The manuscript investigates the buckling behaviour of Bernoulli-Euler nanobeams composed of Functionally-Graded (FG) materials with different cross-sectional shapes. This analysis is conducted using the surface stress-driven model of elasticity. The nonlocal governing equations for the elastostatic buckling problem are derived employing the principle of virtual work. The study also includes a parametric investigation, presenting and discussing the main results while varying the nonlocal parameter, material gradient index, the cross-sectional shapes and the constraints at the ends of the FG nanobeams. Critical loads are numerically calculated and compared with those obtained by other authors using the classical stress-driven model elasticity.

Buckling analysis of functionally graded nanobeams via surface stress-driven model

Penna, Rosa;Lovisi, Giuseppe
;
Feo, Luciano
2024-01-01

Abstract

The manuscript investigates the buckling behaviour of Bernoulli-Euler nanobeams composed of Functionally-Graded (FG) materials with different cross-sectional shapes. This analysis is conducted using the surface stress-driven model of elasticity. The nonlocal governing equations for the elastostatic buckling problem are derived employing the principle of virtual work. The study also includes a parametric investigation, presenting and discussing the main results while varying the nonlocal parameter, material gradient index, the cross-sectional shapes and the constraints at the ends of the FG nanobeams. Critical loads are numerically calculated and compared with those obtained by other authors using the classical stress-driven model elasticity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4897735
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact