A kinematic procedure to obtain in-plane elastic moduli and macroscopic masonry strength domains in the case of herringbone masonry is presented. The model is constituted by two central bricks interacting with their neighbors by means of either elastic or rigid plastic interfaces with friction, representing mortar joints. A sub-class of possible elementary deformations is a-priori chosen to describe joints cracking under in- plane loads. Suitable internal macroscopic actions are applied on the Representative Element of Volume REV and the power expended within the 3D bricks assemblage is equated to that expended in the macroscopic 2D Cauchy continuum. The elastic and limit analysis problem at a cell level are solved by means of a quadratic and linear programming approach, respectively. When dealing with the limit analysis approach, several computations are performed investigating the role played by (1) the direction of the load with respect to herringbone bond pattern inclination and (2) masonry texture.

Homogenized model for herringbone bond masonry: Linear elastic and limit analysis

MILANI, GABRIELE
2013-01-01

Abstract

A kinematic procedure to obtain in-plane elastic moduli and macroscopic masonry strength domains in the case of herringbone masonry is presented. The model is constituted by two central bricks interacting with their neighbors by means of either elastic or rigid plastic interfaces with friction, representing mortar joints. A sub-class of possible elementary deformations is a-priori chosen to describe joints cracking under in- plane loads. Suitable internal macroscopic actions are applied on the Representative Element of Volume REV and the power expended within the 3D bricks assemblage is equated to that expended in the macroscopic 2D Cauchy continuum. The elastic and limit analysis problem at a cell level are solved by means of a quadratic and linear programming approach, respectively. When dealing with the limit analysis approach, several computations are performed investigating the role played by (1) the direction of the load with respect to herringbone bond pattern inclination and (2) masonry texture.
2013
Proceedings Computational Plasticity XII: Fundamentals and Applications -12th International Conference on Computational Plasticity - Fundamentals and Applications, COMPLAS 2013
978-849415315-0
Masonry, Homogenization, Limit analysis, Elasticity
File in questo prodotto:
File Dimensione Formato  
2013_COMPLAS.pdf

Accesso riservato

: Pre-Print (o Pre-Refereeing)
Dimensione 320.8 kB
Formato Adobe PDF
320.8 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/766125
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact