Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/215456
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Epitaxial n++-InGaAs ultra-shallow junctions for highly scaled n-MOS devices

AutorTejedor, Paloma CSIC ORCID; Drescher, Maximilian; Vázquez, Luis CSIC ORCID ; Wilde, Lutz
Palabras claveIndium gallium arsenide
Ultra-shallow junctions
Semiconductor growth
Time-of-flight secondary ion mass spectrometry
Solid-state diffusion
Self-organization
Fecha de publicación2019
EditorElsevier BV
CitaciónApplied Surface Science 496 (2019)
Resumen[EN] High electron mobility III-V semiconductors like InGaAs are excellent candidates for sub-10 nm n-metal-oxide-semiconductor (nMOS) devices. One of the critical challenges in downscaling III-V devices is achieving low-resistance contacts by forming low-defect, ultra-shallow junctions <9 nm in depth, with n-type dopant concentrations above 10 cm . In the current study, we combine time-of-flight secondary ion mass spectrometry (ToF-SIMS) depth profile analysis, atomic force microscopy (AFM) imaging, and high-resolution transmission electron microscopy (HR-TEM) to determine the optimal doping strategy for growing Si-doped n-InGaAs ultra-shallow junctions by molecular beam epitaxy. We test three different approaches to doping: homogeneous co-deposition, single δ-layer (continuous) doping, and triple δ-layer (pulsed) doping. We demonstrate the formation of technologically suitable n-InGaAs junctions 5–7 nm deep, grown under As-rich conditions with a single δ-layer at temperatures as low as 400 °C. These junctions have peak Si concentrations between 6 × 10 and 1 × 10 cm and high crystal quality. The surface self-organizes into smooth ripples or mounds, up to a peak dopant concentration of ~2 × 10 cm Above this value, enhanced diffusion of Si and In due to a large population of Ga vacancies increases lattice strain in the semiconductor epilayer, triggering a transition from 2D growth to 3D growth and the formation of InGaAs clusters on the surface.
Versión del editorhttp://dx.doi.org/10.1016/j.apsusc.2019.143721
URIhttp://hdl.handle.net/10261/215456
DOI10.1016/j.apsusc.2019.143721
Identificadoresdoi: 10.1016/j.apsusc.2019.143721
issn: 0169-4332
Aparece en las colecciones: (ICMM) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Tejedor_Epitaxial_Applied_Surface_Science_496_2019.docx6,16 MBMicrosoft Word XMLVisualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

4
checked on 20-abr-2024

WEB OF SCIENCETM
Citations

4
checked on 26-feb-2024

Page view(s)

113
checked on 23-abr-2024

Download(s)

49
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.