Numerical study of effects of accommodation coefficients on slip phenomena

Cited 2 time in webofscience Cited 3 time in scopus
  • Hit : 560
  • Download : 0
An unstructured mesh Navier-Stokes solver employing a Maxwell slip boundary condition was developed. The present flow solver was applied to the simulation of flows around an axisymmetric hollow cylinder in a Mach 10.4 freestream, known as Calspan-UB Research Center (CUBRC) Run 14 case, and the velocity slip and the temperature jump on the cylinder surface were investigated. The effect of tangential momentum and thermal accommodation coefficients used in the Maxwell condition was also investigated by adjusting their values. The results show that the reverse flow region is developed on the body surface due to the interaction between the shock and the boundary layer. Also, the shock impingement makes pressure high. The flow properties on the surface agree well with the experimental data, and the velocity slip and the temperature jump vary consistently with the local Knudsen number change. The accommodation coefficients affect the slip phenomena and the size of the flow region. The slip phenomena become larger when both tangential momentum and thermal accommodation coefficients are decreased. However, the range of the reverse flow region decreases when the momentum accommodation coefficient is decreased. The characteristics of the momentum and thermal accommodation coefficients also are overlapped when they are altered together.
Publisher
KOREAN SOC MECHANICAL ENGINEERS
Issue Date
2015-05
Language
English
Article Type
Article
Citation

JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, v.29, no.5, pp.1883 - 1888

ISSN
1738-494X
DOI
10.1007/s12206-015-0409-2
URI
http://hdl.handle.net/10203/198948
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0