Short-term adaptation indicates the attenuation of the functional MRI (fMRI) response during repeated task execution. It is considered to be a physiological process, but it is unknown whether short-term adaptation changes significantly in patients with brain disorders, such as multiple sclerosis (MS). In order to investigate short-term adaptation during a repeated right-hand tapping task in both controls and in patients with MS, we analyzed the fMRI data collected in a large cohort of controls and MS patients who were recruited into a multi-centre European fMRI study. Four fMRI runs were acquired for each of the 55 controls and 56 MS patients at baseline and 33 controls and 26 MS patients at 1-year follow-up. The externally cued (1 Hz) right hand tapping movement was limited to 3 cm amplitude by using at all sites (7 at baseline and 6 at follow-up) identically manufactured wooden frames. No significant differences in cerebral activation were found between sites. Furthermore, our results showed linear response adaptation (i.e. reduced activation) from run 1 to run 4 (over a 25 minute period) in the primary motor area (contralateral more than ipsilateral), in the supplementary motor area and in the primary sensory cortex, sensory-motor cortex and cerebellum, bilaterally. This linear activation decay was the same in both control and patient groups, did not change between baseline and 1-year follow-up and was not influenced by the modest disease progression observed over 1 year. These findings confirm that the short-term adaptation to a simple motor task is a physiological process which is preserved in MS.

Mancini, L., Ciccarelli, O., Manfredonia, F., Thornton, J.s., Agosta, F., Barkhof, F., et al. (2009). Short-term adaptation to a simple motor task: A physiological process preserved in multiple sclerosis. NEUROIMAGE, 45(2), 500-511 [10.1016/j.neuroimage.2008.12.006].

Short-term adaptation to a simple motor task: A physiological process preserved in multiple sclerosis

DE STEFANO, NICOLA;
2009-01-01

Abstract

Short-term adaptation indicates the attenuation of the functional MRI (fMRI) response during repeated task execution. It is considered to be a physiological process, but it is unknown whether short-term adaptation changes significantly in patients with brain disorders, such as multiple sclerosis (MS). In order to investigate short-term adaptation during a repeated right-hand tapping task in both controls and in patients with MS, we analyzed the fMRI data collected in a large cohort of controls and MS patients who were recruited into a multi-centre European fMRI study. Four fMRI runs were acquired for each of the 55 controls and 56 MS patients at baseline and 33 controls and 26 MS patients at 1-year follow-up. The externally cued (1 Hz) right hand tapping movement was limited to 3 cm amplitude by using at all sites (7 at baseline and 6 at follow-up) identically manufactured wooden frames. No significant differences in cerebral activation were found between sites. Furthermore, our results showed linear response adaptation (i.e. reduced activation) from run 1 to run 4 (over a 25 minute period) in the primary motor area (contralateral more than ipsilateral), in the supplementary motor area and in the primary sensory cortex, sensory-motor cortex and cerebellum, bilaterally. This linear activation decay was the same in both control and patient groups, did not change between baseline and 1-year follow-up and was not influenced by the modest disease progression observed over 1 year. These findings confirm that the short-term adaptation to a simple motor task is a physiological process which is preserved in MS.
2009
Mancini, L., Ciccarelli, O., Manfredonia, F., Thornton, J.s., Agosta, F., Barkhof, F., et al. (2009). Short-term adaptation to a simple motor task: A physiological process preserved in multiple sclerosis. NEUROIMAGE, 45(2), 500-511 [10.1016/j.neuroimage.2008.12.006].
File in questo prodotto:
File Dimensione Formato  
152.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 7.34 MB
Formato Adobe PDF
7.34 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/23616
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo