A number of factors can trigger amyotrophic lateral sclerosis (ALS), although its precise pathogenesis is still uncertain. In a previous study done by us, poisonous liquoral levels of hydrogen sulphide (H2S) in sporadic ALS patients were reported. In the same study very high concentrations of H2S in the cerebral tissues of the familial ALS (fALS) model of the SOD1G93A mouse, were measured. The objective of this study was to test whether decreasing the levels of H2S in the fALS mouse could be beneficial. Amino-oxyacetic acid (AOA)—a systemic dual inhibitor of cystathionine--synthase and cystathionine- lyase (two key enzymes in the production of H2S)—was administered to fALS mice. AOA treatment decreased the content of H2S in the cerebral tissues, and the lifespan of female mice increased by approximately ten days, while disease progression in male mice was not aected. The histological evaluation of the spinal cord of the females revealed a significant increase in GFAP positivity and a significant decrease in IBA1 positivity. In conclusion, the results of the study indicate that, in the animal model, the inhibition of H2S production is more eective in females. The findings reinforce the need to adequately consider sex as a relevant factor in ALS

Spalloni, A., Greco, V., Ciriminna, G., Corasolla Carregari, V., Marini, F., Pieroni, L., Mercuri Nicola, B., Urbani, A., Longone, P., Impact of Pharmacological Inhibition of Hydrogen Sulphide Production inthe SOD1G93A-ALS Mouse Model, <<INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES>>, 2019; 20 (10): N/A-N/A. [doi:10.3390/ijms20102550] [http://hdl.handle.net/10807/140579]

Impact of Pharmacological Inhibition of Hydrogen Sulphide Production in the SOD1G93A-ALS Mouse Model

Greco, Viviana;Marini, Federica;Urbani, Andrea;
2019

Abstract

A number of factors can trigger amyotrophic lateral sclerosis (ALS), although its precise pathogenesis is still uncertain. In a previous study done by us, poisonous liquoral levels of hydrogen sulphide (H2S) in sporadic ALS patients were reported. In the same study very high concentrations of H2S in the cerebral tissues of the familial ALS (fALS) model of the SOD1G93A mouse, were measured. The objective of this study was to test whether decreasing the levels of H2S in the fALS mouse could be beneficial. Amino-oxyacetic acid (AOA)—a systemic dual inhibitor of cystathionine--synthase and cystathionine- lyase (two key enzymes in the production of H2S)—was administered to fALS mice. AOA treatment decreased the content of H2S in the cerebral tissues, and the lifespan of female mice increased by approximately ten days, while disease progression in male mice was not aected. The histological evaluation of the spinal cord of the females revealed a significant increase in GFAP positivity and a significant decrease in IBA1 positivity. In conclusion, the results of the study indicate that, in the animal model, the inhibition of H2S production is more eective in females. The findings reinforce the need to adequately consider sex as a relevant factor in ALS
2019
Inglese
Spalloni, A., Greco, V., Ciriminna, G., Corasolla Carregari, V., Marini, F., Pieroni, L., Mercuri Nicola, B., Urbani, A., Longone, P., Impact of Pharmacological Inhibition of Hydrogen Sulphide Production inthe SOD1G93A-ALS Mouse Model, <<INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES>>, 2019; 20 (10): N/A-N/A. [doi:10.3390/ijms20102550] [http://hdl.handle.net/10807/140579]
File in questo prodotto:
File Dimensione Formato  
SpalloniGreco et al 2019.pdf

accesso aperto

Tipologia file ?: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.43 MB
Formato Adobe PDF
2.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/140579
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact