Abstract We present a uniform version of Di Nola Theorem, this enables to embed all MV-algebras of a bounded cardinality in an algebra of functions with values in a single non-standard ultrapower of the real interval [0, 1]. This result also implies the existence, for any cardinal α, of a single MV-algebra in which all infinite MV-algebras of cardinality at most α embed. Recasting the above construction with iterated ultrapowers, we show how to construct such an algebra of values in a definable way, thus providing a sort of “canonical” set of values for the functional representation.
Representation of MV algebras by regular ultrapowers of [0,1]
DI NOLA, Antonio;LENZI, Giacomo;SPADA, LUCA
2010-01-01
Abstract
Abstract We present a uniform version of Di Nola Theorem, this enables to embed all MV-algebras of a bounded cardinality in an algebra of functions with values in a single non-standard ultrapower of the real interval [0, 1]. This result also implies the existence, for any cardinal α, of a single MV-algebra in which all infinite MV-algebras of cardinality at most α embed. Recasting the above construction with iterated ultrapowers, we show how to construct such an algebra of values in a definable way, thus providing a sort of “canonical” set of values for the functional representation.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.