Inoculum pattern and relationship between incidence of black root rot of tobacco and inoculum density of Thielaviopsis basicola in field soil

TR Number
Date
1982
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Polytechnic Institute and State University
Abstract

Thielaviopsis basicola (Berk. and Br.) is a widespread, soil-borne, pathogenic fungus which causes a root rot on tobacco (Nicotiana tabacum L.). Presently, control is achieved primarily through the use of resistant cultivars of tobacco or chemicals. In order to develop a disease prediction program, disease-inoculum density relationships must be determined. It was the purpose of this study to develop an improved procedure for estimating the populations of T. basicola in naturally infested soil. A second objective was to determine the horizontal inoculum pattern of T. basicola in tobacco field soil, and the third objective was to determine the relationship between black root rot of tobacco and inoculum density of T. basicola in naturally infested soil.

Two fields in southwestern Virginia were randomly and systematically sampled to assay the population density of T. basicola in the soil. Populations of T. basicola were isolated using a modified carrot-disc baiting technique and calculated using a colonization correction factor. Frequencies of calculated population densities of T. basicola in soil samples were compared, using a Chi-square test, to the expected frequencies indicated by the Poisson, Neyman Type A, and negative binomial distributions. Temperature-tank studies were conducted to investigate inoculum density-disease relationships. Two cultivars of tobacco were grown in soil naturally infested with T. basicola. The soil was thoroughly mixed before use to preclude inoculum clumping.

The results obtained with either systematic or random sampling indicated that propagules of T. basicola are clumped or aggregated in tobacco field soil, as there was a good fit of the data to the negative binomial distribution. Also, the variance to mean ratios were significantly (P = 0.05) greater than 1.0 which is indicative of a clumped pattern. Other indexes of aggregation indicated a low to moderate degree of inoculum clumping in soil.

For soil temperature-tank tests, root rot incidence was 96-100% at all natural population densities for both slightly resistant cv. Burley 21 and susceptible cv. Judy's Pride plants, and T. basicola was consistently associated with rotted roots. Low R² values were obtained in regression analyses of T. basicola inoculum density versus mean percent root rot per Burley 21 plant and per Judy's Pride plant.

Description
Keywords
Citation
Collections