Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/180767
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

A 2D curvilinear coupled surface–subsurface flow model for simulation of basin/border irrigation: theory, validation and application

AutorNaghedifar, Seyed Mohammadreza; Ziaei, Ali Naghi; Playán Jubillar, Enrique CSIC ORCID ; Zapata Ruiz, Nery CSIC ORCID ; Hossein Ansari; Hasheminia, Seyed Majid
Fecha de publicaciónmar-2019
EditorSpringer Nature
CitaciónNaghedifar SM, Ziaei AN, Playán E, Zapata N, Seyed A, Hasheminia M. A 2D curvilinear coupled surface–subsurface flow model for simulation of basin/border irrigation: theory, validation and application. Irrigation Science 37 (2): 151-168 (2019)
ResumenDespite the development of pressurized irrigation systems in the second half of the twentieth century, surface irrigation continues to be the most used system in the world. Computer tools are required to support performance improvements leading to its sustainability. A simulation model of basin/border irrigation is presented in this paper combining two-dimensional overland hydraulics based on Saint–Venant equations with three-dimensional infiltration based on the mixed form of Richards’ equation. The coupling of these equations is attained by enforcing continuity of pressure at the soil surface. The model applies a finite-volume approach using the diffusion-wave approximation form of the shallow water equations. Water flow on undulated topographies is simulated using a non-orthogonal curvilinear coordinate system. An underrelaxed-modified Picard iteration algorithm is used for Richards’ equation, and an underrelaxed Picard iteration algorithm is used for Saint–Venant equations. The model was validated using experiments from the literature. Model performance was robust and accurate, even in complex theoretical cases with strong soil-surface undulations. Mass conservation was judged satisfactory in all cases, with the long-term ratio of mass balance error in the order of 10−2 in the most complex simulations. Soil type, mesh non-orthogonality, and the interaction of these variables had a strong effect on CPU time. Additional research will be required to transform this simulation model into an operational tool for surface irrigation. Attention will need to be paid to additional surface irrigation systems, soil types, and the optimization of computational speed.
Descripción27 Pags.- 2 Tabls.- 17 Figs. The definitive version is available at: https://link.springer.com/journal/271
Versión del editorhttps://doi.org/10.1007/s00271-018-0609-5
URIhttp://hdl.handle.net/10261/180767
DOI10.1007/s00271-018-0609-5
ISSN0342-7188
E-ISSN1432-1319
Aparece en las colecciones: (EEAD) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
ZapataN_IrrigatSci_2019.pdf2,01 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

6
checked on 16-mar-2024

WEB OF SCIENCETM
Citations

8
checked on 23-feb-2024

Page view(s)

392
checked on 18-mar-2024

Download(s)

318
checked on 18-mar-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.