Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/121802
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Carbon management in dryland agricultural systems. A review

AutorPlaza-Bonilla, Daniel CSIC ORCID ; Arrúe Ugarte, José Luis CSIC ORCID ; Cantero-Martínez, Carlos CSIC ORCID; Fanlo, Rosario; Iglesias Picazo, Ana; Álvaro-Fuentes, Jorge CSIC ORCID
Palabras claveBiodiversity
Climate change
Dryland agroecosystems
Ecosystem services
Livestock
Research perspectives
Socioeconomic factors
Soil carbon sequestration
Soil water
Fecha de publicación2015
EditorSpringer Nature
CitaciónPlaza-Bonilla D, Arrúe JL, Cantero-Martínez C, Fanlo R, Iglesias A, Álvaro-Fuentes J. Carbon management in dryland agricultural systems. A review. Agronomy for Sustainable Development 35 (4): 1319-1334 (2015)
ResumenDryland areas cover about 41 % of the Earth’s surface and sustain over 2 billion inhabitants. Soil carbon (C) in dryland areas is of crucial importance to maintain soil quality and productivity and a range of ecosystem services. Soil mismanagement has led to a significant loss of carbon in these areas, which in many of them entailed several land degradation processes such as soil erosion, reduction in crop productivity, lower soil water holding capacity, a decline in soil biodiversity, and, ultimately, desertification, hunger and poverty in developing countries. As a consequence, in dryland areas proper management practices and land use policies need to be implemented to increase the amount of C sequestered in the soil. When properly managed, dryland soils have a great potential to sequester carbon if financial incentives for implementation are provided. Dryland soils contain the largest pool of inorganic C. However, contrasting results are found in the literature on the magnitude of inorganic C sequestration under different management regimes. The rise of atmospheric carbon dioxide (CO2) levels will greatly affect dryland soils, since the positive effect of CO2 on crop productivity will be offset by a decrease of precipitation, thus increasing the susceptibility to soil erosion and crop failure. In dryland agriculture, any removal of crop residues implies a loss of soil organic carbon (SOC). Therefore, the adoption of no-tillage practices in field crops and growing cover crops in tree crops have a great potential in dryland areas due to the associated benefits of maintaining the soil surface covered by crop residues. Up to 80 % reduction in soil erosion has been reported when using no-tillage compared with conventional tillage. However, no-tillage must be maintained over the long term to enhance soil macroporosity and offset the emission of nitrous oxide (N2O) associated to the greater amount of water stored in the soil when no-tillage is used. Furthermore, the use of long fallow periods appears to be an inefficient practice for water conservation, since only 10–35 % of the rainfall received is available for the next crop when fallow is included in the rotation. Nevertheless, conservation agriculture practices are unlikely to be adopted in some developing countries where the need of crop residues for soil protection competes with other uses. Crop rotations, cover crops, crop residue retention, and conservation agriculture have a direct positive impact on biodiversity and other ecosystem services such as weed seed predation, abundance and distribution of a broad range of soil organisms, and bird nesting density and success. The objective of sequestering a significant amount of C in dryland soils is attainable and will result in social and environmental benefits.
Descripción38 Pags.- 3 Figs. The definitive version is available at: http://link.springer.com/journal/13593
Versión del editorhttp://dx.doi.org/10.1007/s13593-015-0326-x
URIhttp://hdl.handle.net/10261/121802
DOI10.1007/s13593-015-0326-x
ISSN1774-0746
E-ISSN1773-0155
Aparece en las colecciones: (EEAD) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
AlvaroJ_AgronSustDevelopm_2015.pdf1,15 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

117
checked on 10-mar-2024

WEB OF SCIENCETM
Citations

97
checked on 29-feb-2024

Page view(s)

584
checked on 19-mar-2024

Download(s)

662
checked on 19-mar-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.