We report on the surface-assisted synthesis and spectroscopic characterization of the hitherto longest periacene analogue with oxygen-boron-oxygen (OBO) segments along the zigzag edges, that is, a heteroatom-doped perihexacene 1. Surface-catalyzed cyclodehydrogenation successfully transformed the double helicene precursor 2, i.e., 12a,26a-dibora-12,13,26,27-tetraoxa-benzo[1,2,3-hi:4,5,6-h′i′]dihexacene, into the planar perihexacene analogue 1, which was visualized by scanning tunneling microscopy and noncontact atomic force microscopy. X-ray photoelectron spectroscopy, Raman spectroscopy, together with theoretical modeling, on both precursor 2 and product 1, provided further insights into the cyclodehydrogenation process. Moreover, the nonplanar precursor 2 underwent a conformational change upon adsorption on surfaces, and one-dimensional self-assembled superstructures were observed for both 2 and 1 due to the presence of OBO units along the zigzag edges.

Heteroatom-Doped Perihexacene from a Double Helicene Precursor: On-Surface Synthesis and Properties

Tommasini, Matteo;
2017-01-01

Abstract

We report on the surface-assisted synthesis and spectroscopic characterization of the hitherto longest periacene analogue with oxygen-boron-oxygen (OBO) segments along the zigzag edges, that is, a heteroatom-doped perihexacene 1. Surface-catalyzed cyclodehydrogenation successfully transformed the double helicene precursor 2, i.e., 12a,26a-dibora-12,13,26,27-tetraoxa-benzo[1,2,3-hi:4,5,6-h′i′]dihexacene, into the planar perihexacene analogue 1, which was visualized by scanning tunneling microscopy and noncontact atomic force microscopy. X-ray photoelectron spectroscopy, Raman spectroscopy, together with theoretical modeling, on both precursor 2 and product 1, provided further insights into the cyclodehydrogenation process. Moreover, the nonplanar precursor 2 underwent a conformational change upon adsorption on surfaces, and one-dimensional self-assembled superstructures were observed for both 2 and 1 due to the presence of OBO units along the zigzag edges.
2017
Catalysis; Chemistry (all); Biochemistry; Colloid and Surface Chemistry
File in questo prodotto:
File Dimensione Formato  
jacs.7b02258.pdf

Accesso riservato

Descrizione: articolo principale
: Publisher’s version
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF   Visualizza/Apri
11311-1047360_Tommasini.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.31 MB
Formato Adobe PDF
2.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1047360
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 54
social impact