Background: The most effective strategy for managing cancer pain remotely should be better defined. There is a need to identify those patients who require increased attention and calibrated follow-up programs. Methods: Machine learning (ML) models were developed using the data prospectively obtained from a single-center program of telemedicine-based cancer pain management. These models included random forest (RF), gradient boosting machine (GBM), artificial neural network (ANN), and the LASSO-RIDGE algorithm. Thirteen demographic, social, clinical, and therapeutic variables were adopted to define the conditions that can affect the number of teleconsultations. After ML validation, the risk analysis for more than one remote consultation was assessed in target individuals. Results: The data from 158 patients were collected. In the training set, the accuracy was about 95% and 98% for ANN and RF, respectively. Nevertheless, the best accuracy on the test set was obtained with RF (70%). The ML-based simulations showed that young age (<55 years), lung cancer, and occurrence of breakthrough cancer pain help to predict the number of remote consultations. Elderly patients (>75 years) with bone metastases may require more telemedicine-based clinical evaluations. Conclusion: ML-based analyses may enable clinicians to identify the best model for predicting the need for more remote consultations. It could be useful for calibrating care interventions and resource allocation.

Different Machine Learning Approaches for Implementing Telehealth-Based Cancer Pain Management Strategies

Cascella, Marco
;
2022

Abstract

Background: The most effective strategy for managing cancer pain remotely should be better defined. There is a need to identify those patients who require increased attention and calibrated follow-up programs. Methods: Machine learning (ML) models were developed using the data prospectively obtained from a single-center program of telemedicine-based cancer pain management. These models included random forest (RF), gradient boosting machine (GBM), artificial neural network (ANN), and the LASSO-RIDGE algorithm. Thirteen demographic, social, clinical, and therapeutic variables were adopted to define the conditions that can affect the number of teleconsultations. After ML validation, the risk analysis for more than one remote consultation was assessed in target individuals. Results: The data from 158 patients were collected. In the training set, the accuracy was about 95% and 98% for ANN and RF, respectively. Nevertheless, the best accuracy on the test set was obtained with RF (70%). The ML-based simulations showed that young age (<55 years), lung cancer, and occurrence of breakthrough cancer pain help to predict the number of remote consultations. Elderly patients (>75 years) with bone metastases may require more telemedicine-based clinical evaluations. Conclusion: ML-based analyses may enable clinicians to identify the best model for predicting the need for more remote consultations. It could be useful for calibrating care interventions and resource allocation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4856276
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact