Gene-encoded, ribosomally synthesised antimicrobial peptides (AMPs) are an ancient and pervasive component of the innate defence mechanisms used by multicellular organisms to control the natural flora and combat pathogens. Bacteria also produce such AMPs to maintain ecological niches free of rival strains. Several hundred different peptides have been characterised to date, and they show a marked degree of variability in both sequence and structure, having evolved to act against distinct microbial targets in different physiological contexts. Many of these peptides appear to function via a selective, but not receptor-mediated, permeabilisation of microbial membranes, while others interact with specific membrane associated or intracellular targets. This review presents a broad survey of different AMP structural classes, emphasising both their molecular diversity and underlying similarities. The mode of action of these peptides and potential for biomedical and other application is also briefly discussed.

Molecular diversity in gene-encoded, cationic antimicrobial polypeptides.

TOSSI, ALESSANDRO;SANDRI, Luca
2002-01-01

Abstract

Gene-encoded, ribosomally synthesised antimicrobial peptides (AMPs) are an ancient and pervasive component of the innate defence mechanisms used by multicellular organisms to control the natural flora and combat pathogens. Bacteria also produce such AMPs to maintain ecological niches free of rival strains. Several hundred different peptides have been characterised to date, and they show a marked degree of variability in both sequence and structure, having evolved to act against distinct microbial targets in different physiological contexts. Many of these peptides appear to function via a selective, but not receptor-mediated, permeabilisation of microbial membranes, while others interact with specific membrane associated or intracellular targets. This review presents a broad survey of different AMP structural classes, emphasising both their molecular diversity and underlying similarities. The mode of action of these peptides and potential for biomedical and other application is also briefly discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1702252
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? 34
  • Scopus 132
  • ???jsp.display-item.citation.isi??? ND
social impact