Apoptosis is a genetic program of cell death that eliminates superfluous or compromised cells during development and adult life of many organisms. In sea urchin embryos, apoptosis is not only a physiological event during larval metamorphosis, but also a process induced by cadmium accumulation or other stressor like TPA (12-O-tetradecanoylphorbol-13-acetate) followed by an increase of temperature to 31°C. Apoptosis is a highly conserved process usually operated by a proteolytic cascade that involves caspase activation by two different pathways: extrinsic and intrinsic. The first one involves membrane death receptors, while the second involves mitochondria. In this work we analyzed the possible involvement of extrinsic and intrinsic apoptotic pathways in physiological and stressful conditions in Paracentrotus lividus embryos. By fluorescent TUNEL assays we demonstrate that apoptosis is part of cadmium and TPA+31°C stress response. We find that Cd and TPA+31°C treatments induce apoptosis through caspase-3 activation, while caspase-7 is the main effector of physiological apoptosis. Caspase-10 is active only in physiological apoptosis, while caspase-8 is mainly involved in stress-induced apoptosis. In addition, we did not find any involvement of mitochondria. Moreover we observed, in Cd-treated embryos, a Reactive Oxygen Species (ROS) increase, that could be related to the induction of apoptosis.

Agnello, M., Filosto, S., Trinchella, F., Roccheri, M.C. (2008). Apoptosis during early development of sea urchin.. In VI Congresso: “Excerpts from DBCS” Dipartimento di Biologia Cellulare e dello Sviluppo "A. Monroy" (pp.13-13). Palermo.

Apoptosis during early development of sea urchin.

AGNELLO, Maria;FILOSTO, Simone;ROCCHERI, Maria Carmela
2008-01-01

Abstract

Apoptosis is a genetic program of cell death that eliminates superfluous or compromised cells during development and adult life of many organisms. In sea urchin embryos, apoptosis is not only a physiological event during larval metamorphosis, but also a process induced by cadmium accumulation or other stressor like TPA (12-O-tetradecanoylphorbol-13-acetate) followed by an increase of temperature to 31°C. Apoptosis is a highly conserved process usually operated by a proteolytic cascade that involves caspase activation by two different pathways: extrinsic and intrinsic. The first one involves membrane death receptors, while the second involves mitochondria. In this work we analyzed the possible involvement of extrinsic and intrinsic apoptotic pathways in physiological and stressful conditions in Paracentrotus lividus embryos. By fluorescent TUNEL assays we demonstrate that apoptosis is part of cadmium and TPA+31°C stress response. We find that Cd and TPA+31°C treatments induce apoptosis through caspase-3 activation, while caspase-7 is the main effector of physiological apoptosis. Caspase-10 is active only in physiological apoptosis, while caspase-8 is mainly involved in stress-induced apoptosis. In addition, we did not find any involvement of mitochondria. Moreover we observed, in Cd-treated embryos, a Reactive Oxygen Species (ROS) increase, that could be related to the induction of apoptosis.
Settore BIO/06 - Anatomia Comparata E Citologia
18-dic-2008
VI Congresso: “Excerpts from DBCS” Dipartimento di Biologia Cellulare e dello Sviluppo "A. Monroy"
Palermo
18-19 Dicembre
VI
2008
1
Agnello, M., Filosto, S., Trinchella, F., Roccheri, M.C. (2008). Apoptosis during early development of sea urchin.. In VI Congresso: “Excerpts from DBCS” Dipartimento di Biologia Cellulare e dello Sviluppo "A. Monroy" (pp.13-13). Palermo.
Proceedings (atti dei congressi)
Agnello, M; Filosto, S; Trinchella, F; Roccheri, MC
File in questo prodotto:
File Dimensione Formato  
dbcs 2008 Agnello filosto.pdf

accesso aperto

Dimensione 36.05 kB
Formato Adobe PDF
36.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/36538
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact