Multiple normalized solutions for the planar Schrödinger–Poisson system with critical exponential growth

Loading...
Thumbnail Image
Date
2024-02-16
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Nature
Altmetrics
Abstract
The paper deals with the existence of normalized solutions for the following Schr & ouml;dinger-Poisson system with -constraint: { -Delta u+lambda u+mu(log||& lowast;u2)u=(e(u2-)1-u2)u,x is an element of R-2, integral R(2)u(2)dx=c, where mu>0,lambda is an element of R , will arise as a Lagrange multiplier and the nonlinearity enjoys critical exponential growth of Trudinger-Moser type. By specifying explicit conditions on the energy level c, we detect a geometry of local minimum and a minimax structure for the corresponding energy functional, and prove the existence of two solutions, one being a local minimizer and one of mountain-pass type. In particular, to catch a second solution of mountain-pass type, some sharp estimates of energy levels are proposed, suggesting a new threshold of compactness in the -constraint. Our study extends and complements the results of Cingolani-Jeanjean (SIAM J Math Anal 51(4): 3533-3568, 2019) dealing with the power nonlinearity a|u|p-2uin the case ofa>0andp>4, in the case of and , which seems to be the first contribution in the context of normalized solutions. Our model presents some new difficulties due to the intricate interplay between a logarithmic convolution potential and a nonlinear term of critical exponential type and requires a novel analysis and the implementation of new ideas, especially in the compactness argument. We believe that our approach will open the door to the study of other -constrained problems with critical exponential growth, and the new underlying ideas are of future development and applicability.
Description
Citation
MATHEMATISCHE ZEITSCHRIFT. 2024, vol. 306, issue 2, p. 1-32.
https://link.springer.com/article/10.1007/s00209-024-03432-9
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO