High performance entanglement-assisted quantum LDPC codes need little entanglement

Publication Type:
Journal Article
Citation:
IEEE Transactions on Information Theory, 2011, 57 (3), pp. 1761 - 1769
Issue Date:
2011-03-01
Filename Description Size
Thumbnail2012003031OK.pdf1.01 MB
Adobe PDF
Full metadata record
Though the entanglement-assisted formalism provides a universal connection between a classical linear code and an entanglement-assisted quantum error-correcting code (EAQECC), the issue of maintaining large amount of pure maximally entangled states in constructing EAQECCs is a practical obstacle to its use. It is also conjectured that the power of entanglement-assisted formalism to convert those good classical codes comes from massive consumption of maximally entangled states. We show that the above conjecture is wrong by providing families of EAQECCs with an entanglement consumption rate that diminishes linearly as a function of the code length. Notably, two families of EAQECCs constructed in the paper require only one copy of maximally entangled state no matter how large the code length is. These families of EAQECCs that are constructed from classical finite geometric LDPC codes perform very well according to our numerical simulations. Our work indicates that EAQECCs are not only theoretically interesting, but also physically implementable. Finally, these high performance entanglement-assisted LDPC codes with low entanglement consumption rates allow one to construct high-performance standard QECCs with very similar parameters. © 2011 IEEE.
Please use this identifier to cite or link to this item: