The wind power production spreading, also aided by the transition from constant to variable speed operation, involves the development of efficient control systems to improve the effectiveness of power production systems. This paper presents a data-driven design methodology able to generate a Takagi-Sugeno-Kang (TSK) fuzzy model for maximum energy extraction from variable speed wind turbines. In order to obtain the TSK model, fuzzy clustering methods for partitioning the input-output space, combined with genetic algorithms, and recursive least-squares optimization methods for model parameter adaptation are used. The implemented TSK fuzzy model, as confirmed by some simulation results on a doubly fed induction generator connected to a power system, exhibits high speed of computation, low memory occupancy, fault tolerance, and learning capability. © 2008 IEEE.
Designing an adaptive fuzzy controller for maximum wind energy extraction
Galdi, Vincenzo;Siano, Pierluigi
2008
Abstract
The wind power production spreading, also aided by the transition from constant to variable speed operation, involves the development of efficient control systems to improve the effectiveness of power production systems. This paper presents a data-driven design methodology able to generate a Takagi-Sugeno-Kang (TSK) fuzzy model for maximum energy extraction from variable speed wind turbines. In order to obtain the TSK model, fuzzy clustering methods for partitioning the input-output space, combined with genetic algorithms, and recursive least-squares optimization methods for model parameter adaptation are used. The implemented TSK fuzzy model, as confirmed by some simulation results on a doubly fed induction generator connected to a power system, exhibits high speed of computation, low memory occupancy, fault tolerance, and learning capability. © 2008 IEEE.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.