Functional metal-based 3D-printed electronics engineering: Tunability and bio-recognition

No Thumbnail Available
Date
2022-08-01
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Altmetrics
Abstract
3D-printing technology has brought light to the large-scale and sustainable production of a wide range of low-cost electronic devices with custom forms on-demand. Despite the current availability of mainstream carbon-based nanocomposite filaments, 3D-printing of noble metals is nowadays a challenge. Herein, a one-step func-tionalization approach has been devised for the straightforward and cost-effective manufacturing of functional metal-based 3D-printed electronics by galvanically replacing Cu-based 3D-printed (3D-Cu) electrodes with nobler metal counterparts, viz. Ag and Au. As a first demonstration of applicability, two appealing bio-electroanalytical approaches, such as the chiral discrimination of amino acids and the supramolecular deter-mination of uranium have been considered -by taking advantage of the capability of noble metals to physically/ chemically accommodate several molecular components-, reaching enhanced performances when compared with the pristine 3D-Cu counterpart. Consequently, this alchemy-inspired approach, which combines (i) 3D-Cu electrodes as sacrificial platforms with (ii) noble metals via a galvanic exchange reaction, provides a robust pathway to harbor molecular components in order to exploit metal-based 3D-printed electronics in real tasks.
Description
Citation
Applied Materials Today. 2022, vol. 28, issue 1, p. 1-6.
https://www.sciencedirect.com/science/article/pii/S2352940722001548
Document type
Peer-reviewed
Document version
Accepted version
Date of access to the full text
2024-05-20
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Citace PRO