Deep Reinforcement Learning (DRL) is rising as a promising tool for solving optimization problems in optical networks. Though studies employing DRL for solving static optimization problems in optical networks are appearing, assessing strengths and weaknesses of DRL with respect to state-of-the-art solution methods is still an open research question. In this work, we focus on Routing and Wavelength Assignment (RWA), a well-studied problem for which fast and scalable algorithms leading to better optimality gaps are always sought for. We develop two different DRL-based methods to assess the impact of different design choices on DRL performance. In addition, we propose a Multi-Start approach that can improve the average DRL performance, and we engineer a shaped reward that allows efficient learning in networks with high link capacities. With Multi-Start, DRL gets competitive results with respect to a state-of-the-art Genetic Algorithm with significant savings in computational times. Moreover, we assess the generalization capabilities of DRL to traffic matrices unseen during training, in terms of total connection requests and traffic distribution, showing that DRL can generalize on small to moderate deviations with respect to the training traffic matrices. Finally, we assess DRL scalability with respect to topology size and link capacity.

On Deep Reinforcement Learning for Static Routing and Wavelength Assignment

Di Cicco N.;Mercan E. F.;Karandin O.;Ayoub O.;Troia S.;Musumeci F.;Tornatore M.
2022-01-01

Abstract

Deep Reinforcement Learning (DRL) is rising as a promising tool for solving optimization problems in optical networks. Though studies employing DRL for solving static optimization problems in optical networks are appearing, assessing strengths and weaknesses of DRL with respect to state-of-the-art solution methods is still an open research question. In this work, we focus on Routing and Wavelength Assignment (RWA), a well-studied problem for which fast and scalable algorithms leading to better optimality gaps are always sought for. We develop two different DRL-based methods to assess the impact of different design choices on DRL performance. In addition, we propose a Multi-Start approach that can improve the average DRL performance, and we engineer a shaped reward that allows efficient learning in networks with high link capacities. With Multi-Start, DRL gets competitive results with respect to a state-of-the-art Genetic Algorithm with significant savings in computational times. Moreover, we assess the generalization capabilities of DRL to traffic matrices unseen during training, in terms of total connection requests and traffic distribution, showing that DRL can generalize on small to moderate deviations with respect to the training traffic matrices. Finally, we assess DRL scalability with respect to topology size and link capacity.
2022
Deep Reinforcement Learning
Genetic Algorithm
Heuristic algorithms
Network topology
Optimization
Reinforcement learning
Routing
Routing and Wavelength Assignment
Topology
Training
Wavelength assignment
File in questo prodotto:
File Dimensione Formato  
JSTQE_invited.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1204406
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact