Wildland Fire in the Central Appalachian Mountains: Impacts on Above- and Belowground Resources

Files
TR Number
Date
2021-03-03
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Prescribed fire use in Virginia and West Virginia has increased over the past ten years as forest managers on public lands have increasingly used prescribed fire to meet management goals. These goals include hazardous fuel reduction, wildlife habitat restoration and management, and control of less desired vegetation. Research is needed to better understand the effects of wildland fire on forest ecosystems. In this study, we addressed wildland fire's effects on water, vegetation, and soil resources in the central Appalachian Region. Moreover, the long-term efficacy of various types of timber harvests on forest fuel reduction was analyzed.

Over fifty peer-reviewed articles were evaluated to characterize the effects of prescribed fire on physical, chemical, and biological water quality parameters throughout the eastern United States. It was determined that fires of low to moderate intensity and severity may cause short-term sediment and nutrient increases in nearby waterbodies, but these effects often dissipate within 2-3 years. Effects on biological organisms are more transient, frequently lasting from a few weeks to a few months. Regeneration following wildfires at three sites in Virginia and West Virginia varied due to fire behavior and time since fire. Preferred and undesired species responded differently at each site. Follow-up treatments and continued monitoring are needed to obtain desired vegetative compositions post-fire. Two dormant season prescribed fires on the Fishburn Forest near Blacksburg, Virginia were studied for mineral soil chemistry effects. Both treatment and time affected macronutrient levels, but no differences were present 6 and 14 months post-fire between burned and unburned locations. Forest fuels were quantified approximately 20 years following different silvicultural harvests on the George Washington-Jefferson National Forest. Fuels of different size classes responded differently to different harvests as fine fuels were reduced by the high-leave shelterwood treatment, and coarse woody fuels were reduced by the clearcut and low-leave shelterwood treatments. Overall, low intensity and low severity fires induce minimal, potentially negative changes in water and soil quality. In contrast, wildfires of high intensity and severity may potentially contribute to changes in species composition and forest floor properties. Furthermore, varying levels of overstory removal may reduce extreme wildfire risk for decades. The findings of this study reinforce the need for continued research and monitoring of both wildfire effects and prescribed fire use in the central Appalachian Region.

Description
Keywords
Prescribed Fire, Wildfire, Tree Regeneration, Forest Soils, Silviculture, Carbon, Nitrogen, Calcium, Magnesium, Phosphorus, Potassium, pH, Water Quality
Citation