In this paper, we study an information flow security property for systems specified as terms of a quantitative Markovian process algebra, namely the Performance Evaluation Process Algebra (PEPA). We propose a quantitative extension of the Non-Interference property used to secure systems from the functional point view by assuming that the observers are able to measure also the timing properties of the system, e.g., the response time of certain actions or its throughput. We introduce the notion of Persistent Stochastic Non-Interference (PSNI) based on the idea that every state reachable by a process satisfies a basic Stochastic Non-Interference (SNI) property. The structural operational semantics of PEPA allows us to give two characterizations of PSNI: one based on a bisimulation-like equivalence relation inducing a lumping on the underlying Markov chain, and another one based on unwinding conditions which demand properties of individual actions. These two different characterizations naturally lead to efficient methods for the verification and construction of secure systems. A decision algorithm for PSNI is presented and an application of PSNI to a queueing system is discussed.

Persistent Stochastic Non-Interference

Hillston J.;Marin A.;Piazza C.;Rossi S.
2021-01-01

Abstract

In this paper, we study an information flow security property for systems specified as terms of a quantitative Markovian process algebra, namely the Performance Evaluation Process Algebra (PEPA). We propose a quantitative extension of the Non-Interference property used to secure systems from the functional point view by assuming that the observers are able to measure also the timing properties of the system, e.g., the response time of certain actions or its throughput. We introduce the notion of Persistent Stochastic Non-Interference (PSNI) based on the idea that every state reachable by a process satisfies a basic Stochastic Non-Interference (SNI) property. The structural operational semantics of PEPA allows us to give two characterizations of PSNI: one based on a bisimulation-like equivalence relation inducing a lumping on the underlying Markov chain, and another one based on unwinding conditions which demand properties of individual actions. These two different characterizations naturally lead to efficient methods for the verification and construction of secure systems. A decision algorithm for PSNI is presented and an application of PSNI to a queueing system is discussed.
2021
181
File in questo prodotto:
File Dimensione Formato  
acta_postprint.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 413.3 kB
Formato Adobe PDF
413.3 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3744335
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact