Improving the Robustness of Thermal Models of Naturally Ventilated Buildings

Date
2017-12-05
Authors
Supervisor
Item type
Conference Contribution
Degree name
Journal Title
Journal ISSN
Volume Title
Publisher
Australian PV Institute
Abstract

Building Energy Simulation (BES) programs commonly employ a coupled multi-zone thermal and airflow network modelling approach to evaluate the natural ventilation in buildings. However, the robustness of such thermal-airflow models needs greater scrutiny. In particular, the method for determining the indoor-floor surface convective heat transfer coefficient (CHTC). In an attempt to make an initial investigation on this problem, this work utilized Computational Fluid Dynamics (CFD) for numerically examining the heat transfer and flow-fields in a typical room with a single sided window. While doing this, the convection heat transfer on the indoor floor surface driven by a thermal buoyancy effect established due to a temperature difference between inside surface of the floor and outside ambient was examined. The result showed that the heat transfer behavior of this partly open room was strongly influenced by the Rayleigh number (Ra) and the Window Opening Fraction (WOF). Further, it was found that the heat transfer on the floor varied significantly in a spatial context within the floor. As such, there is a significant scope of increasing the robustness of thermal models of naturally ventilated buildings by greater utilization of empirical relationships developed particularly for this purpose.

Description
Keywords
Source
In Proceedings of the Asia Pacific Solar Research Conference 2017, Publisher: Australian PV Institute, Dec 2017, ISBN: 978-0-6480414-1-2
DOI
Rights statement
Authors retain the right to place his/her publication version of the work on a personal website or institutional repository for non commercial purposes. The definitive version was published in (see Citation). The original publication is available at (see Publisher’s Version).