Cyclic Uniaxial Constitutive Model For Steel Reinforcement

Files
TR Number
Date
2015-01-31
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Reinforced Concrete (RC) structures are common in earthquake-prone areas. During an earthquake, the steel reinforcement is subjected to cyclic strain histories which lead to inelastic response. In the case of rare, strong earthquakes, inelastic buckling and even rupture due to low-cycle fatigue can also occur. The understanding and characterization of the performance of RC structures under earthquake hazards requires the accurate simulation of the inelastic hysteretic behavior of steel reinforcement by means of appropriate constitutive models.

Several uniaxial material models have been developed for reinforcing steel. Existing material models sacrifice efficiency for accuracy or vice versa. Conceptually simple and numerically efficient models do not accurately capture the hysteretic response and ignore rupture or buckling. On the other hand, more refined material models are characterized by iterative stress update procedures which can significantly increase the computational cost of an analysis. Additionally, experience suggests that refined models attempting for the effect of inelastic buckling tend to lead to numerical convergence problems in the stress update procedure.

The goal of the present study is the formulation and implementation of an accurate and computationally efficient constitutive model for steel reinforcement under cyclic loading. A previously developed model, capable of capturing the inelastic hysteretic response of reinforcing steel in the absence of buckling and rupture, is used as a starting point in this study. The model is enhanced by replacing its original, iterative stress update procedure with an equally accurate, non-iterative one. Additionally, the model is enhanced to capture the effects of inelastic buckling and of rupture. The accuracy of the model and the efficiency of the non-iterative stress update algorithm are demonstrated by means of validation analyses.

Description
Keywords
Reinforcing Steel, Constitutive Model, Cyclic Loading, Buckling, Rupture
Citation
Collections