Multiscale modeling framework to predict the effective stiffness of a crystalline-matrix nanocomposite

Cited 9 time in webofscience Cited 0 time in scopus
  • Hit : 210
  • Download : 0
Recently, multiscale modeling frameworks combining micromechanics-based homogenization methods and atomistic simulations have been widely applied to predict the effective stiffness of particulate-reinforced composites. Although most studies demonstrated that theoretical predictions incorporating interfacial damage are necessary to explain atomistic simulation results, the microscopic origin of the interfacial damage has not been systematically analyzed in terms of interatomic potential and interfacial structure. In this study, first, we conduct a series of particle simulations of two fictitious model crystalline composites with coherent interfaces: one has a two-dimensional triangular structure described by a bead-spring model and the other has a face-centered cubic structure described by the artificial Lennard-Jones potential. By comparing the simulation results with micromechanics theory, we obtain the interfacial bonding (damage) parameter used in the homogenization method in terms of parameters at the atomistic level. Second, we study the effects of the interfacial structures (coherent/incoherent) because of lattice or crystallographic orientation mismatch on the effective properties of composites. We obtain the elastic stiffness of Si(matrix)-Ge(nanoparticle) nanocomposites with different interfacial structures (coherent/incoherent structures) using atomistic simulations and observe that nanoparticle-size-dependency occurs only for the composite with incoherent interfaces. We propose a homogenization scheme considering the pre-stress (or residual stress) and interfacial imperfection, and explain the results from Si-Ge nanocomposite simulations. (C) 2021 Elsevier Ltd. All rights reserved.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2021-01
Language
English
Article Type
Article
Citation

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, v.161

ISSN
0020-7225
DOI
10.1016/j.ijengsci.2021.103457
URI
http://hdl.handle.net/10203/283653
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0