Phase-Noise Characterization in Stable Optical Frequency Transfer over Free Space and Fiber Link Testbeds

Abstract
Time and frequency metrology depends on stable oscillators in both radio-frequency and optical domains. With the increased complexity of the highly precise oscillators also came the demand for delivering the oscillators’ harmonic signals between delocalized sites for comparison, aggregation, or other purposes. Besides the traditional optical fiber networks, free-space optical links present an alternative tool for disseminating stable sources’ output. We present a pilot experiment of phase-coherent optical frequency transfer using a free-space optical link testbed. The experiment performed on a 30 m long link demonstrates the phase-noise parameters in a free-space optical channel under atmospheric turbulence conditions, and it studies the impact of active MEMS mirror stabilization of the received optical wave positioning on the resulting transfer’s performance. Our results indicate that a well-configured MEMS mirror beam stabilization significantly enhances fractional frequency stability, achieving the14th-order level for integration times over 30 s.
Description
Citation
Electronics (MDPI). 2023, vol. 12, issue 23, p. 1-12.
https://www.mdpi.com/2079-9292/12/23/4870
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO