Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/142104
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Hyperspectral Sensors as a Management Tool to Prevent the Invasion of the Exotic Cordgrass Spartina densiflora in the Doñana Wetlands

AutorBustamante, Javier CSIC ORCID ; Aragonés, David CSIC ORCID; Afán, Isabel CSIC ORCID ; Luque, Carlos J.; Pérez-Vázquez, Andrés; Castellanos, Eloy M.; Díaz-Delgado, Ricardo CSIC ORCID
Fecha de publicación8-dic-2016
EditorMultidisciplinary Digital Publishing Institute
CitaciónRemote Sensing 8(12): 1001 (2016)
ResumenWe test the use of hyperspectral sensors for the early detection of the invasive dense-flowered cordgrass (<i>Spartina densiflora</i> Brongn.) in the Guadalquivir River marshes, Southwestern Spain. We flew in tandem a CASI-1500 (368–1052 nm) and an AHS (430–13,000 nm) airborne sensors in an area with presence of <i>S. densiflora</i>. We simplified the processing of hyperspectral data (no atmospheric correction and no data-reduction techniques) to test if these treatments were necessary for accurate <i>S. densiflora</i> detection in the area. We tested several statistical signal detection algorithms implemented in ENVI software as spectral target detection techniques (matched filtering, constrained energy minimization, orthogonal subspace projection, target-constrained interference minimized filter, and adaptive coherence estimator) and compared them to the well-known spectral angle mapper, using spectra extracted from ground-truth locations in the images. The target <i>S. densiflora</i> was easy to detect in the marshes by all algorithms in images of both sensors. The best methods (adaptive coherence estimator and target-constrained interference minimized filter) on the best sensor (AHS) produced 100% discrimination (Kappa = 1, AUC = 1) at the study site and only some decline in performance when extrapolated to a new nearby area. AHS outperformed CASI in spite of having a coarser spatial resolution (4-m vs. 1-m) and lower spectral resolution in the visible and near-infrared range, but had a better signal to noise ratio. The larger spectral range of AHS in the short-wave and thermal infrared was of no particular advantage. Our conclusions are that it is possible to use hyperspectral sensors to map the early spread <i>S. densiflora</i> in the Guadalquivir River marshes. AHS is the most suitable airborne hyperspectral sensor for this task and the signal processing techniques target-constrained interference minimized filter (TCIMF) and adaptive coherence estimator (ACE) are the best performing target detection techniques that can be employed operationally with a simplified processing of hyperspectral images.
URIhttp://hdl.handle.net/10261/142104
DOI10.3390/rs8121001
Identificadoresdoi: 10.3390/rs8121001
Aparece en las colecciones: (EBD) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
remotesensing-08-01001.pdf9,59 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

20
checked on 08-abr-2024

WEB OF SCIENCETM
Citations

17
checked on 25-feb-2024

Page view(s)

230
checked on 17-abr-2024

Download(s)

227
checked on 17-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.