. November 1976. NSF Support.
274	Con parison of Developing and Non-developing Tropical Disturbances (81 pp.). S. L. Erickson. July 1977. US Arny Support.
---	Trepical Cyclone Research by Data Compositing (79 pp.). W. M. Gray and W. M. Frank. July 1977. US Navy Envirommental Prediction Research Facility Report. Tech. Paper No. 77-01. (Arailable from the US Navy, Monterey, CA). Navy Support.
277	Trupical Cyclone Cloud and Intensity Relationships (1.4 pp.). C. P. Arnold. November 1977. US Army and NHIML Support.
297	Di:gnostic Analyses of the GATE A/B-scale Area at Individual Tine Periods (1.02 pp.). W. M. Frank. November 1978. NSF Suppori.

CSU Dept. of Atmos. Sci. Report No.

Report Title, Author, Date, Agency Support

298 Diurnal Variability in the GATE Regiol (80 pp.). J. M.
Dewart. November 1978. NSF Support.
Mass Divergence in Tropical Weather S:stems, Paper I: Diurnal Variation; Paper II: Large-siale Controls on Convection (109 pp.). J. L. McBride ind W. M. Gray. November 1978. NOAA-NHEML Support.

New Results of Tropical Cyclone Resea:ch from Observational Analysis (108 pp.). W. M. Gray and W M. Frank. June 1978. US Navy Environmental Preliction Research Facility Report. Tech. Paper No. 78-11. (Available from the US Navy, Monterey CA). Navy Support.

Convection Induced Temperature Change in GATE (128 pp.). P. G. Grube. February 1979. NSF Sup oort.

Observational Analysis of Tropical Cy 10 one Formation (230 pp.). J. L. McBride. April 1977. NOAA-NHEML, NSF and NEPRF Support.

Tropical Cyclone Intensity Change - A Quantitative Forecasting Scheme. K. M. Dropco. May 1981. NOAA Support.

The Role of the General Circulation in Tropical Cyclone Genesis (230 pp.). G. Love. April 1982. NSF Support.

Cumulus Momentum Transports in Tropical Cyciones (78 pp.). C. S. Lee. May 1982 . ONR Support.

Tropical Cyclone Movement and Surrourding Flow Relationships (68 pp.). J. C. L. Chan and W. M. Gray. May 1982. ONR Support.

Environmental Circulations Associatec with Tropical Cyclones Experiencing Fast, Slow and Looping llotions (273 pp .). J. Xu and W. M. Gray. May 1982 . ONI. Support.

Tropical Cyclone Motion: Environmental Interaction Plus a Beta Effect (47 pp.). G. J. Holland May 1982. ONR Support.

Tropical Cyclone and Related Meteoroogical Data Sets Available at CSU and Their Utilization (186 pp.). W. M. Gray, E. Buzze11, G. Burton and Othe: Project Personne1. February 1982. NSF, ONR, NOAA, and IEPRF Support.

CSU Dept. of
Atmos. Sci.

352 A Comparison of Large and Small Tropical Cyclones (75 pp.).
R. T. Merrill. July 1982 . NOAA and NSF Support.

358 On the Physical Processes Responsible for Tropical Cyclone Motion (200 pp.). Johnny C. L. Chan. November 1982. NSF, NOAA/NHRL and NEPRF Support.

Tropical Cyclones in the Australian/Southwest Pacific Region (264 pp.). Greg J. Holland. March 1983. NSF, NOAA/NHRL and Australian Government Support.

7b. Identifiers/Open-Ended Terms

17c. COSATI Field/Group
18. Availability Statement

19. Security Class (This		
Report)	21. No. of Pages	
UNCIASSIFIED	264	
20,	Security Class (This Page) UNCLASSIFIED	22. Price

CSU Dept. of Atmos. Sci. Report No.	Report Title, Author, Date, Agency Support
352	A Comparison of Large and Small Tropical Cyclones (75 pp.). R. T. Merrill. July 1982. NOAA and NSF Support.
358	On the Physical Processes Responsible for Tropical Cyclone Motion (200 pp.). Johnny C. L. Chan. November 1982. NSF, NOAA/NHRL and NEPRF Support.
363	Tropical Cyclones in the Australian/Southwest Pacific Region (264 pp.). Greg J. Holland. March 1983. NSF, NOAA/NHRL and Australian Government Support.

15. Supplementary Notes

16. Abstracts

Some results are presented from the completed first stage of a collaborative Colorado State University/Australian Bureau of Meteorology project to investigate various aspects of tropical cyclones in the Australian/southwest Pacific region. We begin with a brief description of the major environmental and geographical features of this region, together with an overview of previous research work. We then discuss the distinguishing climatological and structural features of tropical storms, hurricanes and major hurricanes throughout the region, and highlight the effects of the prevailing flow patterns and the Australian continent. Finally, we present a theoretical and observational examination of the mechanisms leading to development, intensification and motion of these cyclones.
17. Key Words and Document Aralysis. 17a. Descriptors

Tropical cyclones
Australian/southwest Pacific

17b. Identifiers/Open-Ended Terms

17c. COSATI Field/Group
18. Availability Statement

19.Security Class (This Report) UNCLASSIFIED	21. No. of Pages 264
20,	Security Class (This Page) UNCLASSIFIED

Atmos. Sci.

Report Title, Author, Date, Agency Support
A Conparison of Large and Small Tropical Cyclones (75 pp.). R. T Merrill. July 1982. NOAA and NSF Support.

On the Physical Processes Responsible for Tropical Cyclone Motion (200 pp.). Johnny C. L. Chan. November 1982. NSF, NOAA/NHRL and NEPRF Support.

Tropeal Cyclones in the Australian/Southwest Pacific Regiun (264 pp.). Greg J. Holland. March 1983.
NSF, NOAA/NHRL and Australian Government Support.

Title and Subtitle TROPICAL CYCLONES IN THE AUSTRALIAN/SOUTHWEST PACIFIC REGION			3. Recipient's Accession No. \qquad 5. Report Date March, 1983 \qquad	
			6.	
$\begin{array}{ll} \text { 7. Author(s) } \\ & \text { Greg J. Holland } \\ \text { (P.I. William M. Gray) } \\ \hline \end{array}$				Performing Organization Rept. No. CSU ATS-363
7. Performing Organization Name and Address Department of Atmospheric Science Colorado State University Fort Collins, CO 80523				Project/Task/Work Unit No. Contract/Grant No. 7923591; NA81RAHOOOO1
2. Sponsoring Organization Name and AddressNSFNOAA/NHRL18th and G. Street, N.W.Gashington, DC 20550Gables No. 1 Tower, 1320 S. Dixie liw			13.	Type of Report \& Period Covered Project

5. Supplementary Notes

6. Abstracts

Some results are presented from the completed first stage of a cullaborative Colorado State University/Australian Bureau of Meteorology project to investiga e various aspects of tropical cyclones in the Australian/southwest Pacific region. We begin with a brief description of the major environmental and geographical features of this region, together with an overview of previous research work. We then discuss the distinguishing climatological and structural features of tropical storms, hurricanes and major hurricanes throughout the region, and highlight the effects of the prevailing flow pattern; and the Australian continent. Finally, we present a theoretical and observational sxamination of the mechanisms leading to development, intensification and motion of these cyclones.
7. Key Words and Document Analysis. 17a. Descriptors

Tropical cyclones
Australian/southwest Pacific

7b. Identifiers/Open-Ended Terms

7e. COSATI Field/Group
8. Availability Statement

| 19.Security Class (This
 Report)
 UNCIASSFIED | 21. No. of Pages
 264 |
| :--- | :--- | :--- |
| Security Class (This
 Page)
 UNCLASSIFIED | 22. Price |

