Kpkt is a yeast killer toxin, naturally produced by Tetrapisispora phaffii, with possible applications in winemaking due to its antimicrobial activity on wine-related yeasts including Kloeckera/Hanseniaspora, Saccharomycodes and Zygosaccharomyces. Here, Kpkt coding gene was expressed in Komagataella phaffii (formerly Pichia pastoris) and the bioreactor production of the recombinant toxin (rKpkt) was obtained. Moreover, to produce a ready-to-use preparation of rKpkt, the cell-free supernatant of the K. phaffii recombinant killer clone was 80-fold concentrated and lyophilized. The resulting preparation could be easily solubilized in sterile distilled water and maintained its killer activity for up to six months at 4 °C. When applied to grape must, it exerted an extensive killer activity on wild wine-related yeasts while proving compatible with the fermentative activity of actively growing Saccharomyces cerevisiae starter strains. Moreover, it displayed a strong microbicidal effect on a variety of bacterial species including lactic acid bacteria and food-borne pathogens. On the contrary it showed no lethal effect on filamentous fungi and on Ceratitis capitata and Musca domestica, two insect species that may serve as non-mammalian model for biomedical research. Based on these results, bioreactor production and lyophilization represent an interesting option for the exploitation of this killer toxin that, due to its spectrum of action, may find application in the control of microbial contaminations in the wine and food industries.

Production of a lyophilized ready-to-use yeast killer toxin with possible applications in the wine and food industries / Carboni, G.; Fancello, F.; Zara, G.; Zara, S.; Ruiu, L.; Marova, I.; Pinna, G.; Budroni, M.; Mannazzu, I.. - In: INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY. - ISSN 0168-1605. - 335:(2020). [10.1016/j.ijfoodmicro.2020.108883]

Production of a lyophilized ready-to-use yeast killer toxin with possible applications in the wine and food industries.

CARBONI G.;FANCELLO F.;ZARA G.;ZARA S.;RUIU L.;BUDRONI M.;MANNAZZU I.
2020-01-01

Abstract

Kpkt is a yeast killer toxin, naturally produced by Tetrapisispora phaffii, with possible applications in winemaking due to its antimicrobial activity on wine-related yeasts including Kloeckera/Hanseniaspora, Saccharomycodes and Zygosaccharomyces. Here, Kpkt coding gene was expressed in Komagataella phaffii (formerly Pichia pastoris) and the bioreactor production of the recombinant toxin (rKpkt) was obtained. Moreover, to produce a ready-to-use preparation of rKpkt, the cell-free supernatant of the K. phaffii recombinant killer clone was 80-fold concentrated and lyophilized. The resulting preparation could be easily solubilized in sterile distilled water and maintained its killer activity for up to six months at 4 °C. When applied to grape must, it exerted an extensive killer activity on wild wine-related yeasts while proving compatible with the fermentative activity of actively growing Saccharomyces cerevisiae starter strains. Moreover, it displayed a strong microbicidal effect on a variety of bacterial species including lactic acid bacteria and food-borne pathogens. On the contrary it showed no lethal effect on filamentous fungi and on Ceratitis capitata and Musca domestica, two insect species that may serve as non-mammalian model for biomedical research. Based on these results, bioreactor production and lyophilization represent an interesting option for the exploitation of this killer toxin that, due to its spectrum of action, may find application in the control of microbial contaminations in the wine and food industries.
2020
Production of a lyophilized ready-to-use yeast killer toxin with possible applications in the wine and food industries / Carboni, G.; Fancello, F.; Zara, G.; Zara, S.; Ruiu, L.; Marova, I.; Pinna, G.; Budroni, M.; Mannazzu, I.. - In: INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY. - ISSN 0168-1605. - 335:(2020). [10.1016/j.ijfoodmicro.2020.108883]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/236219
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact