Počet záznamů: 1  

Data-driven kinetic energy density fitting for orbital-free DFT: Linear vs Gaussian process regression

  1. 1.
    0538076 - ÚFCH JH 2021 RIV US eng J - Článek v odborném periodiku
    Manzhos, S. - Golub, Pavlo
    Data-driven kinetic energy density fitting for orbital-free DFT: Linear vs Gaussian process regression.
    Journal of Chemical Physics. Roč. 153, č. 7 (2020), č. článku 074104. ISSN 0021-9606. E-ISSN 1089-7690
    Institucionální podpora: RVO:61388955
    Klíčová slova: thomas-fermi approximation * functional theory * local pseudopotentials * magnesium * accurate * aluminum
    Obor OECD: Physical chemistry
    Impakt faktor: 3.488, rok: 2020 ; AIS: 0.833, rok: 2020
    Způsob publikování: Open access
    DOI: https://doi.org/10.1063/5.0015042

    We study the dependence of kinetic energy densities (KEDs) on density-dependent variables that have been suggested in previous works on kinetic energy functionals for orbital-free density functional theory. We focus on the role of data distribution and on data and regressor selection. We compare unweighted and weighted linear and Gaussian process regressions of KEDs for light metals and a semiconductor. We find that good quality linear regression resulting in good energy-volume dependence is possible over density-dependent variables suggested in previous literature studies. This is achieved with weighted fitting based on the KED histogram. With Gaussian process regressions, excellent KED fit quality well exceeding that of linear regressions is obtained as well as a good energy-volume dependence, which was somewhat better than that of best linear regressions. We find that while the use of the effective potential as a descriptor improves linear KED fitting, it does not improve the quality of the energy-volume dependence with linear regressions but substantially improves it with Gaussian process regression. Gaussian process regression is also able to perform well without data weighting.
    Trvalý link: http://hdl.handle.net/11104/0315897
     
    Název souboruStaženoVelikostKomentářVerzePřístup
    0538076.pdf98.2 MBopen accessVydavatelský postprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.