One of the strategies adopted for the development of a bivalent conjugate vaccine against invasive nontyphoidal Salmonella consists of linking the O-antigen component of S. Typhimurium and S. Entertidis lipopolysaccharides to the carrier protein CRM197, a non-toxic variant of diphtheria toxin. The conjugation reaction uses the reducing end residue 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) of the core to which the O-antigen chain is bound (OAg-core). OAg-core chains are cleaved from the lipid A directly in the fermentation broth by mild acid treatment. Kdo has been reported to undergo structural changes under these conditions and therefore the Kdo at the reducing end was thoroughly analysed to verify its structural integrity. For this purpose, low molecular mass OAg-core chains extracted from S. Typhimurium wild type bacteria and core oligosaccharides extracted from S. Typhimurium bacteria mutated not to produce O-antigen repeats were characterized by GLC-MS, MALDI-TOF-MS and NMR spectroscopy. Moreover, a combination of 1H–1H and 1H–13C experiments confirmed the linkage positions, sequence and structure of the octasaccharide core with 5-linked Kdo present at the reducing end in its native structure: α-GlcpNAc-(1→2)-α-Glcp-(1→2)-α-Galp-(1→3)-[α-Galp-(1→6)]-α-Glcp-(1→3)-[α-Hepp-(1→7)]-α-Hepp-(1→3)-α-Hepp-(1→5)-Kdo.

Characterization of the Salmonella Typhimurium core oligosaccharide and its reducing end 3-deoxy-D-manno-oct-2-ulosonic acid used for conjugate vaccine production

De Benedetto G.;Garozzo D.;Ravenscroft N.;Cescutti P.
2019-01-01

Abstract

One of the strategies adopted for the development of a bivalent conjugate vaccine against invasive nontyphoidal Salmonella consists of linking the O-antigen component of S. Typhimurium and S. Entertidis lipopolysaccharides to the carrier protein CRM197, a non-toxic variant of diphtheria toxin. The conjugation reaction uses the reducing end residue 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) of the core to which the O-antigen chain is bound (OAg-core). OAg-core chains are cleaved from the lipid A directly in the fermentation broth by mild acid treatment. Kdo has been reported to undergo structural changes under these conditions and therefore the Kdo at the reducing end was thoroughly analysed to verify its structural integrity. For this purpose, low molecular mass OAg-core chains extracted from S. Typhimurium wild type bacteria and core oligosaccharides extracted from S. Typhimurium bacteria mutated not to produce O-antigen repeats were characterized by GLC-MS, MALDI-TOF-MS and NMR spectroscopy. Moreover, a combination of 1H–1H and 1H–13C experiments confirmed the linkage positions, sequence and structure of the octasaccharide core with 5-linked Kdo present at the reducing end in its native structure: α-GlcpNAc-(1→2)-α-Glcp-(1→2)-α-Galp-(1→3)-[α-Galp-(1→6)]-α-Glcp-(1→3)-[α-Hepp-(1→7)]-α-Hepp-(1→3)-α-Hepp-(1→5)-Kdo.
2019
Pubblicato
https://www.sciencedirect.com/science/article/pii/S0008621519302046
File in questo prodotto:
File Dimensione Formato  
76 Salmonella core Kdo CR 2019.pdf

Accesso chiuso

Descrizione: articolo
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0008621519302046-mmc1.pdf

Accesso chiuso

Descrizione: Supplementary material
Tipologia: Altro materiale allegato
Licenza: Copyright Editore
Dimensione 776.96 kB
Formato Adobe PDF
776.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2958211
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact