The combined fit of the energy spectrum and mass composition data above 5 · 1018 eV suggested the presence of extragalactic sources ejecting ultra-high-energy cosmic rays with relatively low maximum energies, hard spectral indices and mixed chemical compositions, dominated by the contribution of intermediate mass groups. Here we present an extension of the fit to lower energies, to include the feature observed near 5 · 1018 eV in the all-particle energy spectrum, the so-called ankle. We show that it is possible to generate such a change of slope assuming that the flux below the ankle is provided by the superposition of different contributions. The simplest extension of this sort consists of introducing a supplemental extragalactic component at low energy, characterised by different physical parameters with respect to the one being dominant above the ankle: such a component may originate from a different population of sources or be provided by interactions occurring in the acceleration sites. In this framework we also explore the possibility of including the end of a Galactic contribution at low energies. The fit suggests that these scenarios provide a reasonable description of the measurements across the ankle, without significantly affecting the interpretation obtained for the above-ankle region. In order to evaluate our capability to constrain the source models, we finally discuss the impact of the main experimental systematic uncertainties and of the theoretical models choice on the fit results.

Combined fit of the energy spectrum and mass composition across the ankle with the data measured at the Pierre Auger Observatory

Consolati G.;
2022-01-01

Abstract

The combined fit of the energy spectrum and mass composition data above 5 · 1018 eV suggested the presence of extragalactic sources ejecting ultra-high-energy cosmic rays with relatively low maximum energies, hard spectral indices and mixed chemical compositions, dominated by the contribution of intermediate mass groups. Here we present an extension of the fit to lower energies, to include the feature observed near 5 · 1018 eV in the all-particle energy spectrum, the so-called ankle. We show that it is possible to generate such a change of slope assuming that the flux below the ankle is provided by the superposition of different contributions. The simplest extension of this sort consists of introducing a supplemental extragalactic component at low energy, characterised by different physical parameters with respect to the one being dominant above the ankle: such a component may originate from a different population of sources or be provided by interactions occurring in the acceleration sites. In this framework we also explore the possibility of including the end of a Galactic contribution at low energies. The fit suggests that these scenarios provide a reasonable description of the measurements across the ankle, without significantly affecting the interpretation obtained for the above-ankle region. In order to evaluate our capability to constrain the source models, we finally discuss the impact of the main experimental systematic uncertainties and of the theoretical models choice on the fit results.
2022
37th International Cosmic Ray Conference (ICRC 2021)
File in questo prodotto:
File Dimensione Formato  
GUIDE01-22.pdf

accesso aperto

: Publisher’s version
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1227799
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact