Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/151818
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia

AutorMacía, Javier CSIC; Manzoni, Romilde; Conde-Pueyo, Núria CSIC ORCID; Urrios, Arturo; Nadal, Eulàlia de; Solé, Ricard V. CSIC ORCID ; Posas, Francesc
Fecha de publicación1-feb-2016
EditorPublic Library of Science
CitaciónPLoS Computational Biology 12(2): e1004685 (2016)
ResumenEngineered synthetic biological devices have been designed to perform a variety of functions from sensing molecules and bioremediation to energy production and biomedicine. Notwithstanding, a major limitation of in vivo circuit implementation is the constraint associated to the use of standard methodologies for circuit design. Thus, future success of these devices depends on obtaining circuits with scalable complexity and reusable parts. Here we show how to build complex computational devices using multicellular consortia and space as key computational elements. This spatial modular design grants scalability since its general architecture is independent of the circuit’s complexity, minimizes wiring requirements and allows component reusability with minimal genetic engineering. The potential use of this approach is demonstrated by implementation of complex logical functions with up to six inputs, thus demonstrating the scalability and flexibility of this method. The potential implications of our results are outlined.
[Author Summary] Synthetic biological circuits have been built for different purposes. Nevertheless, the way these devices have been designed so far present several limitations: complex genetic engineering is required to implement complex circuits, and once the parts are built, they are not reusable. We proposed to distribute the computation in several cellular consortia that are physically separated, thus ensuring implementation of circuits independently of their complexity and using reusable components with minimal genetic engineering. This approach allows an easy implementation of multicellular computing devices for secretable inputs or biosensing purposes.
Versión del editorhttps://doi.org/10.1371/journal.pcbi.1004685
URIhttp://hdl.handle.net/10261/151818
DOI10.1371/journal.pcbi.1004685
ISSN1553-734X
E-ISSN1553-7358
Aparece en las colecciones: (IBE) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato
journal.pcbi.1004685.PDF4,69 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

22
checked on 10-abr-2024

SCOPUSTM   
Citations

46
checked on 11-abr-2024

WEB OF SCIENCETM
Citations

42
checked on 28-feb-2024

Page view(s)

313
checked on 19-abr-2024

Download(s)

178
checked on 19-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


Este item está licenciado bajo una Licencia Creative Commons Creative Commons