Many drugs are available for the treatment of systemic or superficial mycoses, but only a limited number of them are effective antifungal drugs, devoid of toxic and undesirable side effects. Furthermore, resistance development and fungistatic rather than fungicidal activities represent limitations of current antifungal therapy. Therefore there remains an urgent need for a new generation of antifungal agents. According to a polypharmacological approach, the present work concerns the synthesis and antifungal activity of a set of peptides designed to simultaneously target the fungal cell surface and lanosterol demethylase, a key enzyme involved in ergosterol synthesis. Our peptides include amino acid sequences characteristic of membrane-active antimicrobial peptides (AMP), and due to the presence of His residues, they carry the imidazole ring characteristic of azole compounds. The peptides synthesized by us, were tested against different yeast species, and displayed general antifungal activity, with a therapeutically promising antifungal specificity against Cryptococcus neoformans.

Synthesis of new antifungal peptides selective against Cryptococcus neoformans.

M. Grimaldi;DE ROSA, Margherita;DI MARINO, SARA;SCRIMA, MARIO;SORIENTE, Annunziata;D'URSI, Anna Maria
2010-01-01

Abstract

Many drugs are available for the treatment of systemic or superficial mycoses, but only a limited number of them are effective antifungal drugs, devoid of toxic and undesirable side effects. Furthermore, resistance development and fungistatic rather than fungicidal activities represent limitations of current antifungal therapy. Therefore there remains an urgent need for a new generation of antifungal agents. According to a polypharmacological approach, the present work concerns the synthesis and antifungal activity of a set of peptides designed to simultaneously target the fungal cell surface and lanosterol demethylase, a key enzyme involved in ergosterol synthesis. Our peptides include amino acid sequences characteristic of membrane-active antimicrobial peptides (AMP), and due to the presence of His residues, they carry the imidazole ring characteristic of azole compounds. The peptides synthesized by us, were tested against different yeast species, and displayed general antifungal activity, with a therapeutically promising antifungal specificity against Cryptococcus neoformans.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3018421
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact