Implementation of a Noise-Shaped Signaling System through Software-Defined Radio

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 160
  • Download : 0
Along with the development of electromagnetic weapons, Electronic Warfare (EW) has been rising as the future form of war. Especially in the area of wireless communications, high security defense systems such as Low Probability of Detection (LPD), Low Probability of Interception (LPI), and Low Probability of Exploitation (LPE) communication algorithms are being studied to prevent military force loss. One LPD, LPI, and LPE communication algorithm, physical-layer security, has been discussed and studied. We propose a noise signaling system, a type of physical-layer security, which modifies conventionally modulated I/Q data into a noise-like shape. To suggest the possibility of realistic implementation, we use Software-Defined Radio (SDR). Since there are certain hardware limitations, we present the limitations, requirements, and preferences of practical implementation of the noise signaling system. The proposed system uses ring-shaped signaling, and we present a ring-shaped signaling system algorithm, SDR implementation methodology, and performance evaluations of the system using the metrics of Bit Error Rate (BER) and Probability of Modulation Identification (PMI), which we obtain by using a Convolutional Neural Network (CNN) algorithm. We conclude that the ring-shaped signaling system can perform high LPI/LPE communication functioning because an eavesdropper cannot obtain the correct modulation scheme information. However, the performance can vary with the configurations of the I/Q data-modifying factors.
Publisher
MDPI
Issue Date
2022-01
Language
English
Article Type
Article
Citation

APPLIED SCIENCES-BASEL, v.12, no.2

ISSN
2076-3417
DOI
10.3390/app12020641
URI
http://hdl.handle.net/10203/294813
Appears in Collection
GT-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0