Repository logo
 

Electron spin resonance studies of 53Cr3+ and VO2+ ions in A1C13.6H2O.

Loading...
Thumbnail Image

Date

1975

Journal Title

Journal ISSN

Volume Title

Publisher

University of Ottawa (Canada)

Abstract

Electron spin resonance (ESR) studies are reported for Cr3+ and VO2+ in AlCl3.6H2O. Electron-nuclear double resonance (ENDOR) studies are reported for the isotope 53Cr 3+ in AlCl3.6H2O. All the microwave measurements were done at X-band microwave frequencies (∼ 9.4 GHZ). The VO2+ study was done at room temperature and it shows that these are two different orientations of the Al3+.6H2O complexes per unit cell. The VO2+.5H2O complexes associated with the two types of Al3+.6H2O complexes are rotated with respect to each other by an angle 33° +/- 3° in the plane perpendicular to the crystal c axis. The Cr3+ ESR measurements were done at four temperatures between room and liquid helium temperature, while the ENDOR of 53Cr3+ was done at liquid helium temperature. The Cr3+ studies show that the sign of the spin Hamiltonian zero-field splitting parameter D is negative, indicating that the Cr3+.6H2O magnetic complexes are trigonally compressed in AlCl3.6H2O. A comparison is made between the spin Hamiltonian parameter for 53Cr3+ impurities in several hydrated crystals and it is found that a purely static crystal field model does not satisfactorily explain the experimental results. When the VO2+. spin Hamiltonian parameters are also included in the comparison it is possible to make conclusions regarding the relative susceptibility of the various Al3+.6H2O complexes to distortion upon impurity doping. In particular it is concluded that the complexes in CsAl alum are more susceptible to distortion than are those in AlCl 3.6H2O.

Description

Keywords

Citation

Source: Masters Abstracts International, Volume: 45-06, page: 3180.