Allogeneic hematopoietic cell transplantation from a human leukocyte antigen (HLA) haplotype mismatched donor (haploidentical transplantation) was not feasible for the treatment of hematologic malignancies until the early 1990s, due to the high risk of rejection and graft-versus-host disease (GVHD). The first successful protocol of haploidentical transplantation was based on a highly myeloablative and immunosuppressive conditioning regimen and the infusion of a “mega-dose” of T-cell-depleted hematopoietic stem cells. More than 90% of patients engrafted and <10% developed GVHD. The protocol did not include post-transplant immunosuppression, which favored the graft-versus-tumor effect mediated by alloreactive NK cells and residual alloreactive T cells. However, donor post-transplant immune reconstitution was slow with a high risk of infection-related mortality. More recently, T-cell-depleted haploidentical transplantation has become the platform for innovative cell therapies that aim to enhance T-cell immunity while preventing adverse reactions against host tissues. One strategy is adoptive immunotherapy with conventional T cells and regulatory T cells. Preclinical studies and clinical trials have proven that regulatory T cells control GVHD caused by co-infused conventional T cells while the graft-versus-tumor effect is retained. The use of regulatory T cells in the absence of any other form of immune suppression allowed for a conventional T cell-mediated full eradication of disease in the vast majority of high-risk acute leukemia patients.

T cell depletion and no post transplant immune suppression allow separation of graft versus leukemia from graft versus host disease

Pierini A.
;
Mancusi A.;Martelli M. F.;Velardi A.
2019

Abstract

Allogeneic hematopoietic cell transplantation from a human leukocyte antigen (HLA) haplotype mismatched donor (haploidentical transplantation) was not feasible for the treatment of hematologic malignancies until the early 1990s, due to the high risk of rejection and graft-versus-host disease (GVHD). The first successful protocol of haploidentical transplantation was based on a highly myeloablative and immunosuppressive conditioning regimen and the infusion of a “mega-dose” of T-cell-depleted hematopoietic stem cells. More than 90% of patients engrafted and <10% developed GVHD. The protocol did not include post-transplant immunosuppression, which favored the graft-versus-tumor effect mediated by alloreactive NK cells and residual alloreactive T cells. However, donor post-transplant immune reconstitution was slow with a high risk of infection-related mortality. More recently, T-cell-depleted haploidentical transplantation has become the platform for innovative cell therapies that aim to enhance T-cell immunity while preventing adverse reactions against host tissues. One strategy is adoptive immunotherapy with conventional T cells and regulatory T cells. Preclinical studies and clinical trials have proven that regulatory T cells control GVHD caused by co-infused conventional T cells while the graft-versus-tumor effect is retained. The use of regulatory T cells in the absence of any other form of immune suppression allowed for a conventional T cell-mediated full eradication of disease in the vast majority of high-risk acute leukemia patients.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1459655
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact