Monte Carlo configuration interaction with perturbation corrections for dissociation energies of first row diatomic molecules: C-2, N-2, O-2, CO, and NO

Loading...
Thumbnail Image
Files
JChemPhys_MCCI_dissoc_2014.pdf(1.23 MB)
Published Version
Date
2014-02-28
Authors
Kelly, Thomas P.
Perera, Ajith
Bartlett, Rodney J.
Greer, James C.
Journal Title
Journal ISSN
Volume Title
Publisher
AIP Publishing
Published Version
Research Projects
Organizational Units
Journal Issue
Abstract
Dissociation energies for the diatomic molecules C2, N2, O2, CO, and NO are estimated using the Monte Carlo configuration interaction (MCCI) and augmented by a second order perturbation theory correction. The calculations are performed using the correlation consistent polarized valence “triple zeta” atomic orbital basis and resulting dissociation energies are compared to coupled cluster calculations including up to triple excitations (CCSDT) and Full Configuration Interaction Quantum Monte Carlo (FCIQMC) estimates. It is found that the MCCI method readily describes the correct behavior for dissociation for the diatomics even when capturing only a relatively small fraction (∼80%) of the correlation energy. At this level only a small number of configurations, typically O(103) from a FCI space of dimension O(1014), are required to describe dissociation. Including the perturbation correction to the MCCI estimates, the difference in dissociation energies with respect to CCSDT ranges between 1.2 and 3.1 kcal/mol, and the difference when comparing to FCIQMC estimates narrows to between 0.5 and 1.9 kcal/mol. Discussions on MCCI's ability to recover static and dynamic correlations and on the form of correlations in the electronic configuration space are presented.
Description
Keywords
Matrix renormalization-group , Quantum-chemistry , Benchmark , Selection , Atoms
Citation
Kelly, T. P., Perera, A., Bartlett, R. J. and Greer, J. C. (2014) 'Monte Carlo configuration interaction with perturbation corrections for dissociation energies of first row diatomic molecules: C2, N2, O2, CO, and NO', The Journal of Chemical Physics, 140(8), pp. 084114. doi:10.1063/1.4866609
Link to publisher’s version
Copyright
© 2014, AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in J. Chem. Phys. 140, 084114 (2014); and may be found at http://dx.doi.org/10.1063/1.4866609