We investigated the mechanisms leading to the specific recognition of Guanine Guadruplex (G4) by DARPins peptides, which can lead to the design of G4s specific sensors. To this end we carried out all-atom molecular dynamics simulations to unravel the interactions between specific nucleic acids, including human-telomeric (h-telo), Bcl-2, and c-Myc, with different peptides, forming a DARPin/G4 complex. By comparing the sequences of DARPin with that of a peptide known for its high affinity for c-Myc, we show that the recognition cannot be ascribed to sequence similarity but, instead, depends on the complementarity between the three-dimensional arrangement of the molecular fragments involved: the α-helix/loops domain of DARPin and the G4 backbone. Our results reveal that DARPins tertiary structure presents a charged hollow region in which G4 can be hosted, thus the more complementary the structural shapes, the more stable the interaction.

Miclot T., Bignon E., Terenzi A., Grandemange S., Barone G., Monari A. (2022). G-Quadruplex Recognition by DARPIns through Epitope/Paratope Analogy**. CHEMISTRY-A EUROPEAN JOURNAL, 28(57) [10.1002/chem.202201824].

G-Quadruplex Recognition by DARPIns through Epitope/Paratope Analogy**

Miclot T.
Membro del Collaboration Group
;
Terenzi A.
Membro del Collaboration Group
;
Barone G.
Membro del Collaboration Group
;
2022-01-01

Abstract

We investigated the mechanisms leading to the specific recognition of Guanine Guadruplex (G4) by DARPins peptides, which can lead to the design of G4s specific sensors. To this end we carried out all-atom molecular dynamics simulations to unravel the interactions between specific nucleic acids, including human-telomeric (h-telo), Bcl-2, and c-Myc, with different peptides, forming a DARPin/G4 complex. By comparing the sequences of DARPin with that of a peptide known for its high affinity for c-Myc, we show that the recognition cannot be ascribed to sequence similarity but, instead, depends on the complementarity between the three-dimensional arrangement of the molecular fragments involved: the α-helix/loops domain of DARPin and the G4 backbone. Our results reveal that DARPins tertiary structure presents a charged hollow region in which G4 can be hosted, thus the more complementary the structural shapes, the more stable the interaction.
2022
Settore CHIM/03 - Chimica Generale E Inorganica
Miclot T., Bignon E., Terenzi A., Grandemange S., Barone G., Monari A. (2022). G-Quadruplex Recognition by DARPIns through Epitope/Paratope Analogy**. CHEMISTRY-A EUROPEAN JOURNAL, 28(57) [10.1002/chem.202201824].
File in questo prodotto:
File Dimensione Formato  
CEJ_2022_e202201824.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/572368
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact