Coexistence of Vehicular Communication Technologies and Wi-Fi in the 5 and 6 GHz bands

Files
TR Number
Date
2020-11-20
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

The unlicensed wireless spectrum offers exciting opportunities for developing innovative wireless applications. This has been true ever since the 2.4 GHz band and parts of the 5 GHz bands were first opened for unlicensed access worldwide. In recent years, the 5 GHz unlicensed bands have been one of the most coveted for launching new wireless services and applications due to their relatively superior propagation characteristics and the abundance of spectrum therein. However, the appetite for unlicensed spectrum seems to remain unsatiated; the demand for additional unlicensed bands has been never-ending. To meet this demand, regulators in the US and Europe have been considering unlicensed operations in the 5.9 GHz bands and in large parts of the 6 GHz bands.

In the last two years alone, the Federal Communications Commission in the US has added more than 1.2 GHz of spectrum in the pool of unlicensed bands. Wi-Fi networks are likely to be the biggest beneficiaries of this spectrum. Such abundance of spectrum would allow massive improvements in the peak throughput and potentially allow a considerable reduction of latency, thereby enabling support for emerging wireless applications such as augmented and virtual reality, and mobile gaming using Wi-Fi over unlicensed bands. However, access to these bands comes with its challenges. Across the globe, a wide range of incumbent wireless technologies operate in the 5 GHz and 6 GHz bands. This includes weather and military radars, and vehicular communication systems in the 5 GHz bands, and fixed-service systems, satellite systems, and television pick-up stations in the 6 GHz bands. Furthermore, due to the development of several cellular-based unlicensed technologies (such as Licensed Assisted Access and New Radio Unlicensed, NR-U), the competition for channel access among unlicensed devices has also been increasing. Thus, coexistence across wireless technologies in the 5 GHz and 6 GHz bands has emerged as an extremely challenging and interesting research problem.

In this dissertation, we first take a comprehensive look at the various coexistence scenarios that emerge in the 5 GHz and 6 GHz bands as a consequence of new regulatory decisions. These scenarios include coexistence between Wi-Fi and incumbent users (both in the 5 GHz and 6 GHz bands), coexistence of Wi-Fi and vehicular communication systems, coexistence across different vehicular communication technologies, and coexistence across different unlicensed systems. Since a vast majority of these technologies are fundamentally different from each other and serve diverse use-cases each coexistence problem is unique. Insights derived from an in-depth study of one coexistence problem do not help much when the coexisting technologies change. Thus, we study each scenario separately and in detail. In this process, we highlight the need for the design of novel coexistence mechanisms in several cases and outline potential research directions.

Next, we shift our attention to coexistence between Wi-Fi and vehicular communication technologies designed to operate in the 5.9 GHz intelligent transportation systems (ITS) bands. Until the development of Cellular V2X (C-V2X), dedicated short range communications (DSRC) was the only major wireless technology that was designed for communication in high-speed and potentially dense vehicular settings. Since DSRC uses the IEEE 802.11p standard for its physical (PHY) and medium access control (MAC) layers, the manner in which DSRC and Wi-Fi devices try to gain access to the channel is fundamentally similar. Consequently, we show that spectrum sharing between these two technologies in the 5.9 GHz bands can be easily achieved by simple modifications to the Wi-Fi MAC layer.

Since the design of C-V2X in 2017, however, the vehicular communication landscape has been fast evolving. Because DSRC systems were not widely deployed, automakers and regulators had an opportunity to look at the two technologies, consider their benefits and drawbacks and take a fresh look at the spectrum sharing scenario. Since Wi-Fi can now potentially share the spectrum with C-V2X at least in certain regions, we take an in-depth look at various Wi-Fi and C-V2X configurations and study whether C-V2X and Wi-Fi can harmoniously coexist with each other. We determine that because C-V2X is built atop cellular LTE, Wi-Fi and C-V2X systems are fundamentally incompatible with each other. If C-V2X and Wi-Fi devices are to share the spectrum, considerable modifications to the Wi-Fi MAC protocol would be required.

Another equally interesting scenario arises in the 6 GHz bands, where 5G NR-U and Wi-Fi devices are likely to operate on a secondary shared basis. Since the 6 GHz bands were only recently considered for unlicensed access, these bands are free from Wi-Fi and NR-U devices. As a result, the greenfield 6 GHz bands provide a unique and rare opportunity to freshly evaluate the coexistence between Wi-Fi and cellular-based unlicensed wireless technologies. We study this coexistence problem by developing a stochastic geometry-based analytical model. We see that by disabling the listen before talk based legacy contention mechanism---which has been used by Wi-Fi devices ever since their conception---the performance of both Wi-Fi and NR-U systems can improve. This has important implications in the 6 GHz bands, where such legacy transmissions can indeed be disabled because Wi-Fi devices, for the first time since the design of IEEE 802.11a, can operate in the 6 GHz bands without any backward compatibility issues.

In the course of studying the aforementioned coexistence problems, we identified several gaps in the literature on the performance analysis of C-V2X and IEEE 802.11ax---the upcoming Wi-Fi standard. We address three such gaps in this dissertation.

First, we study the performance of C-V2X sidelink mode 4, which is the communication mode in C-V2X that allows direct vehicular communications (i.e., without assistance from the cellular infrastructure). Using our in-house standards-compliant network simulator-3 (ns-3) simulator, we perform simulations to evaluate the performance of C-V2X sidelink mode 4 in highway environments. In doing so, we identify that packet re-transmissions, which is a feature introduced in C-V2X to provide frequency and time diversity, thereby improving the system performance, can have the opposite effect if the vehicular density increases. In fact, packet re-transmissions are beneficial for C-V2X system performance only at low vehicular densities. Thus, if vehicles are statically configured to always use/disable re-transmissions, the maximum potential of this feature is not realized. Therefore, we propose a simple and effective, distributed re-transmission control mechanism named Channel Congestion Based Re-transmission Control (C2RC), which leverages the locally available channel sensing results to allow vehicles to autonomously decide when to switch on re-transmissions and when to switch them off.

Second, we present a detailed analysis of the performance of Multi User Orthogonal Frequency Division Multiple Access (MU OFDMA)---a feature newly introduced in IEEE 802.11ax---in a wide range of deployment scenarios. We consider the performance of 802.11ax networks when the network comprises of only 802.11ax as well as a combination of 802.11ax and legacy stations. The latter is a practical scenario, especially during the initial phases of 802.11ax deployments. Simulation results, obtained from our ns-3 based simulator, give encouraging signs for 802.11ax performance in many real-world scenarios. That being said, there are some scenarios where naive usage of MU OFDMA by an 802.11ax-capable Wi-Fi AP can be detrimental to the overall system performance. Our results indicate that careful consideration of network dynamics is critical in exploiting the best performance, especially in a heterogeneous Wi-Fi network.

Finally, we perform a comprehensive simulation study to characterize the performance of Multi Link Aggregation (MLA) in IEEE 802.11be. MLA is a novel feature that is likely to be introduced in next-generation Wi-Fi (i.e., Wi-Fi 7) devices and is aimed at reducing the worst-case latency experienced by Wi-Fi devices in dense traffic environments. We study the impact of different traffic densities on the 90 percentile latency of Wi-Fi packets and identify that the addition of a single link is sufficient to substantially bring down the 90 percentile latency in many practical scenarios. Furthermore, we show that while the addition of subsequent links is beneficial, the largest latency gain in most scenarios is experienced when the second link (i.e., one additional) link is added. Finally, we show that even in extremely dense traffic conditions, if a sufficient number of links are available at the MLA-capable transmitter and receiver, MLA can help Wi-Fi devices to meet the latency requirements of most real-time applications.

Description
Keywords
Vehicular communications, Wi-Fi, Wireless Local Area Networks, Dynamic Spectrum Sharing
Citation