Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/92259
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Optical nano-imaging of gate-tunable graphene plasmons

AutorChen, Jianing CSIC ORCID; Badioli, Michela; Alonso-González, Pablo CSIC ORCID ; Thongrattanasiri, S. CSIC; Huth, Florian; Godignon, Philippe; Cámara, Nicolás; García de Abajo, Francisco Javier; Hillenbrand, Rainer; Koppens, Frank H. L.
Fecha de publicación2012
EditorNature Publishing Group
CitaciónNature 487(7405): 77-81 (2012)
ResumenThe ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes. However, because photons do not possess charge, a way of controlling them efficiently by electrical means has so far proved elusive. A promising way to achieve electric control of light could be through plasmon polaritons-coupled excitations of photons and charge carriers-in graphene. In this two-dimensional sheet of carbon atoms, it is expected that plasmon polaritons and their associated optical fields can readily be tuned electrically by varying the graphene carrier density. Although evidence of optical graphene plasmon resonances has recently been obtained spectroscopically, no experiments so far have directly resolved propagating plasmons in real space. Here we launch and detect propagating optical plasmons in tapered graphene nanostructures using near-field scattering microscopy with infrared excitation light. We provide real-space images of plasmon fields, and find that the extracted plasmon wavelength is very short-more than 40 times smaller than the wavelength of illumination. We exploit this strong optical field confinement to turn a graphene nanostructure into a tunable resonant plasmonic cavity with extremely small mode volume. The cavity resonance is controlled in situ by gating the graphene, and in particular, complete switching on and off of the plasmon modes is demonstrated, thus paving the way towards graphene-based optical transistors. This successful alliance between nanoelectronics and nano-optics enables the development of active subwavelength-scale optics and a plethora of nano-optoelectronic devices and functionalities, such as tunable metamaterials, nanoscale optical processing, and strongly enhanced light-matter interactions for quantum devices and biosensing applications. © 2012 Macmillan Publishers Limited. All rights reserved.
DescripciónarXiv:1202.4996.-- et al.
Versión del editorhttp://dx.doi.org/10.1038/nature11254
URIhttp://hdl.handle.net/10261/92259
DOI10.1038/nature11254
Identificadoresdoi: 10.1038/nature11254
issn: 0028-0836
e-issn: 1476-4687
Aparece en las colecciones: (IQF) Artículos
(CFM) Artículos
(IMB-CNM) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Optical nano-imaging.pdf3,37 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

1.687
checked on 17-abr-2024

WEB OF SCIENCETM
Citations

1.632
checked on 24-feb-2024

Page view(s)

345
checked on 23-abr-2024

Download(s)

398
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.