Počet záznamů: 1  

Polychlorinated environmental toxicants affect sphingolipid metabolism during neurogenesis in vitro

  1. 1.
    0554413 - BFÚ 2022 RIV IE eng J - Článek v odborném periodiku
    Slováčková, J. - Slavík, J. - Kulich, P. - Večeřa, J. - Kováč, O. - Paculova, H. - Straková, N. - Fedr, Radek - Silva, J. P. - Carvalho, F. - Machala, M. - Procházková, Jiřina
    Polychlorinated environmental toxicants affect sphingolipid metabolism during neurogenesis in vitro.
    Toxicology. Roč. 463, NOV 2021 (2021), č. článku 152986. ISSN 0300-483X
    Grant CEP: GA ČR(CZ) GA21-11585S
    Institucionální podpora: RVO:68081707
    Klíčová slova: junctional intercellular communication * ceramide 1-phosphate * pcb congeners * biphenyls * sulfatide * cells
    Obor OECD: Pharmacology and pharmacy
    Impakt faktor: 4.571, rok: 2021
    Způsob publikování: Omezený přístup
    https://www.sciencedirect.com/science/article/pii/S0300483X21003085?via%3Dihub

    Sphingolipids (SLs) are important signaling molecules and functional components of cellular membranes. Although SLs are known as crucial regulators of neural cell physiology and differentiation, modulations of SLs by environmental neurotoxicants in neural cells and their neuronal progeny have not yet been explored. In this study, we used in vitro models of differentiated neuron-like cells, which were repeatedly exposed during differentiation to model environmental toxicants, and we analyzed changes in sphingolipidome, cellular morphology and gene expression related to SL metabolism or neuronal differentiation. We compared these data with the results obtained in undifferentiated neural cells with progenitor-like features. As model polychlorinated organic pollutants, we used 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3'-dichlorobiphenyl (PCB11) and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153). PCB153 revealed itself as the most prominent deregulator of SL metabolism and as potent toxicant during early phases of in vitro neurogenesis. TCDD exerted only minor changes in the levels of analysed lipid species, however, it significantly changed the rate of pro-neuronal differentiation and deregulated expression of neuronal markers during neurogenesis. PCB11 acted as a potent disruptor of in vitro neurogenesis, which induced significant alterations in SL metabolism and cellular morphology in both differentiated neuron-like models (differentiated NE4C and NG108-15 cells). We identified ceramide-1-phosphate, lactosylceramides and several glycosphingolipids to be the most sensitive SL species to exposure to polychlorinated pollutants. Additionally, we identified deregulation of several genes related to SL metabolism, which may be explored in future as potential markers of developmental neurotoxicity.
    Trvalý link: http://hdl.handle.net/11104/0329110

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.