We describe a method for measuring the integrated Comptonization (Y SZ) of clusters of galaxies from measurements of the Sunyaev-Zel'dovich (SZ) effect in multiple frequency bands and use this method to characterize a sample of galaxy clusters detected in the South Pole Telescope (SPT) data. We use a Markov Chain Monte Carlo method to fit a β-model source profile and integrate Y SZ within an angular aperture on the sky. In simulated observations of an SPT-like survey that include cosmic microwave background anisotropy, point sources, and atmospheric and instrumental noise at typical SPT-SZ survey levels, we show that we can accurately recover β-model parameters for inputted clusters. We measure Y SZ for simulated semi-analytic clusters and find that Y SZ is most accurately determined in an angular aperture comparable to the SPT beam size. We demonstrate the utility of this method to measure Y SZ and to constrain mass scaling relations using X-ray mass estimates for a sample of 18 galaxy clusters from the SPT-SZ survey. Measuring Y SZ within a 0.'75 radius aperture, we find an intrinsic log-normal scatter of 21% ± 11% in Y SZ at a fixed mass. Measuring Y SZ within a 0.3 Mpc projected radius (equivalent to 0.'75 at the survey median redshift z = 0.6), we find a scatter of 26% ± 9%. Prior to this study, the SPT observable found to have the lowest scatter with mass was cluster detection significance. We demonstrate, from both simulations and SPT observed clusters that Y SZ measured within an aperture comparable to the SPT beam size is equivalent, in terms of scatter with cluster mass, to SPT cluster detection significance.

Measurement of galaxy cluster integrated comptonization and mass scaling relations with the South Pole Telescope

Saro, A.;
2015-01-01

Abstract

We describe a method for measuring the integrated Comptonization (Y SZ) of clusters of galaxies from measurements of the Sunyaev-Zel'dovich (SZ) effect in multiple frequency bands and use this method to characterize a sample of galaxy clusters detected in the South Pole Telescope (SPT) data. We use a Markov Chain Monte Carlo method to fit a β-model source profile and integrate Y SZ within an angular aperture on the sky. In simulated observations of an SPT-like survey that include cosmic microwave background anisotropy, point sources, and atmospheric and instrumental noise at typical SPT-SZ survey levels, we show that we can accurately recover β-model parameters for inputted clusters. We measure Y SZ for simulated semi-analytic clusters and find that Y SZ is most accurately determined in an angular aperture comparable to the SPT beam size. We demonstrate the utility of this method to measure Y SZ and to constrain mass scaling relations using X-ray mass estimates for a sample of 18 galaxy clusters from the SPT-SZ survey. Measuring Y SZ within a 0.'75 radius aperture, we find an intrinsic log-normal scatter of 21% ± 11% in Y SZ at a fixed mass. Measuring Y SZ within a 0.3 Mpc projected radius (equivalent to 0.'75 at the survey median redshift z = 0.6), we find a scatter of 26% ± 9%. Prior to this study, the SPT observable found to have the lowest scatter with mass was cluster detection significance. We demonstrate, from both simulations and SPT observed clusters that Y SZ measured within an aperture comparable to the SPT beam size is equivalent, in terms of scatter with cluster mass, to SPT cluster detection significance.
File in questo prodotto:
File Dimensione Formato  
Saliwanchik_2015_ApJ_799_137.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 663.89 kB
Formato Adobe PDF
663.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1312.3015v1.pdf

accesso aperto

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 543.56 kB
Formato Adobe PDF
543.56 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2962559
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact